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Abstract
We consider learning in the presence of arbitrary noise that can overwhelm the signal in terms
of magnitude on a fraction of data points observed (aka outliers). Standard approaches based on
minimizing empirical loss can fail miserably and lead to arbitrary bad solutions in this setting. We
propose an approach that iterates between finding a solution with minimal empirical loss and re-
weighting the data, reinforcing data points where the previous solution works well. We show that
our approach can handle arbitrarily large noise, is robust as having a non-trivial breakdown point,
and converges linearly under certain conditions.

The intuitive idea of our approach is to automatically exclude “difficult” data points from model
fitting. More importantly (and perhaps surprisingly), we validate this intuition by establishing guar-
antees for generalization and iteration complexity that essentially ignore the presence of outliers.

1. Introduction

This paper is about learning with gross noise. Gross noise exists widely in real applications, due to
various reasons: unreliable acquisition, inadvertent mixing of sources, or occurrence of rare events
that are validly measured but too scarce to estimate. Many common learning algorithms are not
robust to gross noise – they can be disproportionately skewed if even a small proportion of training
data points are affected by gross noise. Popular quadratic-loss based methods such as least squares
regression and `2-SVM are especially brittle, but even methods based on more robust loss functions
such as `1-SVM and Huber loss regression are susceptible to gross noise as well (Tukey, 1960,
1962; Huber et al., 1964), see Section 5 for a more detailed survey.

We propose a framework based on (re)-weighting the data. In particular, we propose to minimize
a joint loss function that chooses a weight vector over the training samples and selects the model
which best fits the weighted training set. The intuition is that by selecting a weight vector that
minimizes the loss, the algorithm automatically reduces the effect or even completely ignores data
points with excessive loss, thus making the algorithm less susceptible to a few gross outliers. To
avoid overfitting “easy” data – the obtained weight concentrating on a few data points with very
low loss – we introduce a regularization term on the weight. This regularized weighting approach
is general and readily applicable to any learning problem that is formulated as minimizing a certain
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loss. Regularized weighting was initially proposed in Vainsencher et al. (2013) in a more general
context of multiple-model estimation, where several models are learned simultaneously and data
are associated to models according to the success of the models on the data. Here we consider the
specialized case of learning just a single model while excluding outliers (or other points with a
large noise) and therefore we are able to obtain stronger results in terms of convergence, statistical
guarantees and robustness. We give the formulation and explore the properties of the weights it
chooses in in Section 2.

Algorithmically, we solve the formulation by alternating minimization between reweighting the
data (i.e., computing the weight) and optimizing over the weighted data (i.e., selecting the model
with minimal loss). We therefore term the proposed approach Reweighting-Minimization (RM).
Since the reweighting step is efficient, the cost of this approach is dominated by the number of
iterations required. We describe the algorithm in detail and analyze the cost of a single iteration
in Section 2.1 and in Section 3 show the number of iterations required is often logarithmic in the
precision required.

Our main contribution is establishing formally that regularized weighting is an effective ap-
proach addressing the main issues of learning with gross noise. The cornerstone of our theoretical
analysis is that the reweighting step possesses three desirable properties, shown in Proposition 1:
(1) Weights are close to uniform. (2) Excessively large losses receive weight zero. And (3) weights
depend continuously on the losses. Based on these structural properties of the weights, we then
show the following advantages for the proposed reweighted minimization framework:

Sample complexity: Due to the first two properties the weighted loss is a weighted average
of bounded variables, where the weight is close to uniform, and the range of those variables is
close to a typical loss and rather than a maximal loss. This leads to a novel sample complexity
result that is exponentially less sensitive to large values of losses (e.g., outliers) than previously
known results for similar estimators. Indeed, our proof technique is rather general and hence of
independent interest: it can be easily adapted to other robust estimators, such as to the well studied
Least Trimmed Squares (Rousseeuw, 1984).

Iteration complexity: The third property allows us to show that for sufficiently regular estima-
tion problems, the method converges to a local optimum linearly. The analysis enables the transla-
tion of additional assumptions about the outliers into conclusions about lack of local minima and
hence global convergence.

Robustness of estimator to outliers: For some classes of problems our approach converts base
estimators into robust ones, in the sense of having a non-zero breakdown point. This holds for
location estimation as a special case of results in Vainsencher et al. (2013). For Sparse LTS, Alfons
et al. (2013) presented an argument that can be generalized to regularized models outside regression
and also from LTS to Lβ , but is not the focus of this paper.

This paper is organized as follows. In Section 2 we present the formulation of the proposed
reweighted minimization framework, and provide the algorithmic approach to solve the formula-
tion. Moreover, we establish structural properties of the obtained weight vectors, which serves as
the corner stone of the theoretic analysis of the framework. We show in Section 3 that the presented
algorithm converges to a local optimum linearly under mild technical conditions. Then, in Section 4
we establish sample complexity results for our formulation. As we discussed above, the sample
complexity results is about typical losses, and we show that we obtain results exponentially less
sensitive to outliers, which validates the robustness of the framework. We then discuss and com-
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pare with relevant literature in Section 5 before concluding the paper in Section 6. All proofs and
simulatoins results are deferred to the appendix.

TECHNICAL PRELUDE

In analyzing this method for reweighting data, we find the following language useful. We represent
data explicitly as an empirical distribution, and use a normalized Euclidean norm. This makes some
quantities critical to our formulation conveniently independent of the sample size (and applicable to
the limit of infinite data); we explain some unfamiliar consequences here along with other notation.

We denote by n the number of data points in a sample (xi)
n
i=1 where xi ∈ X . We represent

the sample by an empirical distribution µ assigning equal probability to each xi. We assume a loss
function ` : M× X → R so that ` (m,x) gives the cost of using model m on data point x. We
denote by `m the losses of a model m ∈ M on the data µ and by w the weights we assign to
individual data points in µ. Hence `m,w can be viewed as vectors in Rn or in a functional analysis
point of view, as functions in the space L2 (µ). From the latter we need to take only its norm,
different from the standard Euclidean norm only in normalization: ‖a‖2µ = n−1

∑n
i=1 a

2
i . This

choice induces a normalized inner product 〈a,b〉µ = n−1
∑n

i=1 aibi. Under this inner product, the
average of vector a can be written as 〈1n,a〉µ where 1n is the n dimensional vector equal to 1
on all coordinates; generalizing, weighted averages will replace 1n by vectors from the normalized
simplex4µ = {w ∈ Rn : 〈w,1n〉µ = 1 and wi ≥ 0, ∀i}.

When there is no risk of confusion we omit the subscript µ. We denote by P4µ the projection
operator into the simplex 4µ with regard to ‖·‖µ. We denote by Bd (x, r) the ball of radius r in
metric d around point x. We denote by χA the indicator function that is 1 on A and 0 elsewhere, and
by ◦ the elementwise product. For example, χA ◦ ` is a version of ` that is zero on data outside A.
For a vector x we denote [x]+ = max{0, x} elementwise.

2. Formulation

In this section we formalize the setting, specify our formulation and give a concrete example to
illustrate the intuition. We are given a data space X , a space of models M, and a subroutine for
finding a model that minimizes the weighted losses on the sample. Our formulation finds jointly a
model m ∈ M and a weighting vector w by minimizing the following loss whose solutions have
weights as in Eq. (2):

Lβ (m;µ) = min
w∈4µ

{
〈w, `m〉µ + β ‖w − 1n‖2µ

}
, (1)

where β > 0 and `m = (` (m,xi))
n
i=1 ∈ Rn is the vector of losses of model m on the data

represented by empirical distribution µ. Recalling our notation, we note that w ∈ 4µ means its
entries are in [0, n] and average 1. Therefore the first term 〈w, `m〉µ is a weighted average of losses,
and we explore Lβ through the weights w that apply. As a simple example, since 1n ∈ 4µ, our loss
Lβ (m;µ) always bounds the average loss 〈1n, `m〉µ from below.

The first term induces a preference (higher weights) for lower losses in minimizing w; further
properties of w are determined by the weight regularization term β ‖w − 1n‖2µ. This second term
keeps w close to a uniform distribution in a sense we formalize below, and prove in Appendix A.

Proposition 1 Fix a model m ∈M. Then the minimizing w in Lβ fulfills:
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(P1) Projection structure:

w = P4µ

(
−`m

2β

)
= [−`m/ (2β) + a1n]+ (2)

where a ∈ R is uniquely determined by the sum constraint on w.

For any ρl ≤ mini `(m,xi) and choose ρh such that I = {i : ` (m,xi) ≤ ρh}, i.e., the set of
indices of data points with losses upper-bounded by ρh, has p = |I| /n ≥ 2/3. Then additionally,
for β = c (ρh − ρl) where c ≥ 1, the following properties hold as well:

(P2) Uniform boundedness: wi ≤ p−1 + (2c)−1 ≤ 2, for all i.

(P3) Non-trivial weight for typical loss: wi ≥
(
2− p−1

)
p−1 − (2c)−1 ≥ 1/4, for all i ∈ I .

(P4) Ignoring extreme outliers: wi = 0, whenever `(m,xi) ≥ ρh + 3β.

Moreover, denoting L (µ, p,m) = |I|−1∑
i∈I ` (m,xi) the average of losses in [ρl, ρh], we have

that Lβ (m)− ρl ≥ (L (µ, p,m)− ρl) /6 for such β.

Proposition 1 is a fundamental result for the proposed method, exposing the structure of weights
especially for sufficiently large β. This structural result is the stepping stone for algorithmic results
and statistical results presented in Sections 3 and 4. In the remainder of this section, we use the
result to explore how Lβ behaves.

The projection structure property (P1) of the proposition makes it easy to analyze the behavior
of the weights. One immediate consequence is that the mapping of losses to weights is Lipschitz
continuous with parameter (2β)−1 , hence more stable for large β. As another example, it is easy
to see that if β equals the difference between the smallest loss and the second smallest loss, then all
weight will be assigned to the single example with the smallest loss, causing extreme overfitting.
Taking β larger than the range of the smallest 2/3 of losses avoids this, hence is assumed by the
remaining properties P2-P4. Also, P1 states that computing w is essentially performing `1 ball
projection, which can be done in O(n) time as shown in Duchi et al. (2008).

