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Abstract

We present and analyze an approach for distributed stochastic optimization which is statistically

optimal and achieves near-linear speedups (up to logarithmic factors). Our approach allows a

communication-memory tradeoff, with either logarithmic communication but linear memory, or

polynomial communication and a corresponding polynomial reduction in required memory. This

communication-memory tradeoff is achieved through minibatch-prox iterations (minibatch passive-

aggressive updates), where a subproblem on a minibatch is solved at each iteration. We provide

a novel analysis for such a minibatch-prox procedure which achieves the statistical optimal rate

regardless of minibatch size and smoothness, thus significantly improving on prior work.

1. Introduction

Consider the stochastic convex optimization (generalized learning) problem (Nemirovskii and Yudin,

1983; Vapnik, 1995; Shalev-Shwartz et al., 2009):

min
w∈Ω

φ(w) := Eξ∼D [ℓ(w, ξ)] (1)

where our goal is to learn a predictor w from the convex domain Ω given the convex instanta-

neous (loss) function ℓ(w, ξ) and i.i.d. samples ξ1, ξ2, . . . from some unknown data distribution

D. When optimizing on a single machine, stochastic approximation methods such as stochas-

tic gradient descent (SGD) or more generally stochastic mirror descent, are ideally suited for the

problem as they typically have optimal sample complexity requirements, and run in linear time

in the number of samples, and thus also have optimal runtime. Focusing on an ℓ2 bounded do-

main with B = sup
w∈Ω ‖w‖ and L-Lipschitz loss, the min-max optimal sample complexity is

n(ε) = O(L2B2/ε2), and this is achieved by SGD using O(n(ǫ)) vector operations. Furthermore,

if examples are obtained one at a time (in a streaming setting or through access to a “button” gener-

ating examples), we only need to store O(1) vectors in memory.

The situation is more complex in the distributed setting where no single method is known that

is optimal with respect to sample complexity, runtime, memory and communication. Specifically,

consider m machines where each machine i = 1, ...,m receives samples ξi1, ξi2, ... drawn from the
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same distribution D. This can equivalently be thought of as randomly distributing samples across

m servers. We also assume the objective is β-smooth, taking L, β = O(1) in our presentation of

results. The goal is to find a predictor ŵ ∈ Ω satisfying E [φ(ŵ)−minw∈Ω φ(w)] ≤ ε using the

smallest possible number of samples per machine, the minimal elapsed runtime, and the smallest

amount of communication, and also minimal memory on each machine (again, when examples are

received or generated one at a time). Ideally, we could hope for a method with linear speedup,

i.e. O(n(ǫ)/m) runtime, using the statistically optimal number of samples O(n(ǫ)) and constant

or near-constant communication and memory. Throughout we measure runtime in terms of vector

operations, memory in terms of number of vectors that need to be stored on each machine and

communication in terms of number of vectors sent per machine1. These resource requirements are

summarized in Table 1.

One simple approach for distributed stochastic optimization is minibatch SGD (Cotter et al.,

2011; Dekel et al., 2012), where in each update we use a gradient estimate based on mb examples:

b examples from each of the m machines. Distributed minibatch SGD attains optimal statistical

performance with O (n(ε)/m) runtime, as long as the minibatch size is not too large: Dekel et al.

(2012) showed that the minibatch size can be as large as bm = O(
√
n(ε)), and Cotter et al. (2011)

showed that with acceleration this can be increased to bm = O(n(ε)3/4). Using this maximal

minibatch size for accelerated minibatch SGD thus yields a statistically optimal method with linear

speedup in runtime, O(1) memory usage, and O(n(ε)1/4) rounds of communication–see Table 1.

This is the most communication-efficient method with true linear speedup we are aware of.

An alternative approach is to use distributed optimization to optimize the regularized empirical

objective:

min
w

φS(w) +
ν

2
‖w‖2 , (2)

where φS is the empirical objective on n(ǫ) i.i.d. samples, distributed across the machines and

ν = O(L/(B
√

n(ε))). A naive approach here is to use accelerate gradient descent, distributing

the gradient computations, but this, as well as approaches based on ADMM (Boyd et al., 2011),

are dominated by minibatch SGD (Shamir and Srebro 2014 and see also Table 1). Better alterna-

tives take advantage of the stochastic nature of the problem: DANE (Shamir et al., 2014) requires

only O(B2m) rounds of communication for squared loss problems, while DiSCO (Zhang and Lin,

2015) and AIDE (Reddi et al., 2016)) reduce this further to O(B1/2m1/4) rounds of communica-

tion. However, these communication-efficient methods usually require expensive computation on

each local machine, solving an optimization problem on all local data at each iteration. Even if

this can be done in near-linear time, it is still difficult to obtain computational speedup compared

with single machine solution, and certainly not linear speedups—see Table 1. Furthermore, since

each round of these methods involves optimization over a fixed training set, this training set must

be stored thus requiring n(ε)/m memory per machine.

Designing stochastic distributed optimization problems with linear, or near-linear, speedups, and

low communication and memory requirements is thus still an open problem. We make progress in

this paper analyzing and presenting methods with near-linear speedups and better communication

and memory requirements. As with the analysis of DANE, DiSCO and AIDE, our analysis is

rigorous only for least squared problems, and so all results should be taken in that context (the

methods themselves are applicable to any distributed stochastic convex optimization problem).

1. In all methods involved, communication is used to average vectors across machines and make the result known to

one or all machines. We are actually counting the number of such operations.

2



EFFICIENT DISTRIBUTED STOCHASTIC OPTIMIZATION

C
o
m

m
u
n
ic

at
io

n

Memory

Acc. Mini. SGD

DSVRG

MP-DSVRG

Figure 1: Trade-offs between memory and communication for the proposed MP-DSVRG approach.

Our contributions

• We first apply the recently proposed distributed SVRG (DSVRG) algorithm for regularized

loss minimization to the distributed stochastic convex optimization problem, and show that

on least square problems it can achieve near-linear speedup with very low communication,

but with high memory cost—see DSVRG in Table 1.

• We propose a novel algorithm that improves the memory cost, which we call minibatch-prox

with DSVRG (MP-DSVRG). For least square problems it achieves near-linear speedup with

communication cost that is higher than DSVRG but increases only logarithmically with n(ε),
but with much lower memory requirements. Moreover, our algorithm is flexible, allowing

to trade off between communication and memory (depicted in Figure 1), without affecting

the computational efficiency. Our method is based on careful combinations of inexact mini-

batch proximal update, communication-efficient optimization and linearly convergent sto-

chastic gradient algorithms for finite-sums.

• As indicated above, our method is based on minibatch proximal update. That is, a mini-

batch approach where in each iteration a non-linearized problem is solved on a stochastic

minibatch. This can be viewed as a minibatch generalization to the passive-aggressive algo-

rithm (Crammer et al., 2006) and has been considered in various contexts (Kulis and Bartlett,

2010; Toulis and Airoldi, 2014). We show that such an approach achieves the optimal sta-

tistical rate in terms of the number of samples used independent of the number of iterations,

i.e. with any minibatch size. This significantly improves over the previous analysis of Li et al.

(2014), as the guarantee is better, it entirely avoid the dependence on the minibatch size and

does not rely on additional assumptions as in Li et al. (2014). The guarantee holds for any

Lipschitz (even non-smooth) objective. Furthermore, to make the minibatch proximal iter-

ate more practical and useful in distributed setting, we also extend the analysis to algorithms

which solve each minibatch subproblem inexactly. Our analysis of exact and inexact mini-
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Samples Communication Computation Memory

Ideal Solution n(ε) O(1) n(ε)/m O(1)
Accelerated GD n(ε) B1/2n(ε)1/4 B1/2n(ε)5/4/m n(ε)/m

Acc. Minibatch SGD n(ε) B1/2n(ε)1/4 n(ε)/m O(1)
DANE n(ε) B2m B2n(ε) n(ε)/m

DiSCO n(ε) B1/2m1/4 B1/2n(ε)/m3/4 n(ε)/m

AIDE n(ε) B1/2m1/4 B1/2n(ε)/m3/4 n(ε)/m

DSVRG n(ε) O(1) n(ε)/m n(ε)/m

MP-DSVRG (b ≤ bmax) n(ε) n(ε)/(mb) n(ε)/m b
MP-DSVRG (b = bmax) n(ε) O(1) n(ε)/m n(ε)/m

Table 1: Summary of resources required by different approaches to distributed stochastic least

squares problems, in units of vector operations/communications/memory per machine, ig-

noring constants and log-factors, here bmax = n(ε)/m.

batch proximal updates may be of independent interest and useful in other contexts and as a

basis for other methods.

Notations We denote by w∗ = argmin
w∈Ω φ(w) the optimal solution to (1). Throughout the

paper, we assume the instantaneous function ℓ(w, ξ) is L-Lipschitz and λ-strongly convex in w for

some λ ≥ 0 on the domain Ω:

∣∣ℓ(w, ξ)− ℓ(w′, ξ)
∣∣ ≤ L

∥∥w −w′∥∥ ,

ℓ(w, ξ)− ℓ(w′, ξ) ≥
〈
∇ℓ(w′, ξ), w −w′〉+ λ

2

∥∥w −w′∥∥2 , ∀w,w′ ∈ Ω.

Sometimes we also assume ℓ(w, ξ) is β-smooth in w:

ℓ(w, ξ)− ℓ(w′, ξ) ≤
〈
∇ℓ(w′, ξ), w −w′〉+ β

2

∥∥w −w′∥∥2 , ∀w,w′ ∈ Ω.

For distributed stochastic optimization, our analysis focuses on the least squares loss ℓ(w, ξ) =
1
2(w

⊤x− y)2 where ξ = (x, y).