The uniform boundedness property (P2) shows that for large enough β, the range of weights is
reduced from [0, n] to the near-uniform [0, 2]; in particular no small subset of data is given dominant
weights. For sufficiently high β, for example taking p = 1 and c = 10 (P3) shows that any examples
with loss within β of the minimal loss do receive non-trivial weight. From (P4) we see that losses
worse than the last by a few β are assigned weight zero hence ignored as outliers. Hence while β
governs an important tradeoff in our method, its effects are well understood on a wide range.

Lastly, Proposition 1 shows that Lβ is sandwiched between the average loss and another well
known loss. In LTS assigned weights are defined to be uniform over a proportion p of the data
having the smallest losses and zero elsewhere. (P2) and (P4) show our w behaves similarly, and
indeed the last part of Proposition 1 shows that Lβ upper bounds the LTS loss.

To illustrate our formulation, take ridge regression as a concrete example. We let

` (m,xi) = (〈m,xi〉 − yi)2 + λ ‖m‖22
withM = Rd;X = Rd+1 where a single example consists of (xi, yi) ∈ X . Note that the regular-
ization of the model is included in the loss, and should be distinguished from regularization of the
weight in our formulations. The subroutine to minimize the weighted loss can be implemented by
solving ridge regression over the data scaled according to the weight.
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Algorithm 1 The RM alternating minimization algorithm for regularized weighting.

1. Input: data µ, β.

2. Initialization: m0 ∈M

3. While not converged, for time step s ∈ (1, 2, . . . ):

(a) R step: Find ws = arg minw∈4µ
〈
w, `m

s−1
〉
µ

+ β ‖w − 1n‖2µ .

(b) M step: Find ms ∈ arg min
m′∈M

〈
ws, `m

′
〉
µ
.

4. Output ms.

2.1. Implementation

To improve Lβ (m), we iterate between Reweighting (R) steps and Minimization (M ) steps; as in
the Expectation Maximization algorithm, this is an implementation of alternating minimization. As
detailed in Algorithm 1, the R steps fix the model m and update w according to Eq. (1) and the
M steps fix the weights and find the model minimizing the weighted average loss using the given
subroutine. We have no strong advice for the initialization ofm0; this is problem dependent, and due
to non-convexity might affect the model found. The solution for the uniformly weighted problem
seems to work well in practice. In the remainder of this section we describe the computational
complexity of a single iteration of Algorithm 1.

For convenience, we abuse notations and denote by `s the loss of model ms found in step s.
The space complexity of RM algorithm (ignoring the input µ and output ms) is O (n) (the space
needed to store `s−1,ws), which are dominated by the size of the input. We now focus on the time
complexity. Each R step can be solved in linear time in expectation (see Lemma 13 in the appendix
for details), which is dominated by the O (nd) time required to read the data and compute `s−1.
Thus, order-wise speaking, the runtime of the RM algorithm is the product of the time of an M
step and the number of iterations required, analyzed in Section 3.

3. Linear convergence

In this section we analyze the iteration complexity of the RM procedure. Our main result of the
section, presented in Theorem 5, provides a set of sufficient conditions for RM to converge to a
local optimum linearly. We remark that throughout this section, the problem type is fixed, including
the loss ` and a metric space of models (M, dM), as well as a training sample represented by
µ. Hence we drop the subscript µ to reduce clutter, but it should be understood that many terms
discussed depend on µ. We define an operator Tβ : M 7→ M such that Tβ(m) is the resulting
model when starting at a model m and applying one R step followed by one M step, while β
is the tradeoff parameter used. Our analysis is based on the following question: given a class of
models M ⊆ M that is closed under Tβ , i.e., Tβ(M) ⊆ M ,1 what are the conditions to ensure
that T sβ(m)

s→ arg minm∈M Lβ (m)? I.e., repeated applications of Tβ converge to the minimizer

1. Here, Tβ(M) stands for the image of M under Tβ .
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of Lβ in M? This is important for two reasons: for small M , it leads to rate of convergence to
local optimum, and for large M it shows how the right β can preclude both local minima and the
influence of outliers.

The proof relies on the fact that if similar models induce similar weights and therefore similar
minimization problems, such that the resulting models are even closer, then Tβ is a contraction
and it generates a sequence that converges fast. The central property of our formulation that we
exploit here is that when β is large, reweighting maps similar models (i.e., models with similar
loss vectors) to similar weight vectors. Notice that whether Tβ is a contraction depends on multiple
factors including loss, data, models and β; we introduce the concept of scope to allow our analysis
to be tightened by localizing it in a sense we specify below.

Definition 2 LetM ⊂M be a subset of models closed w.r.t. dM andA ⊂ X be a subset of possible
data. We call (M,A) a scope at β ifM is closed over Tβ , and the optimal weights for everym ∈M
are zero on data outside A.

We analyze convergence of Tβ over a scope where M is chosen as an appropriate neighborhood
of the local minimizer m∗β , and A can be chosen to exclude outliers according to Proposition 1.

To ensure that Tβ converges, we require that the M step is stable vis a vis small changes in
weights. This condition is not always true. For example, when the M step is underdetermined, as
in ordinary least squares regression when n � d where d is the dimensionality, an arbitrary small
change of weights may lead to significant change of the models obtained.

Definition 3 We say that a problem is g-determined for a given A ⊂ X if for every w1,w2 sup-
ported on A, taking mi ∈ arg minm∈M

〈
wi, `m

〉
µ

:

dM
(
m1,m2

)
≤ g

∥∥w1 −w2
∥∥
µ
.

The above mentioned linear regression case can be made g determined by adding ridge regular-
ization.

The second property we require is that uniformly over M , similar models will have losses that
are similar over the data restricted in A.

Definition 4 We say that a problem has f -Lipschitz losses for a given A ⊂ X ,M ⊂ M if for all
m1,m2 ∈M and their corresponding loss vectors `1, `2,∥∥χA ◦ (`1 − `2)∥∥µ ≤ fdM (m1,m2

)
,

where χA is the indicator function on A, and χA ◦ ` for ` ∈ Rn is a vector `′ ∈ Rn that masks all
entries corresponding to data points outside of A, i.e., `′i = `i if xi ∈ A, and `′i = 0 otherwise.

For convergence to the unique minimizer in M it suffices to take β sufficiently large relative to the
quantities f and g, as the following theorem shows. The proof uses the Banach fixed point theorem,
and is given in Appendix B.

Theorem 5 If for a given scope (M,A) at β a problem is g determined with f Lipschitz losses,
where

β > gf,
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then the restriction of Lβ to M , has a unique minimizer m∗β . Moreover, with this fixed β, RM
iterations (ms)s∈N converge to m∗β linearly: for any m0 ∈M ,

dM
(
ms,m∗β

)
≤ 1

2s
dM

(
m0,m∗β

)
.

Thus, when conditions of Theorem 5 hold, then the RM procedure will converge to the optimum
solution in (M,A) linearly if m0 is initialized in (M,A). If indeed M = M and A = X , then
convergence to the global optimum is guaranteed.

3.1. Examples

We illustrate the results with two classical estimation problems: the location estimation and the
linear regression. We discuss the location estimation here, and defer the linear regression example
to the appendix.

In the location estimation problem, the squared Euclidean distance is the loss. Our main result
is as follows.

Proposition 6 Given a location estimation problem and consider a scope (M,A) such that A ⊂
B(c, r) and M = A, then the problem is g-determined with g ≤ r, and has f Lipschitz losses with
f ≤ 4r.

Thus, if β > 4r2, each RM iteration reduces the distance to local optimum by at least half. To prove
the theorem, we establish below two general lemmas for location estimation, combining which
implies the theorem immediately.

Proposition 6 results from the following two lemmas, establishing f-Lipschitz loss and g-determinedness
properties respectively.

Recall that χA(·) is the indicator function, which equivalently can be represented as a vector in
Rn such that its i-th entry is 1 if xi ∈ A, and 0 otherwise. Thus, for ` ∈ Rn, χA ◦ ` is a vector given
by the element wise product, which results in a vector `′ that masks all entries of ` outside of A.
The inner product 〈χA, `〉µ = 1

n

∑
i χA(xi)`i where `i is the i-th entry of `.

Lemma 7 Let m1,m2 ∈ X be location estimates, `1, `2 the corresponding loss functions, and
A ⊂ X . We denote the average of the estimates ma =

(
m1 +m2

)
/2 and `a the corresponding

loss. Then: ∥∥χA ◦ (`1 − `2)∥∥µ
‖m2 −m1‖2

≤2
√
〈χA, `a〉µ.

Thus, if M = A ⊂ B (c, r), and m1,m2 ∈ M , then
∥∥∥x− m1+m2

2

∥∥∥
2
≤ 2r for x ∈ A, then

〈χA, `a〉µ ≤ 4r2. Then the problem has f Lipschitz losses for f = 4r.

Lemma 8 Let w1,w2 be supported on A, and let m1,m2 be the minimizers for the corresponding
weighted problems. Then for any s ∈ Rd, denoting ls the loss vector corresponding to it, we have∥∥m1 −m2

∥∥
2

‖w1 −w2‖µ
≤
√
〈χA, `s〉µ.

Thus, if A ⊂ B (c, r), then take s = c, then
√
〈χA, `s〉µ ≤ r, and generally, fg ≤ 4r2. Proposi-

tion 6 follows immediately.
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3.2. Localized convergence analysis

In this section we illustrate, with the following example, that it is often beneficial to refine the
analysis by allowing β to decrease over time.

Example 1 Consider location estimation in R (henceM = X = R) using the squared Euclidean
distance as the loss. Suppose that there are 100 data points: 90 of them are in [−1, 1] and the
remaining 10 are in [99, 101].

The question of interest is to identify appropriate range of β to ensure that Algorithm 1 converge
linearly for this example. Indeed, we provide two results. The first uses Theorem 5 in a straightfor-
ward way, which shows that RM will converge to the global optimal solution for β that is relatively
large (β > (102)2 specifically). Choosing β too large may be undesirable in rejecting outliers,
and our second result, based on applying Theorem 5 iteratively for a sequence of decreasing β,
shows that the algorithm can converge to the global optimal solution for β that is much smaller, and
consequently the solution completely ignores the outliers.

We start with the first result. Clearly, for any weights, the optimal model belongs to [−1, 101].
Thus, for every iteration except the first we can limit our analysis to M = A = [−1, 101], which is
a (trivial) scope at any β. Now we apply Lemmas 7 and 8 from Appendix 3.1 to find valid g = 51
and f = 4 · 51. Theorem 5 therefore guarantees linear convergence in M for any β ≥ (102)2.

Note that the above argument suggests to choose a relatively large β, which may not be prefer-
able. More specifically, since β ≥ (102)2, by P2 of Proposition 1, weights are upper bounded by 2,
then every model after the second is in [−1, 21]. From this point on, the points near 100 are farther
than those near 0 and since weights are decreasing in loss according to Eq. (2), we can conclude that
every model after the third is in the range [−1, 11]. This analysis uses a large β and a scope that is
trivial in the sense that it excludes no data. Consequently, the final model obtained assigns non-zero
weights to the points near 100, though their weights are lower than those for inliers.

Thus, it is desirable to choose a smaller β to ignore outliers, and still be able to apply Theorem
5 to control convergence. This can be achieved via the following adaptive strategy: if we were to
start afresh from m ∈ [−1, 11], and choose β′ = (12)2, by P4 of Proposition 1 the weight given to
points near 100 would be zero, hence every model henceforth would be in [−1, 1].To analyze the
convergence to m∗β′ , we take A′ = M ′ = [−1, 11], and obtain a tighter scope at β′. Lemmas 7 and
8 suggest g′ = 6, f ′ = 24 hence g′ · f ′ ≤ β′, so Theorem 5 again shows linear convergence, this
time to a solution that completely ignores the outliers.

In this example decreasing β over time allows us to ignore outliers. Such an approach indeed
can be applied more generally. Note that if A′ ⊂ A and M ′ ⊂ M and for A,M a problem is g
determined (has f Lipschitz losses) then it is g′ determined (has f ′ Lipschitz losses) with g′ ≤ g
(f ′ ≤ f ), enabling fast convergence also with the corresponding smaller β′ to m∗β′ . Hence we might
apply Algorithm 1 as an inner loop, converging as described for a fixed A,M, β for a few iterations,
then conclude a tighter scope applies, and run Algorithm 1 with the corresponding smaller β. As
analysing scopes is dependent on the specific losses, we leave such algorithms to future work.

4. Sample complexity for generalization

One advantage of the proposed RW approach, compared to traditional approaches, is that it leads to
favorable sample complexity results for generalization when outliers exist, where generalization is
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measured with the gap between training and testing performance on Lβ (Recall Lβ is sandwiched
between the average loss and the average trimmed loss divided by six). Classical methods consid-
ers the average loss, which includes the loss of outliers. Moreover, standard analysis on sample
complexity focuses on deriving the sample size such that the average loss well approximates the
expected loss. This can be expensive when outliers are present, as we show in the below example .

We illustrate with an example the cost of outliers for the classical approach. Consider the prob-
lem of location estimation in R using the square loss, where the data are generated by a Gaussian
mixture

0.99N (0, 1) + 0.01N
(
105, 1

)
.

For a model close to 0, about 99% of points incur losses in (0, 10), and the remaining one percent
are around 1010. The expected loss will be of order of 108, and the deviation of the average loss from
the expected loss is dominated by the random number of outliers in the sample. Thus, to ensure that
the deviation is significantly smaller than a typical loss (i.e., to be order of ε ≈ 1), we need a sample
of size of (B/ε)2 ≈ 1020 where B is an upper bound on the losses. Some recent work (discussed
in Section 5) on the sample complexity of the average loss manages to replace the upper bound
B in the sample complexity with the 2nd or 4th order moment conditions, but since the moments
themselves scale with the magnitude of the outliers super-linearly, the sample complexity results
obtained remain sensitive to the magnitude of even a small fixed proportion of outliers.

In contrast, the proposed approach leads to analysis of generalization which depends on the
“typical” loss, and is almost independent vis a vis B the upper bound of the loss. Recall that gen-
eralization is about bounding the performance gap between training and testing. Embedding this in
our context, let µ and µ′ be two independent copies of empirical distributions of n i.i.d. draws from
an unknown distribution ν, then we say that Lβ generalizes when provably Lβ (m;µ′) ≈ Lβ (m;µ)
over all m in a class of useful models defined below. Since Lβ tends to ignore outliers, outliers
can only affect generalization if their proportion in the sample is much larger than expected, which
happens very rarely. Indeed, it can be shown that B the bound on outlier losses only affects sample
complexity logarithmically: for an appropriately chosen, d dimensional set of models, we show

O
((
β/ε

)2
d log

(
B/ε

))
(3)

data points suffice for Lβ to generalize. Notice the bound depends polynomial only on parameter β,
which is set to a typical loss per Proposition 1. This improvement is significant when β � B, hence
only for those models having low typical losses. To illustrate, consider the above example. Here a
“good” model such as m ∈ [−1, 1] has more than 68% of points with losses smaller than β = 10
so for ε ≈ 1 the polynomial term in Eq. (3) is under 100. In contrast, for a “bad” model such as
m > 50000, their 68th percentile of losses is close to 1010, which implies that β is close to B, thus
rendering the advantages of Eq. (3) vacuous.

To address this challenge, we show that by applying a peeling technique, we are able to relate
the generalization ability of Lβ with only good and yet achievable models, of the following form:

Definition 9 The class of models that for measure σ have at least p fraction of their losses below b
is denoted by

Mσ,b
p = {m ∈M : Px∼σ (` (m,x)− ρml < b) > p} ,

where ρml = minx∈X ` (m,x).
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The result below shows that Lβ is highly concentrated around its own expectation, i.e., it gener-
alizes uniformly overMµ,β

2/3+2s, where s is a small “safety buffer” .
To present the theorem, some notations are in order. We assume throughout that the losses

of every model are bounded above such that maxx∈X ` (m,x) − ρml ≤ B. We treat the class of
all models M as a metric space with the uniform metric induced by ` over X : dX (m,m′) =
supx∈X |` (m,x)− ` (m′, x)|. We define h (x) = x log x. Recall the standard definition of ε-cover
number (Van der Vaart and Wellner, 1996).

Definition 10 Let S be a metric space equipped with metric d, and let S ⊂ S . Fix ε > 0, a ε cover
of S with respect to d is a set of balls with diameter ε wrt d (not necessarily disjoint), such that their
union is a superset of S. The ε cover number of S, denoted by (S, d) is the smallest integer n such
that their exists an ε cover of S wrt d that contains no more than n balls.

Theorem 11 Assume that ∀ε > 0, (M, dX ) has ε cover number upper bounded by (CB/ε)d. Let
µ, µ′ be empirical distributions of n elements distributed according to ν and fix β > ε > 0. Taking
s = ε

16β , set p ≥ 2/3 + n−1 + s. Suppose that

n > max
{

2s−2 log (B/ (24β)) , 3h
(
4s−2 + 3

)}
.

Then with probability 1− exp
(

log 20 + d log (CB/ε)− n
8 (ε/ (24β))2

)
, we have

∀m ∈Mν,β−ε
p+s :

∣∣Lβ (m;µ)− Eµ′Lβ
(
m;µ′

)∣∣ ≤ 3ε.

Remark 12 Theorem 11 states that a sample of size O
((

β
ε

)2 (
d log

(
B
ε

)
+ log δ−1

))
suffices to

generalize. This sample complexity depends on ν (which is not directly accessible except via µ)
through the set of “good” models Mν,β

p+s. If m ∈ Mµ,β
p+2s, it is also in Mν,β

p+s with probability at
least as high as that of the theorem holding.

We illustrate Theorem 11 revisiting the example from early in this section. The guarantee of Theo-
rem 11 is that with high probability, uniformly over models m from a set, Lβ (m,µ) is very close to
its expectation over independent samples µ′ created in the same way as µ. In other words, however
we find m, the measure of quality Lβ (m,µ) we propose for m is essentially not dependent on the
randomness in the sample µ.

More concretely, let m be any point in R, the corresponding vector of losses are the squared
differences between m and xi. The choice of β = 10, ε = 1, p = 2/3+n−1 +s implies s = 1/160.
This choice of β implies (By proposition 1) that we will give weight zero to points from one of
the two sources, as the sources are too far to both be within 4β of m. If a model is near the mean
of the unignored source, weights will be near uniform over points from it. The theorem applies
to m ∈ Mν,β−ε

p+s : all models within distance 3 of a fraction at least p + s of the weight of ν. This
excludes the vicinity of the outlier source, as there is not sufficient weight there, hence the guarantee
applies approximately to models in the interval [-2,2], defining a set of “good” models. To apply
this theorem or any that assumes the losses are bounded by B, we need roughly B ≥ 1010. The
sample size required is dominated by 2s−2 log(B/24β), so is of the order of 106, rather than the
1020 mentioned in the beginning of the section for concentration of a mean of losses.

10



LEARNING THROUGH REWEIGHTING-MINIMIZATION

5. Related work

In this section we discuss related work in literature. The central idea of this paper, namely Regular-
ized Weighting, was originally formulated in Vainsencher et al. (2013) for learning multiple models
(which includes clustering as a special case). Instead, in this paper we focus on the (special) case
of learning one model with outlying observations, and hence obtain stronger structural and theoret-
ical results. In particular, Vainsencher et al. (2013) did not establish results about convergence of
the computation algorithm, and its sample complexity results hold only when weights are given to
points with near maximal loss. In contrast, we show any point with loss significantly higher than
typical will be excluded.