2. Distributed SVRG for stochastic convex optimization

Recently, Lee et al. (2015) suggested using fast randomized optimization algorithms for finite-sums,

and in particular the SVRG algorithm, as a distributed optimization approach for (2). The authors

noted that, for SVRG, when the the sample size n(ε) dominates the problem’s condition number

β/ν where β is the smoothness parameter of ℓ(w, ξ), the time complexity is dominated by com-

puting the batch gradients. This operation can be trivially parallelized. The stochastic updates, on

the other hand, can be implemented on a single machine while the other machines wait, with the

only caveat being that only sampling-without-replacement can be implemented this way. The use

of without-replacement sampling was theoretically justified in a recent analysis by Shamir (2016).
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In the distributed stochastic convex optimization setting considered here, DSVRG in fact achieves

linear speedup in certain regime as follows. In each iteration of the algorithm, each machine first

computes its local gradient and average them with one communication round to obtain the global

batch gradient, and then a single machine performs the SVRG stochastic updates by processing its

local data once (sampling the n(ε)/m examples without replacement). By the linear convergence of

SVRG, as long as the number of stochastic updates n(ε)/m is larger than β/ν = O(βB
√
n(ε)/L),

the algorithm converges to O(ǫ)-suboptimality (in both the empirical and stochastic objective) in

O(log 1/ε) = O (logn(ε)) iterations; and this condition is satisfied2 for n(ε) & m2.

Clearly, in the above regime, each iteration of DSVRG uses two rounds of communications

and the total communication complexity is O (n(ε)). On the other hand, the computation for each

machine is compute the local gradient (in time O(n(ε)/m)) in each iteration, resulting in a total

time complexity of O(n(ε) log n(ε)/m). This explains the DSVRG entry in Table 1.

Being communication- and computation-efficient, DSVRG requires each machine to store a

portion of the sample set for ERM to make multiple passes over them, and is therefore not memory-

efficient. In fact, this disadvantage is shared by previously known communication-efficient dis-

tributed optimization algorithms, including DANE, DiSCO, and AIDE. In order to develop a memory-

and communication-efficient algorithm for distributed stochastic optimization, we need to bypass

the ERM setting and this is enabled by the following minibatch-prox algorithm.

3. The minibatch-prox algorithm for stochastic optimization

In this section, we describe and analyze the minibatch-prox algorithm for stochastic optimization,

which allows us to use arbitrarily large minibatch size without slowing down the convergence rate.

We first present the basic version where each proximal objective is solved exactly for each mini-

batch, which achieves the optimal convergence rate. Then, we show that if each minibatch objective

is solved accurately enough, the algorithm still converges at the optimal rate, opening the opportu-

nity for efficient implementations.

3.1. Exact minibatch-prox

The “exact” minibatch-prox is defined by the following iterates: for t = 1, . . . ,

wt = argmin
w∈Ω

ft(w),

where ft(w) := φIt(w) +
γt
2
‖w −wt−1‖2 =

1

b

∑

ξ∈It
ℓ(w, ξ) +

γt
2
‖w −wt−1‖2 , (3)

γt > 0 is the (inverse) stepsize parameter at time t, and It is a set of a b samples from the unknown

distribution D. To understand the updates in (3), we first observe by the first order optimality

condition for ft(w) that

∇φIt(wt) + γt(wt −wt−1) ∈ −NΩ(wt), (4)

2. If n(ε) & m2 does not hold, we can use a “hot-potato” style algorithm where we process all data once on machine i

and pass the predictor to machine i+1 until we obtain sufficiently many stochastic updates. But then the computation

efficiency deteriorates and we no longer have linear speedup in runtime.
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where∇φIt(wt) is some subgradient of φIt(w) at wt, andNΩ(wt) = {y| 〈w −wt, y〉 ≤ 0, ∀w ∈ Ω}
is the normal cone of Ω at wt. Equivalently, the above condition implies

wt = PΩ

(
wt−1 −

1

γt
∇φIt(wt)

)
, (5)

where PΩ(w) denotes the projection of w onto Ω. The update rule (5) resembles that of the standard

minibatch gradient descent, except the gradient is evaluated at the “future” iterate.

Proximal steps, of the form (3) or equivalently (5), are trickier to implement compared to (sto-

chastic) gradient steps, as they involve optimization of a subproblem, instead of merely computing

and adding gradients. Nevertheless, they have been suggested, used and studied in several contexts.

Crammer et al. (2006) proposed the “passive aggressive” update rule, where a margin-based loss

from a single example with a quadratic penalty is minimized—this corresponds to (3) with a “batch

size” of one. More general loss functions, still for “batch sizes” of one, were also analyzed in

the online learning setting (Cheng et al., 2006; Kulis and Bartlett, 2010). For finite-sum objectives,

methods based on incremental/stochastic proximal updates were studied by Bertsekas (2011, 2015);

Defazio (2016). Needell and Tropp (2014) analyzed a randomized block Kaczmarz method in the

context of solving linear systems, which also minimizes the empirical loss on a randomly sampled

minibatch. To the best of our knowledge, no prior work has analyzed the general minibatch vari-

ant of proximal updates for stochastic optimization except Li et al. (2014). However, the analysis

of Li et al. (2014) assumes a stringent condition which is hard to verify (and is often violated) in

practice, which we will discuss in detail in this section.

The following lemma provides the basic property of the update at each iteration.

Lemma 1 For any w ∈ Ω, we have

λ+ γt
γt

‖wt −w‖2 ≤ ‖wt−1 −w‖2 − ‖wt−1 −wt‖2 −
2

γt
(φIt(wt)− φIt(w)) . (6)

To derive the convergence guarantee, we need to relate φIt(wt) to φ(w). The analysis of Li et al.

(2014) for minibatch-prox made the assumption that for all t ≥ 1:

EIt [Dφ(wt;wt−1)] ≤ EIt

[
DφIt

(wt;wt−1)
]
+

γt
2
‖wt −wt−1‖2 , (7)

where Df (w,w′) = f(w)− f(w′)−〈∇f(w′), w −w′〉 denotes the Bregman divergence defined

by the potential function f . This condition is hard to verify, and may constrain the stepsize to be

very small. For example, as the authors argued, if ℓ(w, ξ) is β-smooth with respect to w, we have

Dφ(wt;wt−1) ≤
β

2
‖wt −wt−1‖2 ,

and combined with the fact that DφIt
(wt;wt−1) ≥ 0, one can guarantee (7) by setting γt ≥ β.

However, to obtain the optimal convergence rate, Li et al. (2014) needed to set γt = O(
√
T/b)

which would imply b = O(T ) in order to have γt ≥ β. In view of this implicit constraint that the

minibatch size b can not be too large, the analysis of Li et al. (2014) does not really show advantage

of minibatch-prox over minibatch SGD, whose optimal minibatch size is precisely b = O(T ).
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Our analysis is free of any additional assumptions. The key observation is that, when b is large,

we expect φIt(w) to be close to φ(w). Define the stochastic objective

Ft(w) := EIt [ft(w)] = φ(w) +
γt
2
‖w −wt−1‖2 . (8)

Then wt is the “empirical risk minimizer” of Ft(w) as it solves the empirical version ft(w) with

b samples. Using a stability argument (Shalev-Shwartz et al., 2009), we can establish the “general-

ization” performance for the (inexact) minimizer of the minibatch objective.

Lemma 2 For the minibatch-prox algorithm,we have

|EIt [φ(wt)− φIt(wt)]| ≤
4L2

(λ+ γt)b
.

Moreover, if a possibly randomized algorithmAminimizes ft(w) up to an error of ηt, i.e.,A returns

an approximate solution w̃t such that EA [ft(w̃t)− ft(wt)] ≤ ηt, we have

|EIt,A [φ(w̃t)− φIt(wt)]| ≤
4L2

(λ+ γt)b
+

√
2L2ηt
λ+ γt

.

Combining Lemma 1 and Lemma 2, we obtain the following key lemma regarding the progress on

the stochastic objective at each iteration of minibatch-prox.

Lemma 3 For iteration t of exact minibatch-prox, we have for any w ∈ Ω that

λ+ γt
γt

EIt ‖wt −w‖2 ≤ ‖wt−1 −w‖2 − 2

γt
EIt [φ(wt)− φ(w)] +

8L2

γt(λ+ γt)b
. (9)

We are now ready to bound the overall convergence rates of minibatch-prox.

Theorem 4 (Convergence of exact minibatch-prox — weakly convex ℓ(w, ξ)) For L-Lipschitz

instantaneous function ℓ(w, ξ), set γ =
√

8T
b · L

‖w0−w∗‖ for t = 1, . . . , T in minibatch-prox. Then

for ŵT = 1
T

∑T
t=1wt, we have

E [φ(ŵT )− φ(w∗)] ≤
√
8L√
bT
‖w0 −w∗‖ .

Theorem 5 (Convergence of exact minibatch-prox — strongly convex ℓ(w, ξ)) For L-Lipschitz

and λ-strongly convex instantaneous function ℓ(w, ξ), set γt =
λ(t−1)

2 for t = 1, . . . , T in minibatch-

prox. Then for ŵT = 2
T (T+1)

∑T
t=1 twt, we have

E [φ(ŵT )− φ(w∗)] ≤
16L2

λb(T + 1)
.

7
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3.2. Inexact minibatch-prox

We now study the case where instead of solving the subproblems ft(w) exactly, we only solve it

approximately to sufficient accuracy. The “inexact” minibatch-prox uses a possibly randomized

algorithm A for approximately solving one subproblem on a minibatch in each iteration, and gen-

erates the following iterates: for t = 1, . . . ,

w̃t ≈ w̄t := argmin
w∈Ω

f̃t(w) where f̃t(w) := φIt(w) +
γt
2
‖w − w̃t−1‖2 , (10)

and EA
[
f̃t(w̃t)− f̃t(w̄t)

]
≤ ηt.

Analogous to Lemma 3, we can derive the following lemma using stability of inexact minimizers.