This paper is motivated from two (related) main considerations: meaningful sample complexity
with very large B, and robustness of statistical procedure to outliers. The majority of research in
statistical learning theory to establish sample complexity (e.g., Anthony and Bartlett, 1999) relies on
the existence of a uniform upper boundB on all losses. This results in either obtaining loose sample
complexity bounds for large B, or making an assumption that B is small which becomes unrealistic
in the presence of heavy tailed noise, let alone outliers. As such, there has been a recent surge
in developing methods and analysis to achieve meaningful statistical guarantees without assuming
a small B. For example, Mendelson (2014) developed a refined analysis of the Empirical Risk
Minimization (ERM) procedure without resort to concentration of measure technique, and hence is
able to derive performance bounds where B is replaced by a norm of (possibly unbounded) noises.
Audibert and Catoni (2011), using the PAC-Bayesian analysis, also bypasses the requirement of
a bounded B inherent to concentration of measure technique, and established risk bounds under
assumption of boundedness of certain moments of the noise, for ERM, ridge regression, as well
as for a novel estimator based on truncating difference of losses which has better deviations. Hsu
and Sabato (2016) achieved a similar goal, using a generalized median of mean approach, which
is more computationally efficient compared with truncating difference of losses. Essentially, these
works consider the following task: how to control the large deviation from the expected behavior
with (exponentially) high probability, where only low-order moments such as variance are given.
Admittedly this is a fundamental problem, it does not directly address the outlier setup, for the
following reasons: (1) all data points are assumed to be iid; (2) more importantly, the performance
guarantees obtained still heavily depends on the magnitude of outliers. In particular, when a fixed
percentage of (large) outliers exist, then any moments may still scale super-linearly with the size
of outliers, making these results vacuous. The outlier case is in sharp contrast to the heavy noise
scenario which is the focus of these works, where the moments can scale much slower than the
upper bound of the loss.

The study of statistical procedures robust to the effect of outliers dates back to the 50’s by Box
(1953), followed by Tukey (1960, 1962), Huber et al. (1964) and Hampel (1968), among others. A
powerful paradigm termed M-estimators was developed by Huber et al. (1964), in which asymptotic
properties of a class of statistical estimators (including notably the maximum likelihood estimators)
are established, along with initial theory for constructing robust regression procedures. One M-
estimator that is particularly close to our method is the classical Least Trimmed Squares (LTS)
(Rousseeuw, 1984) estimator, which defines the loss of the model to be the average of a fixed
proportion of its smallest losses on the data. This formulation is conceptually close to ours, to the
extent that our proof can be easily adapted to provide the first (to our knowledge) finite sample
results for LTS in the presence of outliers, despite extensive study of this and related methods.

11
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The main advantage of the proposed RM algorithm over LTS is algorithmic: the local alternating
minimization algorithm for LTS (see concentration steps in Rousseeuw and Van Driessen (2000)), is
only known (to our knowledge) to terminate after a finite (but possibly exponentially large) number
of steps; see Nguyen and Welsch (2010) for a review of attempts at efficient solution methods.

Recently, several works studied M-estimators from the perspective of high dimensional statis-
tics, using the unified framework of restricted strong convexity, and established statistical and op-
timization properties of such estimators (Loh and Wainwright, 2015, 2014). Yet, the M-estimators
studied in those papers are restricted to finite sample versions of functions that are convex in the
population limit, which essentially studies formulations that are “close to being convex”, where this
approximate convexity is established through assumptions on the formulation and the data distri-
bution. Loh (2015) extended this analysis to the case where such approximate convexity is only
required to hold at a neighborhood of the optimal solution. Even with such extension, this frame-
work, albeit with nice iteration complexity, may be restrictive. For example, it is not applicable to
the above discussed LTS estimator. Moreover, these work concentrated on the regression problem,
and are not easily adapted to other problems of interest, such as Principal Component Analysis. In
comparison, our approach aims are more general: our assumptions are minimal, and our approach
works for a wide spectrum of statistical problem, provided that for each model and a given data
point, the loss can be evaluated.

Aslan et al. (2012) extended the M-estimator framework, aiming to simultaneously achieve
computation efficiency and robustness to outliers. They analyzed a variational representation of
M-estimators, which includes many standard robust methods as special cases, and proposed compu-
tationally efficient relaxation strategies based this representation. The approximation algorithm runs
in polynomial time, but requires solving a convex problem where computing a gradient costsO

(
n3
)

time, and hence may not scale. The authors further proposed a more scalable alternating minimiza-
tion procedure (similar in spirit to ours), but did not discuss the rate of convergence. Moreover, the
proposed method only achieves modest robustness guarantees: the authors showed that the proposed
method will not breakdown if there is one arbitrary outlier. Beyond this case, no robustness guar-
antees are offered. Note that some variants of their formulation appear similar to ours, with the key
difference that weights are not constrained to form a distribution.

The above reviewed work all focus on the linear regression case. A general and practical ap-
proach to robust estimation is l1 penalized outlier correction (Giannakis et al., 2011; Mateos and
Giannakis, 2012a,b) which models the observed data x as the sum of a sparse perturbation term o
and an adjusted data term. This method alternates between computing o by a shrinkage operator,
and applying the original estimation problem to the adjusted data term to find a model, which leads
to scalable algorithms. Yet, convergence to global optimality is not guaranteed. Moreover, neither
the rate for local convergence, nor the sample complexity are established, which is different from
our proposed approach.

Finally, we remark that there are a few published works on the sample complexity of methods
robust to outliers, all of which concentrate on the robust PCA task. For example Coudron and
Lerman (2012) discusses the sample complexity of an algorithm for robust PCA where the data
are sub-Gaussian; and Xu et al. (2013) propose algorithms for PCA robust to outliers, have sample
complexity bounds and are efficient, in a setting very different from ours.

12
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6. Conclusion

In this paper we studied a general approach for learning under outliers, that iterates between finding
a solution with good empirical performance and re-weighting the data via regularized optimization.
Intuitively, this will encourage the obtained solution to be biased towards easier data points and
ignoring outliers, to a controlled extent. We validate this intuition by establishing guarantees for
generalization and iteration complexity that essentially ignores the presence of outliers for the pro-
posed approach. To the best of knowledge, this is the first scalable, general and robust estimation
procedure with finite sample guarantees and linear convergence. Moreover, our analysis for esti-
mating sample complexity are general and can be adapted to other robust estimators, to establish
sample complexity that ignore data points with large losses.

The regularized re-weighting formulation proposed in this paper is tailored for mitigating the
effect of large losses. An immediate direction to explore for future research is whether the weight
uniformity can be traded off against other quantities, such as large effect on the optimal model,
which would encourage algorithmic stability.
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Appendix A. Proof of Proposition 1.

We begin by proving P1 Proposition 1 below and illustrate the property through a simple example.
Then in Subsection A.1, we prove the rest Proposition 1 through a sequence of lemmas.

Lemma 13 Let ` be a vector of losses, the optimal weights (solution of R step) can be computed in
O (n) expected time by finding a ∈ R such that:

w = P4

(
−` (2β)−1

)
=
[
−` (2β)−1 + a1n

]
+
. (4)

Proof For a fixed model, problem (1) becomes

min
w∈4

〈w, `〉+ β ‖w − 1n‖2 ,

which is minimizing a quadratic function over the simplex. The unconstrained optimum is at 1n −
` (2β)−1 and the squared distance of any solution from this unconstrained optimum coincides with
the sub-optimality of the solution in terms of the objective value. Thus, the optimal solution con-
strained in the simplex is is the projection of the unconstrained optimum to the simplex – i.e.,
Equation (4), since it minimizes the Euclidean distance. We can easily find the optimal a in time
O(n log n) using a binary search; Duchi et al. (2008) remove this logarithmic factor using a trick
similar to that for O(n) median calculation.

For a fixed `, for any i, j, |wi−wj | decreases at a rate of (2β)−1. Thus, w tends to uniform if β
is chosen large enough. This effect, formalized in the above lemma and Proposition 1, can be seen
in Fig. 2, which applies to the example displayed in Fig. 1. We illustrate the effect of reweighting
the data in Fig. 3: the weighted means of data induced by both initial models ignore the extreme
outliers.
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Figure 1: A mixture of data is generated, where most data are concentrated around 0 except for
some outliers. Two models are considered, namely the mode (located at 0 and represented
using“+” ) and the empirical mean (located near 3 and represented using“x”). The left
figure illustrates a kernel density estimate using the data. The right figure shows the sorted
losses of both models on the data. Observe that the mode is more precise on most of the
data, but has larger losses on outliers.
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Figure 2: For the two models in Figure 1; Left: their losses are reflected about 0 and scaled by
(2β)−1 on the left; Right: the consequent projection into the simplex augments them by
a and truncates negative weights (see Lemma 13).

A.1. Structural results

In this section we prove the remaining claims in Proposition 1 via establishing a list of lemmas
progressively.

Lemma 14 Assume that proportion p ∈ [0, 1] of all losses are in the interval [ρl, ρh], and that
β = c (ρh − ρl). Let w (x) =

[
−` (x) (2β)−1 + a

]
+

be the optimal weights, then we have a ≤
p−1 + ρh (2β)−1. Furthermore, if ` (x) > ρh + 2p−1β, then w (x) = 0.
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Figure 3: The weights obtained, and the weight adjusted density of data. Compare with Figure 1,
we observe that both models result in ignoring the outliers at the extreme right.

Proof Losses in the interval receive weights of at least a − ρh (2β)−1, then 1 = 〈1,w〉 ≥(
a− ρh (2β)−1

)
p ⇒ a ≤ p−1 + ρh (2β)−1, completing the first part. Using this upper bound

on a, we find

w (x) =
[
−` (x) (2β)−1 + a

]
+

≤
[
−` (x) (2β)−1 + p−1 + ρh (2β)−1

]
+

=
[(

2p−1β + ρh − ` (x)
)

(2β)−1
]

+
.