Lemma 6 Fix any w ∈ Ω. For iteration t of inexact minibatch-prox, we have

EIt,A [φ(w̃t)− φ(w)] ≤ γt
2
EIt,A ‖w̃t−1 −w‖2 − λ+ γt

2
EIt,A ‖w̃t −w‖2 + 4L2

(λ+ γt)b

+

√
2L2ηt
λ+ γt

+
√
2(λ+ γt)ηt ·

√
EIt,A ‖w̃t −w‖2. (11)

Note that when ηt = 0, the above guarantee reduces to that of exact minibatch-prox.

We now show that when the minibatch subproblems are solved sufficiently accurately, we still

obtain the O(1/
√
bT ) rate for weakly-convex loss and O(1/(λbT )) rate for strongly-convex loss.

Theorem 7 (Convergence of inexact minibatch-prox — weakly convex ℓ(w, ξ)) For L-Lipschitz

instantaneous function ℓ(w, ξ), set γt = γ =
√

8T
b · L

‖w0−w∗‖ for all t ≥ 1 in inexact minibatch-

prox. Assume that for all t ≥ 1, the error in minimizing f̃t(w) satisfies for some δ > 0 that

EA
[
f̃t(w̃t)−min

w

f̃t(w)
]
≤ min

(
c1

(
T

b

) 1
2

, c2

(
T

b

) 3
2

)
· L ‖w̃0 −w∗‖

t2+2δ
.

Then for ŵT = 1
T

∑T
t=1 w̃t, we have E [φ(ŵT )− φ(w∗)] ≤ c3L‖w0−w∗‖√

bT
, where c3 only depends

on c1, c2 and δ. For example, by setting c1 = 10−4, c2 = 10−4, δ = 1/2, we have

E [φ(ŵT )− φ(w∗)] ≤
√
10L ‖w0 −w∗‖√

bT
.

Theorem 8 (Convergence of inexact minibatch-prox — strongly convex ℓ(w, ξ)) For L-Lipschitz

and λ-strongly convex instantaneous function ℓ(w, ξ), set γt = λ(t−1)
2 for t = 1, . . . in inexact

minibatch-prox. Assume that for all t ≥ 1, the error in minimizing f̃t(w) satisfies for some δ > 0
that

EA
[
f̃t(w̃t)−min

w

f̃t(w)
]
≤ min

(
c1

(
T

b

)
, c2

(
T

b

)2
)
· L2

t3+2δλ
.

Then for ŵT = 2
T (T+1)

∑T
t=1 tw̃t, we have E [φ(ŵT )− φ(w∗)] ≤ c3L2

λbT , where c3 only depends on

c1, c2 and δ.

8
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Remark 9 The final inequalities in Theorem 4 and 7 actually apply more generally to all predictors

in the domain. That is, our proofs still hold with w∗ replaced by any w ∈ Ω:

E [φ(ŵT )− φ(w)] ≤ O
(
L ‖w0 −w‖√

bT

)
, w ∈ Ω.

This allows us to compete with any predictor in the domain (other than the minimizer). For example,

in order to compete on φ(w) with the set of predictors with small norm {w : ‖w‖ ≤ B}, we can set

the domain Ω = R
d and initialize with w0 = 0. In view of the above inequality, we still obtain the

optimal rateO
(

LB√
bT

)
from minibatch-prox by solving simpler, unconstrained subproblems (though

we might have ‖ŵT ‖ > B).

4. Communication-efficient distributed minibatch-prox with SVRG

We now apply the theoretical results of minibatch-prox to the distributed stochastic learning

setting, and propose a novel algorithm that is both communication and computation efficient, and

being able to explore trade-offs between memory and communication efficiency.

Suppose we have m machines in a distributed environment. For each outer loop of our algo-

rithm, each machine i draws a minibatch I
(i)
t of b samples independently from other machines, and

denote It = ∪mi=1I
(i)
t which contains bm samples. To apply the minibatch-prox algorithm from the

previous section, we need to find an approximate solution to the following problem:

min
w

f̃t(w) := φIt(w) +
γ

2
‖w −wt−1‖2 . (12)

Since the objective (12) involves functions from different machines, we use distributed opti-

mization algorithms for solving it. In Li et al. (2014), the authors proposed a simple algorithm

EMSO to approximately solve (12), where each machine first solve its own local objective, i.e.,

w
(i)
t = argmin

w

φ
I
(i)
t

+
γ

2
‖w −wt−1‖2 , (13)

and then all machines average their local solutions via one round of communication: wt =
1
m

∑m
i=1w

(i)
t .

We note that this can be considered as the “one-shot-averaging” approach (Zhang et al., 2012)

for solving (12). Although this approach was shown to work well empirically, no convergence

guarantee for the original stochastic objective (1) was provided by Li et al. (2014). Here we instead

use the distributed SVRG (DSVRG) algorithm (Lee et al., 2015; Shamir, 2016) to approximately

solve (12), as DSVRG enjoys excellent communication and computation cost when the problem is

well conditioned (cf. Table 1).3

We detail our algorithm, named MP-DSVRG (minibatch-prox with DSVRG), in Algorithm 1.

The algorithm consists of two nested loops, where t, k are iteration counters for minibatch-prox

(the outer for-loop), and DSVRG (the inner for-loop) respectively. In each outer loop, each ma-

chine draws a minibatch I
(i)
t to form the objective (12), which will be solved approximately by the

inner loops. Moreover, each machine splits its local dataset into pi batches: I(i) = ∪pij=1B
(i)
j . In

3. It is also possible to equip minibatch-prox with other communication-efficient distributed optimization algorithms,

for example in Appendix D, we present a minibatch-prox DANE (MP-DANE) algorithm which uses the accelerated

DANE method for solving (12).
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Algorithm 1 Minibatch-prox with DSVRG for distributed stochastic convex optimization.

Initialize w0 = 0.

for t = 1, 2, . . . , T do

% Outer loop performs minibatch-prox.

Each machine i draws a minibatch I
(i)
t of b samples from the underlying data distribution, and

split I
(i)
t to pi batches of size b/pi: B

(i)
1 , B

(i)
2 , ..., B

(i)
pi

Initialize z0 ← wt−1, x0 ← wt−1, j ← 1, s← 1
for k = 1, 2, . . . ,K do

1. All machines perform one round of communication to compute the average gradient:

∇φIt(zk−1)←
1

m

m∑

i=1

∇φ
I
(i)
t
(zk−1)

2. Machine j performs stochastic updates by going through B
(j)
s once without replacement:

xr ← xr−1 − η (∇ℓ(xr−1, ξl)−∇ℓ(zk−1, ξl) +∇φIt(zk−1) + γ(xr−1 −wt−1))

for ξl ∈ B
(j)
s .

3. Machine j update zk:

zk ←
1

|B(j)
s |

|B(j)
s |∑

r=0

xr,

and broadcast zk to other machines.

4. Update indices: s← s+ 1,

if s > pj then

s← 1, j ← j + 1.
end if

end for

Update wt ← zK .

end for

Output: wT is the approximate solution.

each inner loop, all machines communicate to calculate the global gradient (averaged local gradi-

ents) of (12), and then one of the machines j picks a local batch B
(j)
s to perform the stochastic

updates, where the local batch contains enough samples such that one pass of stochastic updates

on B
(j)
s decrease the objective quickly. We perform two rounds of communication in each inner

loop, one for computing the global gradient, and one for broadcasting the new predictor obtained

by a machine j. As we will show in the next section, by carefully choosing the parameters, we will

obtain a convergent algorithm for distributed stochastic convex optimization with better efficiency

guarantees than previous methods.

We now present detailed analysis for the computation/communication complexity of Algo-

rithm 1 for stochastic quadratic problems, and compare it with related methods in the literature.

Throughout this section, we have ℓ(w, ξ) = 1
2(w

⊤x − y)2 where ξ = (x, y). We assume that

10
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ℓ(w, ξ) is β-smooth and L-Lipschitz in w,4 and we would like to learn a predictor that is competi-

tive to all predictors with norm at most B. Note that each ℓ(w, ξ) is only weakly convex.

4.1. Efficiency of MP-DSVRG

For the distributed stochastic convex optimization problems, we are concerned with efficiency in

terms of sample, communication, computation and memory. Recall that for convex L-Lipshitz, B-

bounded problems, to learn a predictor ŵ with ε-generalization error, i.e., E [φ(ŵ)− φ(w∗)] ≤ ε,

we require the sample size to be at least n(ε) = O(L2B2/ε2). This sample complexity matches the

worst case lower bound, and can be achieved by vanilla SGD.

The theorem below shows that with careful choices of parameters in the outer and inner loops,

MP-DSVRG achieves both communication and computation efficiency with the optimal sample

complexity.

Theorem 10 (Efficiency of MP-DSVRG) Set the parameters in Algorithm 1 as follows:

(outer loop) T =
n(ε)

bm
, γ =

√
8n(ε)L

bmB
, pi = O

(√
n(ε)L

βmB

)

(inner loop) K = O (log n(ε)) .

Then we have E

[
φ
(

1
T

∑T
t=1wt

)
− φ(w∗)

]
≤

√
40BL√
n(ε)

= O (ε) .

Moreover, Algorithm 1 can be implemented with O
(
n(ε)
bm log n(ε)

)
rounds of communication,

and each machine performs O
(
n(ε)
m log n(ε)

)
vector operations in total.

We comment on the choice of parameters. For sample efficiency, we fix the sample size n(ε)
and number of machines m, and so we can tradeoff the local minibatch size b and the total number

of outer iterations T , maintaining bT = n(ε)
m . For any b, the regularization parameters in the “large

minibatch” problem is set to γ =
√

8T
bm · L

B =

√
8n(ε)L

bmB according to Theorem 7. Moreover,

we choose the number of batches pi in each local machine in a way that performing one pass of

stochastic updates over a single batch by without-replacement sampling is sufficient to reduce the

objective by a constant factor.