Thus if ` (x) > ρh + 2p−1β, we have w (x) = 0, which established the second part.

Lemma 15 Under the conditions of Lemma 14, and further assume that losses are lower bounded
by ` ≥ ρl. Then w (x) ≤ p−1 + (2c)−1.

Proof The lemma holds by the following:

w =
[
−` (2β)−1 + a

]
+

≤
[
−ρl (2β)−1 + a

]
+

(ρl is a lower bound on loss)

≤
[
−ρl (2β)−1 + p−1 + ρh (2β)−1

]
+

(Lemma 14)

=p−1 + (ρh − ρl) (2β)−1 (non negative)

=p−1 + (2c)−1 (definition of c) .
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Lemma 16 Under the conditions of Lemma 15, and further assume that p ≥ 2/3 and c ≥ 1. Then
points with losses in the interval [ρl, ρh] receive weight at least(

2− p−1
)
p−1 − (2c)−1 ≥ 1/4.

Proof From Lemma 14 we have that −ρh (2β)−1 + a ≤ p−1. Since [·]+ affects only negative
entries, we conclude that losses greater than ρh receive weight at most[

−ρh (2β)−1 + a
]

+
≤ p−1.

Then denoting I = {i : `i ∈ [ρl, ρh] }, we have the following bound

1 = 〈1,w〉 ≤ p|I|−1
∑
i∈I

[
−` (2β)−1 + a

]
+

+ (1− p) p−1, (5)

where the first term and the second terms bounds the weight associated with small and large losses
respectively. This leads to

2− p−1 =1− (1− p) p−1

≤p|I|−1
∑
i∈I

[
−` (2β)−1 + a

]
+

(Equation (5))

≤p|I|−1
∑
i∈I

[
−ρl (2β)−1 + a

]
+

(def ρl)

=p
[
−ρl (2β)−1 + a

]
+

(def p)

=p
(
a− ρl (2β)−1

)
with the last equality holds because

[
−ρl (2β)−1 + a

]
+

is an upper bound on all elements of w,

and hence must be positive.
Thus, by 2 − p−1 ≤ p

(
a− ρl (2β)−1

)
⇐⇒

(
2− p−1

)
p−1 + ρl (2β)−1 ≤ a, we obtain a

lower-bound of weights for losses under ρh by the following using Lemma 14[(
2− p−1

)
p−1 + (ρl − ρh) (2β)−1

]
+
.

By the definition of c, and the assumption c ≥ 1, we have (ρl − ρh) (2β)−1 = − (2c)−1 ≥
−1/2. The term

(
2− p−1

)
p−1 is concave in p−1, hence is minimized on the extrema of its range;

by assumption p ∈ [2/3, 1], then p−1 ∈ [1, 3/2], and the minimum is 3/4 at p = 2/3. Summing
these bounds, the lower bound on weights for losses in the interval is 1/4.

Now we prove Proposition 1.
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Proof The conditions of Lemmas 14, 15 and 16 hold, then so do their conclusions. In particular for
i ∈ I , wi ≥ 1/4. Then

Lβ (m;µ)− ρl = 〈w, `m〉µ + β ‖w − 1n‖2µ − ρl
≥〈w, `m〉µ − ρl

=n−1
n∑
i=1

wi (`mi − ρl)

≥n−1
∑
i∈I

1

4
(`mi − ρl) (Lemma 16)

=p |I|−1
∑
i∈I

(`mi − ρl) /4

≥ |I|−1
∑
i∈I

(`mi − ρl) /6. (By assumption p ≥ 2/3)

Appendix B. Proof of linear convergence

We first establish the main property of the R step, that similar losses lead to similar weights, and
more so for larger β, and moreover ignored data have no effect on the resulting weight. Next we use
it to prove Theorem 5.

Lemma 17 Let β > 0 and `1, `2 loss functions whose corresponding weights after an R step
w1,w2 are supported on A ⊂ X , then∥∥w1 −w2

∥∥ ≤ (2β)−1
∥∥χA ◦ (`1 − `2)∥∥ .

Proof We use the following natural consequence of Equation (2): losses in ` that receive weight
zero may be increased arbitrarily without affecting the corresponding w, as they will keep receiving
zero weight. We so construct (at the end of this proof) ¯̀1, ¯̀2 that outside A equal one another, and
on A equal the corresponding `j . Then:

‖w1 −w2‖2µ =
∥∥∥P4µ (− `1

2β

)
− P4µ

(
− `2

2β

)∥∥∥2

µ

=
∥∥∥P4µ (− ¯̀1

2β

)
− P4µ

(
− ¯̀2

2β

)∥∥∥2

µ

≤
∥∥∥ ¯̀1

2β −
¯̀2

2β

∥∥∥2

µ
(P4µ is a contraction)

= (2β)−2
∥∥χA · (`1 − `2)∥∥2

µ
.

To construct the modified ¯̀we use the explicit form for weights:

P4µ

(
− `

2β

)
=

[
− `

2β
+ a

]
+

,
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with a chosen so that ‖w‖µ = 1, hence write

w1 =

[
− `

1

2β
+ a1

]
+

;w2 =

[
− `

2

2β
+ a2

]
+

.

We define

¯̀j (x) =

{
`j (x) x ∈ A
2βā otherwise

where ā = max
{
a1, a2

}
. We note two facts. First, all the losses that received weight in wj remain

unchanged. Second, −2βā
2β + aj ≤ 0 so for each loss in `j that received no weight in wj remains

unweighted in ¯̀j . We conclude that ∥∥∥∥[− ¯̀j

2β
+ aj

]
+

∥∥∥∥
µ

= 1

with the same aj , and P4µ ¯̀j = wj as wanted.

We now prove Theorem 5.
Proof We consider two starting points m1

p,m
2
p, corresponding to the losses `1, `2 respectively.

These losses induce the respective weight vectors w1,w2, which in turn induce the optimal models
m1,m2 for the next iterations, which induce the losses in the next iteration `1′, `2′.

Then applying the assumptions and Lemma 17:

dM
(
m1
p,m

2
p

)
≥ f−1

∥∥χA ◦ (`1 − `2)∥∥µ (Lipschitz losses)
≥ f−1 (2β)

∥∥w1 −w2
∥∥
µ

(Lemma 17)

≥ f−1 (2β) g−1dM
(
m1,m2

)
, (g determined)

which leads to
dM

(
m1
p,m

2
p

)
dM (m1,m2)

≥ 2β/ (fg) .

Then when β ≥ g (µ,A) f (µ,M,A), dM is reduced by half at each iteration. By the Banach fixed
point theorem, RM iterations restricted to M then have a unique fixed point we denote by m∗β .

Take m2
p = m∗β , then we have the outputs of each iteration never leave BdM

(
m∗β, r0

)
; hence they

converge to m∗β with regard to dM. Because RM iterations are monotone decreasing in Lβ , m∗β
must be optimal within M . Otherwise, taking m1

p as the optimal within M leads to a contradiction.
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B.1. Proofs of results in Section 3.1

Proof of Lemma 7∥∥χA ◦ (`1 − `2)∥∥2

µ
=Ex∼µχA (x)

(∥∥x−m1
∥∥2

2
−
∥∥x−m2

∥∥2

2

)2

=Ex∼µχA (x)
(〈
x−m1, x−m1

〉
−
〈
x−m2, x−m2

〉)2
=4Ex∼µχA (x)

〈
m2 −m1, x− m1 +m2

2

〉2

=4Ex∼µχA (x)Tr

((
m2 −m1

)>(
x− m1 +m2

2

)(
x− m1 +m2

2

)> (
m2 −m1

))

=4Ex∼µχA (x)Tr

((
m2 −m1

) (
m2 −m1

)>(
x− m1 +m2

2

)(
x− m1 +m2

2

)>)

=4Tr

((
m2 −m1

) (
m2 −m1

)>(Ex∼µχA (x)

(
x− m1 +m2

2

)(
x− m1 +m2

2

)>))

≤4
∥∥m2 −m1

∥∥2

2

∥∥∥∥∥Ex∼µχA (x)

(
x− m1 +m2

2

)(
x− m1 +m2

2

)>∥∥∥∥∥
2,2

(Von Neumann trace ineq.)

≤4
∥∥m2 −m1

∥∥2

2
Ex∼µχA (x)

∥∥∥∥∥
(
x− m1 +m2

2

)(
x− m1 +m2

2

)>∥∥∥∥∥
2,2

(Jensen’s ineq.)

=4
∥∥m2 −m1

∥∥2

2
Ex∼µχA (x)

∥∥∥∥x− m1 +m2

2

∥∥∥∥2

2

=4
∥∥m2 −m1

∥∥2

2
〈χA, `a〉µ .
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Proof of Lemma 8∥∥m1 −m2
∥∥

2
=
∥∥Ex∼µw1 (x)x− Ex∼µw2 (x)x

∥∥
2

=
∥∥Ex∼µw1 (x) (x− s)−

(
Ex∼µw2 (x) (x− s)

)∥∥
2

=
∥∥Ex∼µ (x− s) ·

(
w1 −w2

)
(x)
∥∥

2

=
∥∥Ex∼µχA (x) (x− s) ·

(
w1 −w2

)
(x)
∥∥

2(
w1,w2 are supported on A

)
≤Ex∼µχA (x) ‖x− s‖2

∣∣w1 (x)−w2 (x)
∣∣

(Jensen’s inequality)

≤
√

Ex∼µχ2
A (x) ‖x− s‖22

√
Ex∼µ |w1 (x)−w2 (x)|2

(Cauchy Schwartz inequality)

=
√
〈χA, `s〉µ

∥∥w1 −w2
∥∥
µ
.