5. Discussion and conclusion

In this paper, we made progress toward linear speedup, communication and memory efficient meth-

ods for distributed stochastic optimization, although we still do not have an algorithm that obtains

the “ideal” distributed stochastic optimization performance of linear speedup with constant or near-

constant communication and memory. There is also no single known algorithm that dominates all

others, with different methods being preferable in terms of different resources. These tradeoffs, up

to log-factors, are given in Table 1 and the memory, communication and runtime requirements are

also schematically depicted in Figure 2. In the figure, the horizontal axis corresponds to the “mini-

batch” size, which can be controlled with accelerated minibatch SGD and MP-DSVRG, while other

methods are batch methods which consider the entire data set.

4. We can equivalently assume ‖x‖2 ≤ β and y is bounded.
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Figure 2: Illustration of theoretical guarantees for MP-DSVRG and the comparison with

accelerated minibatch SGD (Cotter et al., 2011), DiSCO (Zhang and Lin, 2015),

AIDE (Reddi et al., 2016), DSVRG (Lee et al., 2015), and MP-DANE (proposed and

analyzed in Appendix D). We plot the communication, computation and memory require-

ments while ensuring sample efficiency. Here bacc-sgd ≍ n(ε)3/4/(m
√
B), bmp-dane ≍

n(ε)/(m2B2), and bmax = n(ε)/m.

From Figure 2 we can see that DSVRG (equivalent to MP-DSVRG when b = n(ε)/m) domi-

nates the other methods (up to log-factors) in terms of runtime and communication—it has smaller

communication requirements than DiSCO/AIDE (and better than DANE) with nearly the same

optimal runtime of accelerated minibatch SGD. But like other batch methods, it requires storing

and re-accessing the entire data set. Accelerated minibatch SGD is the only one of these meth-

ods requiring only O(1) memory per machine, and it achieves true linear speedup, but due to

the limit on the maximal allowed minibatch size, has relatively high communication cost. MP-

DSVRG allows bridging these two extremes of memory and communication, trading off between

memory usage and communication. The trade-off is almost an extrapolation, except that in the low-

memory high-communication extreme, MP-DSVRG still requires (small) polynomial memory, not

minibatch-SGD’s O(1) memory, and its runtime still involve a logarithmic factor while minibatch-

SGD achieves true linear speedup.

12
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Instead of using DSVRG to solve each proximal subproblem in a minibatch-prox iteration, we

can also use any other distributed optimization approach. For example, we can consider using

DiSCO or DANE. This is depicted as “MP-DANE” in Figure 2. Again, an external minibatch-prox

loop allows trading off memory for communication. For small minibatch sizes, up to a critical value

of bmp-dane = Θ(n(ε)/(m2B2)), MP-DANE enjoys the same guarantees as MP-DSVRG. But for

larger minibatch sizes, such an approach starts suffering from DANE/DiSCO’s inferior runtime and

communication requirements compared to DSVRG.

We emphasize that the above discussion is based on guarantees established only for least square

problems and ignores log-factors. We are unfortunately not aware of distributed stochastic opti-

mization guarantees that improve over minibatch SGD (i.e., achieve even near-linear speedup with

lower communication requirements) for general smooth objectives, or achieve true linear speedup

(and improved communication guarantees) even for least-square problems.
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Appendix A. Analysis of exact minibatch-prox

A.1. Proof of Lemma 1

Proof Observe that (4) implies γt(wt−1 −wt) is a subgradient at wt of the sum of φIt(w) and the

indicator function of Ω (which has value 0 in Ω and∞ otherwise), and thus we have for any w ∈ Ω
that

φIt(w)− φIt(wt) ≥ γt 〈wt−1 −wt, w −wt〉+
λ

2
‖w −wt‖2 . (14)

For any w ∈ Ω, we can bound its distance to wt−1 as

‖wt−1 −w‖2 = ‖wt−1 −wt +wt −w‖2

= ‖wt−1 −wt‖2 + 2 〈wt−1 −wt, wt −w〉+ ‖wt −w‖2

≥ ‖wt−1 −wt‖2 +
2

γt
(φIt(wt)− φIt(w)) +

λ

γt
‖w −wt‖2 + ‖wt −w‖2

=
λ+ γt
γt

‖wt −w‖2 + 2

γt
(φIt(wt)− φIt(w)) + ‖wt−1 −wt‖2

where we have used (14) in the first inequality. Rearranging the terms yields the desired result.

A.2. Proof of Lemma 2

The following lemma, which is essentially shown by Shalev-Shwartz et al. (2009, Theorem 6), char-

acterizes the convergence of the empirical loss to the population counterpart for the (approximate)

regularized empirical risk minimizer.
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Lemma 11 Let the instantaneous function ℓ(w, ξ) be L-Lipschitz and λ-strongly convex in w.

Consider the following regularized ERM problem with sample set Z = {ξ1, . . . , ξn}:

ŵ = argmin
w∈Ω

F̂ (w) where F̂ (w) :=
1

n

n∑

i=1

ℓ(w, ξi) + r(w),

and the regularizer r(w) is γ-strongly convex. Denote by G(w) = Eξ [ℓ(w, ξ)] and Ĝ(w) =
1
n

∑n
i=1 ℓ(w, ξi) the expected and the empirical losses respectively.