B.2. Linear Convergence for Ridge Regression

In regression, each data point is a pair (x, y) ∈ X , and similarly the empirical distribution µ is
also on the pairs (x, y). Thus weight and loss functions are also defined over pairs (x, y). For a
modelm, we consider the ridge regression loss function `m (x, y) = λ 〈m,m〉+(〈m,x〉 − y)2. For
simplicity, we keep λ fixed throughout. We use the Euclidean norm as the metric between models
so dM (m,m′) = ‖m−m′‖2. We denote ξ ∈ Rn the feature vector norms ‖xi‖2 over the data
set µ, and ζ ∈ Rn the scaled norms yi ‖xi‖2. The below two lemmas establish the f-Lipschitz and
g-determinedness property respectively.

Lemma 18 Let m1,m2 be two regressors, ma =
(
m1 +m2

)
/2 their average, and let `1, `2, `a

their corresponding loss functions, A ⊂ X . Then:∥∥χA ◦ (`1 − `2)∥∥2

µ

‖m1 −m2‖22
≤ 4

∥∥χA ◦ ξ2
∥∥
µ
‖χA ◦ `a‖µ .

Lemma 19 Let (x, y) ∼ µ in Rd+1 and w1,w2 ∈ 4µ be weights supported on A ⊂ X . Assume
that ∥∥w1 −w2

∥∥
µ

∥∥χA ◦ ξ2 + λ
∥∥
µ
< λ/2,

and m1,m2 be models minimizing the weighted problems then for every p, q such that p−1 +
q−1 = 1:∥∥m1 −m2

∥∥
2

‖w1 −w2‖µ
≤ λ−1

(
‖χA ◦ ζ‖µ + 2λ−1

∥∥χA ◦ ξ2 + λ
∥∥
µ

∥∥w1
∥∥
Lp(µ)

‖χA ◦ ζ‖Lq(µ)

)
.

Here ‖z‖Lp
(µ)

,
(

1
n

∑n
i=1(zi)

p
) 1
p , for any z ∈ Rn, and zi being its i-th entry. ‖z‖Lq

(µ)
is defined

similarly.
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To prove Lemma 18, we establish the following result first.

Lemma 20 For ` = (〈m,x〉 − y)2, we have

`1 − `2 = 2
〈
m1 −m2, x

〉√
`a.

Proof By definition,

`1 − `2 =
(〈
m1, x

〉
− y
)2 − (〈m2, x

〉
− y
)2

=
〈
m1, x

〉2 − 2y
〈
m1, x

〉
+ y2 −

(〈
m2, x

〉2 − 2y
〈
m2, x

〉
+ y2

)
=
〈
m1, x

〉2 −
〈
m2, x

〉2
+ 2y

〈
m2 −m1, x

〉
.

Completing the square reveals:〈
m1, x

〉2 −
〈
m2, x

〉2
=
(〈
m1, x

〉
−
〈
m2, x

〉) (〈
m1, x

〉
+
〈
m2, x

〉)
=
〈
m1 −m2, x

〉 〈
m1 +m2, x

〉
,

which leads to

`1 − `2

=
〈
m1 −m2, x

〉 〈
m1 +m2, x

〉
+ 2y

〈
m2 −m1, x

〉
=2
〈
m1 −m2, x

〉 (〈(
m1 +m2

)
/2, x

〉
− y
)

=2
〈
m1 −m2, x

〉√
`a,

where the last equality holds from the definition of `a.

Now we proceed to the proof of Lemma 18.
Proof of Lemma 18∥∥χA ◦ (`1 − `2)∥∥2

µ
=E(x,y)∼µχA(x, y)

(
`1(x, y)− `2(x, y)

)2
=4E(x,y)∼µχA(x, y)

〈
m1 −m2, x

〉2
`a(x, y)

(by Lemma 20)

=4E(x,y)∼µχA(x, y)
(
Tr
((
m1 −m2

) (
m1 −m2

)>
xx>

)
`a(x, y)

)
≤4E(x,y)∼µ

∥∥m1 −m2
∥∥2

2
χA(x, y) ‖x‖22 `a(x, y)

(Von Neumann Trace Ineq.)

=4
∥∥m1 −m2

∥∥2

2

〈
χA ◦ ξ2, χA ◦ `a

〉
µ

≤4
∥∥m1 −m2

∥∥2

2

∥∥χA ◦ ξ2
∥∥
µ
‖χA ◦ `a‖µ

(Cauchy Schwartz) .
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Proof of Lemma 19 To characterize the difference between the mi, we use the fact that they are the
solutions that minimizes the weighted errors. The weighted errors in prediction

〈w, `m〉µ =E(x,y)∼µ

(
λ 〈m,m〉+ w (x, y) · (〈m,x〉 − y)2

)
=m> E(x,y)∼µw (x, y) ·

(
xx> + λI

)
︸ ︷︷ ︸

H

m

− 2E(x,y)∼µw (x, y) · yx>︸ ︷︷ ︸
b

m+ E(x,y)∼µw (x, y) · y2︸ ︷︷ ︸
c

=m>Hm− 2b>m+ c

which is a convex quadratic. Notice thatH are full rank, then the optimum is achieved atm = H−1b.
Now consider models m,m′ induced by “similar” w,w′, i.e., ‖w −w′‖µ is small. Thus, m,m′ are
given by H−1b and (H −D)−1 (b− d) respectively, where:

D = E(x,y)∼µ
(
w −w′

)
(x, y) ·

(
xx> + λI

)
,

d = E(x,y)∼µ
(
w −w′

)
(x, y) · yx>.

Then our goal is to bound
∥∥∥H−1b− (H −D)−1 (b− d)

∥∥∥2

2
, in terms of

∥∥H−1
∥∥

2,2
, ‖D‖2,2 , ‖d‖2

and ‖b− d‖2. First we bound these quantities:

‖d‖2 =
∥∥∥E(x,y)∼µ

(
w −w′

)
(x, y) · yx>

∥∥∥
2

≤E(x,y)∼µ

∥∥∥(w −w′
)

(x, y) · yx>
∥∥∥

2
(Jensen’s ineq.)

=E(x,y)∼µ

∥∥∥(w −w′
)

(x, y) · χA (x, y) · yx>
∥∥∥

2

=E(x,y)∼µ
∣∣(w −w′

)
(x, y)

∣∣ · χA (x, y) · y ‖x‖2
≤
∥∥w −w′

∥∥
µ
‖χA ◦ ζ‖µ (Cauchy Schwartz)

and similarly

‖D‖2,2 =
∥∥∥E(x,y)∼µ

(
w −w′

)
(x, y) ·

(
xx> + λI

)∥∥∥
2,2

≤E(x,y)∼µ

∥∥∥(w −w′
)

(x, y) ·
(
xx> + λI

)∥∥∥
2,2

(Jensen’s ineq.)

=E(x,y)∼µ

∥∥∥(w −w′
)

(x, y) · χA (x, y) ·
(
xx> + λI

)∥∥∥
2,2

=E(x,y)∼µ
∣∣(w −w′

)
(x, y)

∣∣ · χA (x, y) ·
∥∥∥xx> + λI

∥∥∥
2,2

=E(x,y)∼µ
∣∣(w −w′

)
(x, y)

∣∣ · χA (x, y) ·
(
‖x‖22 + λ

)
≤
∥∥w −w′

∥∥
µ

∥∥χA ◦ (ξ2 + λ
)∥∥
µ

(Cauchy Schwartz)
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and

‖b− d‖2 =
∥∥∥E(x,y)∼µw

′ (x, y) · yx>
∥∥∥

2

≤E(x,y)∼µ
∣∣w′ (x, y)

∣∣ · χA (x, y) · y ‖x‖2 (Jensen’s ineq.)

≤
∥∥w′∥∥

Lp(µ)
‖χA ◦ ζ‖Lq(µ) . (Hölder)

Lastly,
∥∥H−1

∥∥
2,2
≤ λ−1.

Using just the triangle inequality and induced norms we find that∥∥∥H−1b− (H −D)−1 (b− d)
∥∥∥

2
=
∥∥∥H−1b−H−1 (b− d) +H−1 (b− d)− (H −D)−1 (b− d)

∥∥∥
2

≤
∥∥H−1b−H−1 (b− d)

∥∥
2

+
∥∥∥H−1 (b− d)− (H −D)−1 (b− d)

∥∥∥
2

=
∥∥H−1d

∥∥
2

+
∥∥∥(H−1 − (H −D)−1

)
(b− d)

∥∥∥
2

≤
∥∥H−1

∥∥
2,2
‖d‖2 +

∥∥∥H−1 − (H −D)−1
∥∥∥

2,2
‖b− d‖2

≤λ−1
∥∥w −w′

∥∥
µ
‖χA ◦ ζ‖µ

+
∥∥∥H−1 − (H −D)−1

∥∥∥
2,2

∥∥w′∥∥
Lp(µ)

‖χA ◦ ζ‖Lq(µ) .

To complete the proof, we use the assumption that θ1 = ‖w −w′‖µ
∥∥χA ◦ (ξ2 + λ

)∥∥
µ
< λ/2,

and apply Lemma 21 below on the last term. Then writing θ2 = ‖w′‖Lp(µ) ‖χA ◦ ζ‖Lq(µ) the upper
bound is:∥∥∥H−1b− (H −D)−1 (b− d)

∥∥∥
2

≤λ−1
∥∥w′ −w

∥∥
µ
‖χA ‖yx‖2‖µ +

λ−1θ1

1− λ−1θ1
λ−1θ2

≤λ−1
∥∥w′ −w

∥∥
µ
‖χA ‖yx‖2‖µ + 2λ−1θ1λ

−1θ2

=λ−1
∥∥w′ −w

∥∥
µ

(
‖χA ◦ ζ‖µ + 2

∥∥χA ◦ (ξ2 + λ
)∥∥
µ
λ−1

∥∥w′∥∥
Lp(µ)

‖χA ◦ ζ‖Lq(µ)

)
.

Lemma 21 Let H � γI , ‖D‖2,2 ≤ ε < γ. Then

∥∥∥H−1 − (H −D)−1
∥∥∥

2,2
≤ γ−2ε

1− γ−1ε
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Proof We transform this expression using a Taylor expansion:(
H−1 − (H −D)−1

)
=
(
H−1H − (H −D)−1H

)
H−1

=
(
I −

(
I −H−1D

)−1
)
H−1

=

(
I −

∞∑
i=0

(
H−1D

)i)
H−1 (Taylor)

=−
( ∞∑
i=1

(
H−1D

)i)
H−1,

which is applicable because
∥∥H−1D

∥∥
2,2
≤
∥∥H−1

∥∥
2,2
‖D‖2,2 ≤ γ−1ε < 1 implies that I −H−1D

is invertible. Induced norms are sub-multiplicative, which leads to

∥∥∥H−1 − (H −D)−1
∥∥∥

2,2
=

∥∥∥∥∥−
( ∞∑
i=1

(
H−1D

)i)
H−1

∥∥∥∥∥
2,2

≤
∥∥∥∥∥
∞∑
i=1

(
H−1D

)i∥∥∥∥∥
2,2

∥∥H−1
∥∥

2,2

≤
∞∑
i=1

∥∥∥(H−1D
)i∥∥∥

2,2

∥∥H−1
∥∥

2,2
(Triangle ineq.)

≤
( ∞∑
i=1

γ−1ε

)
γ−1

=
γ−2ε

1− γ−1ε
.

Appendix C. Sample complexity theory

C.1. Bounded differences of Lβ
Bounded differences methods are a flexible toolset for proving that the distance of a random variable
from its expected values is subgaussian. Here we prove that Lβ (m;µ) has bounded differences
using two different approaches. These results will be used in Section C.2.

Definition 22 A function f : An → R has a bounded differences if for any x, x′ that are identical
except on one of their n entries, |f (x)− f (x′)| < a holds.

Lemma 23 Let the losses of m be bounded in an interval of length B, then Lβ (m;µ) has B
bounded differences with regard to µ.
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Lemma 23 is straightforward, as Lβ (m; ·) is in the interval because ‖w − 1n‖µ ≥ 0 and 1n is an
allowed choice for the weight vector w. The next result on bounded difference is more involved.

Proposition 24 Let n > 9, let m satisfy the assumptions of Proposition 1 with p ≥ 2/3 such that
the smallest pn+ 1 entries belong to [ρl, ρh]. Then Lβ (m;µ) has 24β/n bounded differences with
regard to µ.

Proof Let `′ differ from ` by a single entry (the first, without loss of generality). Note that due to the
slightly strengthened assumption here (i.e., pn+ 1 entries, as opposed to pn entries, of ` belong to
[ρl, ρh]), `′ also satisfies the assumptions of Proposition 1. The key step is to show that the modified
w′ is very close to w, by showing that |a− a′| ≤ 3n−1.

Step 1: to show |a− a′| ≤ 3n−1. Denote for convenience λ = −` (2β)−1, and similarly λ′

for `′, then w = [λ+ a]+ and w′ = [λ′ + a′]+. If w1 = w′1 then a = a′ (otherwise if a < a′

then wi < w′i for all i 6= 1 since `i = `′i which is a contradiction, and so is the case of a > a′)
and Step 1 is true. Otherwise, denote z = [λ′1 + a′]+ − [λ1 + a]+, then by the constraint that
〈w, 1〉 = 1, we know also that z =

∑
i 6=1

(
[λi + a]+ − [λ′i + a′]+

)
. Since λ′i = λi for i 6= 1,

we can write z =
∑

i 6=1

(
[λi + a]+ − [λi + a′]+

)
in which it is clear that any non zero summand

[λi + a]+ − [λi + a′]+ must have the same sign as a− a′ and therefore z.
Now recall that by Proposition 1, for at least 2/3 fractions of indices i 6= 1, both wi > 0

and w′i > 0, denote this subset of entries I . Then by the argument of the previous paragraph,
|z| =

∑
i 6=1

(∣∣[λi + a]+ − [λi + a′]+
∣∣) ≥ ∑i∈I

(∣∣[λi + a]+ − [λi + a′]+
∣∣) =

∑
i∈I (|a− a′|) ≥

(|a− a′|) 2n/3, and hence 3 |z|n−1/2 ≥ |a− a′|.
Since z is a difference between weights we bound |z| using Proposition 1: for our p, c, wi,w

′
i ∈[

0, p−1 + (2c)−1
]
⊂
[
0, 3/2 + 2−1

]
= [0, 2] and then z ∈ [0, 2] (we will reuse these facts). Then

3n−1 ≥ |a− a′| = |wi −w′i| for i 6= 1.
Step 2: complete the proof of the proposition.

n
(
〈w, `〉+ β ‖w − 1‖2 −

(〈
w′, `′

〉
+ β

∥∥w′ − 1
∥∥2
))

=
n∑
i=1

(
wi`i −w′i`

′
i

)
+ β

(
n∑
i=1

(
(wi − 1)2 −

(
w′i − 1

)2))

=w1`1 −w′1`
′
1︸ ︷︷ ︸

a

+
n∑
i=2

(
wi −w′i

)
`i︸ ︷︷ ︸

b

+ β

(w1 − 1)2 −
(
w′1 − 1

)2︸ ︷︷ ︸
c

+

n∑
i=2

(wi − 1)2 −
(
w′i − 1

)2︸ ︷︷ ︸
d

 .

To bound the loss terms a, b, we first recall that by Proposition 1, for any `i ≥ ρh + 3β, the
weights wi,w

′
i (hence also the products wi`i) are exactly 0. Denote J = {i 6= 1 : `i ≤ ρh + 3β},

then z =
∑

i∈J (wi −w′i). We trivially rewrite the contribution of terms b as
∑

i 6=1 (wi −w′i) `i =∑
i∈J (wi −w′i) `i = z

∑
i∈J ((wi −w′i) /z) `i. In this form it is clear that `∗ ,

∑
i∈J ((wi −w′i) /z) `i

is a convex combination of elements from [ρl, ρh + 3β], therefore also belong to this interval. Term
b is succinctly written z`∗.
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If both of w1,w
′
1 are zero, then w = w′ and the total difference is 0. We may then assume

without loss of generality that w1 ≥ w′1, and conclude that w1 > 0 and `1 < ρh + 3β. We rewrite
term a: w1`1 −w′1`

′
1 = (w′1 − z) `1 −w′1`

′
1 = w′1 (`1 − `′1)− z`1, and thus a + b can be written

as z (`∗ − `1) + w′1 (`1 − `′1) for convenient bounding.
Now recall from part 1 that |z| ,w′i ≤ 2. Then |z (`∗ − `1)| ≤ 2 (ρh − ρl + 3β). If w′1 = 0,

then clearly w′1 (`1 − `′1) = 0. Otherwise, `′1 ≤ ρh + 3β, then w′1 (`1 − `′1) ≤ 2 (ρh − ρl + 3β)
also. Then the total contribution of a, b terms is bounded by 4 (ρh − ρl + 3β) ≤ 16β.

Since w1 ∈ [0, 2], (w1 − 1)2 ∈ [0, 1], and the same holds for w′1, then term c is upper bounded
by 1. To bound term d, we use the following equality

(x− 1)2 − (x+ h− 1)2 =h (2− 2x− h)

and with the triangle inequality we find∣∣∣(wi − 1)2 −
(
w′i − 1

)2∣∣∣ ≤ ∣∣w′i −wi

∣∣ (2 |1−wi|+
∣∣w′i −wi

∣∣) ≤ 3n−1
(
2 + 3n−1

)
,

where the second inequality holds because i 6= 1, and hence we can apply the tighter bound
|wi −w′i| ≤ 3n−1 and note that |wi − 1| ≤ 1.

Sum up all terms we have

n
∣∣∣〈w, `〉+ β ‖w − 1‖2 −

(〈
w′, `′

〉
+ β

∥∥w′ − 1
∥∥2
)∣∣∣ ≤ (16 + 1 + 3

(
2 + 3n−1

))
β

=
(
23 + 9n−1

)
β

≤24β

where the last inequality holds by n > 9.

C.2. Proof of sample complexity

The sample complexity proof follows a well known path of proving concentration for a single model,
then applying a union bound over a discretization of the space of models. Hence the first part is to
prove that for a fixed model m, the random variable Lβ (m;µ) (with regard to the sampling of µ) is
highly concentrated around its expected value Eµ′Lβ (m;µ′).

Recall that the losses of every model are bounded above such that maxx∈X ` (m,x)− ρml ≤ B.

Lemma 25 Let µ, µ′ be empirical distributions of n independent elements drawn according to ν.
Fix β, s > 0, let m ∈ M, and denote p = Px∼ν (` (m,x) < ρml + β), and assume that p ≥
2/3 + n−1 + s. If ε ∈ (0, 48

√
2βs] and n > max

{
2s−2 log

(
B (24β)−1

)
, 3h

(
4s−2 + 3

)}
, then

P
(∣∣Lβ (m;µ)− Eµ′Lβ

(
m;µ′

)∣∣ ≥ ε) ≤ 4 exp

(
− nε2

8 (24β)2

)
.

The core of our argument is to apply a concentration inequality, Theorem 27 in Appendix C.3.
Unlike the standard McDiarmid inequality, this uses methods developed in Kutin (2002) that apply
even when a function has bounded differences that decrease with n only with high probability
(w.h.p.) on an independent sample. More formally, we show that Lβ is strongly difference bounded:
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Definition 26 A random variable Z = f (X1, . . . , Xn) is strongly difference bounded by (b, b′, δ)
if f is b difference bounded and in addition the following holds: there is a “bad” subset D ⊂ Ω,
where δ = Pr (X ∈ D), and conditional on D not occurring, f (X) is b′ difference bounded.

Then combining Lemma 23 and Proposition 24, Lβ (m;µ) is strongly difference bounded by
(B, 24β/n, δ) with regard to µ, for the right β, n. We formalize the details below.
Proof We obtain concentration by Theorem 27, whose auxiliary requirements on the values of ε, n
are assumed by this lemma. The main requirement is that Lβ (m;µ) is strongly difference bounded.
According to LemmaLβ (m;µ) isB difference bounded, then it suffices to show thatLβ (m;µ). has
differences bounded by 24β/n, except on an “bad event” that has probability at most exp (−Kn),
and find the value of K.

Proposition 24 shows differences are bounded as we need if n > 9, p′ > 2/3 and the p′n + 1
bottom losses are in an interval whose length is less than β. The assumption in this lemma on n is
never smaller than 9.5, hence suffices for the proposition. Given the assumptions of this lemma on
p, for Proposition 24 to hold, it is enough to show that p′ > p− s with probability 1− exp (−Kn).

The proportion of losses of a sample falling in a range is a binomial variable, and by the simple
tail bound for binomials,

P
(
|{i : `i ∈ [ρl, ρl + β]}|n−1 < p− s

)
≤ exp

(
−2 (np− n (p− s))2

n

)
= exp

(
−2s2n

)
then K = 2s2 suffices.

After showing exponential concentration for a single model, we are ready to prove Theorem
11. The standard discretization argument is modified to account for the probability of the bad event
occuring on any of the models.
Proof We denote Mε a minimal ε cover of M; by assumption the cardinality of Mε is at most
(CB/ε)d. For a given model m ∈ M, we denote mc ∈ Mε the closest element there, then
dX (m,mc) ≤ ε. By the triangle inequality,∣∣Lβ (m;µ)− Eµ′Lβ

(
m;µ′

)∣∣ ≤ |Lβ (m;µ)− Lβ (mc;µ)|+
∣∣Lβ (mc;µ)− Eµ′Lβ

(
mc;µ′

)∣∣
+
∣∣Eµ′Lβ (mc;µ′

)
− Eµ′Lβ

(
m;µ′

)∣∣ .
We bound the first and third terms by ε deterministically. Let w, ` correspond to m, and `c

to mc, then since |` (m, ·)− ` (mc, ·)| ≤ ε we see that Lβ (mc;µ) − Lβ (m;µ) ≤ 〈`c,w〉µ +

‖w − 1n‖2µ − Lβ (m;µ) = 〈`c − `,w〉µ ≤ ε by the Hölder inequality. By symmetry we conclude
|Lβ (m;µ)− Lβ (mc;µ)| ≤ ε. This bound on the first term holds for any µ, so the bound on the
third term follows by taking expectations.

It remains to bound the second term with high probability, for the following subset of the cover:

Mdiscrete =
{
mc : m ∈Mν,β−ε

p+s

}
.

For m ∈Mdiscrete, because dX is the supremum norm, Px∼ν (` (m,x)− ρml < β) > p+ s.
The assumed p fulfills the relevant condition of Lemma 25 with β, and our choice of s gives

ε = 16βs ∈
(
0, 48
√

2βs
]
. Then for n > max

{
2s−2 log

(
B (24β)−1

)
, 3h

(
4s−2 + 3

)}
we have
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that for a particular m ∈Mdiscrete,

P
(∣∣Lβ (m;µ)− Eµ′Lβ

(
m;µ′

)∣∣ > ε
)
≤ 4 exp

(
− nε2

8 (24β)2

)
.

By a union bound, the maximal deviation over all m ∈ Mdiscrete is under ε, except with
probability at most:

(CB/ε)d
(

4 exp

(
− nε2

8 (24β)2

))
= exp

(
log 4 + log (CB/ε)d − nε2

8 (24β)2

)
.

C.3. Concentration for strongly difference bounded RVs with large range

The following theorem is proved in Kutin (2002) with

M (b, λ,K) = Mkutin (b, λ,K) = max
{
bλ−1, 3h (6/K + 3)

}
.

Theorem 27 (Theorem 1.9 from Kutin (2002)) Let Z = f (X) be strongly difference bounded by
(b, λ/n, exp (−Kn)). Then for any ε ∈ (0, 2λ

√
K] and

n > M (b, λ,K)

then

Pr (|Z − EZ| ≥ ε) ≤ 4 exp

(
−n

8

( ε
λ

)2
)
.

Indeed, this theorem also holds with

Mnew (b, λ,K) = max
{

4K−1 log
(
bλ−1

)
, 3h (8/K + 3)

}
,

which has a much improved dependence on b. To establish this we recall two results from (Kutin,
2002).

Theorem 28 (Theorem 3.3 from Kutin (2002)) Let Z = f (X) be strongly difference bounded by
(b, c, δ). Then for any ε > 0 and any α > 0

Pr (|Z − EZ| ≥ ε) ≤ 2

(
exp

(
− ε2

2n (c+ bα)2

)
+
n

α
δ

)
.

Lemma 29 (Lemma 3.7 from Kutin (2002)) For any z > 0, if n > 3h (z + 3) then n ln−1 n > z.

We are now ready to prove Theorem 27 with the Mnew.
Proof Substituting (b, λ/n, exp(−Kn)) into Theorem 28, we have

Pr (|Z − EZ| ≥ ε) ≤ 2

(
exp

(
− ε2

2n (λ/n+ bα)2

)
+
n

α
exp (−Kn)

)
.
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Now choose α = λn−1b−1 and simplify:

Pr (|Z − EZ| ≥ ε) ≤2

(
exp

(
−nε

2

8λ2

)
+
bn2

λ
exp (−Kn)

)
=2

(
exp

(
−nε

2

8λ2

)
+ exp

(
log

(
bn2

λ

)
−Kn

))
For the second exponent to be dominated by the first, it suffices to have

−nε
2

8λ2
> log

(
bn2

λ

)
−Kn

⇐⇒ Kn >
nε2

8λ2
+ log

(
bλ−1

)
+ 2 log (n)

which holds if the following holds:

Kn >max

(
n

4

( ε
λ

)2
, 4 log

(
bλ−1

)
, 8 log (n)

)
.

To assure the first, it suffice to have 8−1
(
ε
λ

)2
< K/2 ⇐⇒ ε < 2λ

√
K. The second

holds due to n > 4K−1 log
(
bλ−1

)
. For the last we use Lemma 29: if n ≥ 3h (z + 3) then

n
lnn > z ⇐⇒ nz−1 > lnn, and take z = 8

K .

Appendix D. Empirical illustration

We compare our approach to an existing robust method and a baseline on three common problems:
location estimation, linear regression and dimensionality reduction. We briefly explain the general
simulation setup. For each task, we generate most data from a natural source, and some smaller
proportion of outliers from a different source. We vary the proportion of outliers and the magnitude
of the perturbation in the outlier source. The three algorithms (ours, l1 adjustments and plain least
squares, explained in detail below) are each applied to a dataset for each pair of parameters for
each problem type. We define the estimation error as the logarithm of the norm of some distance
between the true majority source and the learned model. In other words, the task is to estimate the
majority model, not model all data, and we compare error levels in decibel units. The results are
plotted in Figures 4, 5 and 6, with darker shadow corresponding to higher errors. As a baseline for
a problem, we take the estimation error scale using the non-robust estimators in the absence of out-
liers. Subtracting the baseline estimation error from the estimation error for a method indicates the
additional error due to outliers. We average this additional error across data generation parameters
to summarize algorithm performance in a single number for each problem.

The specific setups for each task are as follows. In the location estimation task, the data are
generated from the mixture of two Gaussian distributions. The less likely one is treated as a noise
source, and our goal is to identify the mean of the more likely one. In the linear regression task
the labels of most data are generated by a linear model with additive noise, and the remainder are
generated from a perturbed linear model. The norm of the perturbation can be much larger than that
of the ground truth model. In the dimensionality reduction task, most points are from a 4 dimensional

29



VAINSENCHER MANNOR XU

subspace of R10, and the remainder are from a 4 dimensional subspace sharing 3 basis elements with
the first.

We compare three algorithms. The first one is the proposed RW algorithm (i.e., Algorithm 1).
Here, we choose β by first solving the uniformly weighted problem, and then take β equal to the
average of empirical losses. The second one – the alternative robust estimation method – is the
approach proposed in Giannakis et al. (2011); Mateos and Giannakis (2012a,b) which also uses
alternating minimization. In particular, each data point is modeled as the sum of an estimated value
and an adjustment; the sum of the norms of the adjustments is taken as a penalty. At each iteration,
the model is fit to the estimated data and the adjustment for each data point is updated so as to
minimize the sum of the model loss and the l1 penalty on the adjustments. Due to the sparsity
encouraging property of l1 regularization, data points that fit the model well are not affected by
the adjustment at all, while adjustments for outliers can be large. In simple cases, this scheme
corresponds to replacing the squared distance loss with the Huber loss. This approach is generic
conceptually, although applying it to each individual problem type requires some customization.
The third algorithm, as a baseline, minimizes the average of quadratic losses.
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Figure 4: Location estimation. The majority source followsN (a, d−1I), while the noisy points fol-
low N (b, 100d−1I). The goal is an estimate â of a. Color corresponds to error measured
as log ‖â− a‖2; the average additional errors due to outliers are (0.19, 0.55, 1.47) for
RM, the robust competitor and the mean, respectively.

In each of the problem types, the proposed method achieves smallest additional error due to
outliers. Large perturbations cause severe error for standard linear regression, smaller error for the
l1 regularized correction method, and essentially no additional error for regularized weighting.

Finally, we comment on the implementation issue about tuning the β parameter. Our theorems
identify a tradeoff between robustness and generalization by tuning β, which should be set according
to the losses for non-outliers. In practice as a rule of thumb we suggest choosing β by first solving
the uniformly weighted problem, and then take β equal to the average of empirical losses, which is
also how we implement the algorithm in the simulation section.
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parameter values, and standard PCA.
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