1. For the regularized empirical risk minimizer ŵ, we have

∣∣∣EZ

[
G(ŵ)− Ĝ(ŵ)

]∣∣∣ ≤ 4L2

(λ+ γ)n
.

2. If for any given dataset Z, a possibly randomized algorithmAminimizes F̂ (w) up to an error

of η, i.e., A returns an approximate solution w̃ such that EA
[
F̂ (w̃)− F̂ (ŵ)

]
≤ η, we have

∣∣∣EZ,A
[
G(w̃)− Ĝ(ŵ)

]∣∣∣ ≤ 4L2

(λ+ γ)n
+

√
2L2η

λ+ γ
.

Proof We prove the lemma by a stability argument.

Exact ERM Denote by Z(i) the sample set that is identical to Z except that the i-th sample ξi is

replaced by another random sample ξ′i, by F̂ (i)(w) the empirical objective defined using Z(i), i.e.,

F̂ (i)(w) :=
1

n


∑

j 6=i

ℓ(w, ξi) + ℓ(w, ξ′i)


+ r(w),

and by ŵ(i) = argmin
w∈Ω F̂ (i)(w) the empirical risk minimizer of F̂ (i)(w).

By the definition of the empirical objectives, we have

F̂ (ŵ(i))− F̂ (ŵ) =
ℓ(ŵ(i), ξi)− ℓ(ŵ, ξi)

n
+

∑
j 6=i ℓ(ŵ

(i), ξi)− ℓ(ŵ, ξi)

n
+ r(ŵ(i))− r(ŵ)

=
ℓ(ŵ(i), ξi)− ℓ(ŵ, ξi)

n
+

ℓ(ŵ, ξ′i)− ℓ(ŵ(i), ξ′i)
n

+
(
F̂ (i)(ŵ(i))− F̂ (i)(ŵ)

)

≤
∣∣ℓ(ŵ(i), ξi)− ℓ(ŵ, ξi)

∣∣
n

+

∣∣ℓ(ŵ, ξ′i)− ℓ(ŵ(i), ξ′i)
∣∣

n

≤ 2L

n

∥∥∥ŵ(i) − ŵ

∥∥∥ (15)

where we have used the fact that ŵ(i) is the minimizer of F̂ (i)(w) in the first inequality, and the

L-Lipschitz continuity of ℓ(w, ξ) in the second inequality.

On the other hand, it follows from the (λ+ γ)-strong convexity of F̂ (w) that

F̂ (ŵ(i))− F̂ (ŵ) ≥ (λ+ γ)

2

∥∥∥ŵ(i) − ŵ

∥∥∥
2
. (16)
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Combining (15) and (16) yields
∥∥ŵ(i) − ŵ

∥∥ ≤ 4L
(λ+γ)n .

Again, by the L-Lipschitz continuity of ℓ(w, ξ), we have that for any sample ξ that

∣∣∣ℓ(ŵ, ξ)− ℓ(ŵ(i), ξ)
∣∣∣ ≤ L

∥∥∥ŵ(i) − ŵ

∥∥∥ ≤ 4L2

(λ+ γ)n
. (17)

Since Z and Z(i) are both i.i.d. sample sets, we have

EZ [G(ŵ)] = EZ(i)

[
G(ŵ(i))

]
= EZ(i)∪{ξi}

[
ℓ(ŵ(i), ξi)

]
.

As this holds for all i = 1, . . . , n, we can also write

EZ [G(ŵ)] =
1

n

n∑

i=1

EZ(i)∪{ξi}

[
ℓ(ŵ(i), ξi)

]
. (18)

On the other hand, we have

EZ

[
Ĝ(ŵ)

]
= EZ

[
1

n

n∑

i=1

ℓ(ŵ, ξi)

]
=

1

n

n∑

i=1

EZ [ℓ(ŵ, ξi)] . (19)

Combining (18) and (19) and using the stability (17), we obtain

EZ

[
G(ŵ)− Ĝ(ŵ)

]
=

1

n

n∑

i=1

EZ∪{ξ′i}
[
ℓ(ŵ(i), ξi)− ℓ(ŵ, ξi)

]
∈
[
− 4L2

(λ+ γ)n
,

4L2

(λ+ γ)n

]
.

Inexact ERM For the approximate solution w̃, due to the (λ+ γ)-strong convexity of F̂ (w), we

have

EA ‖w̃ − ŵ‖2 ≤ 2

λ+ γ
EA
[
F̂ (w̃)− F̂ (ŵ)

]
≤ 2η

λ+ γ
,

and thus EA ‖w̃ − ŵ‖ ≤
√

2η
λ+γ by the fact that Ex2 ≥ (Ex)2 for any random variable x.

It then follows from the Lipschitz continuity of G(w) that

EA |G(w̃)−G(ŵ)| ≤ L · EA ‖w̃ − ŵ‖ ≤
√

2L2η

λ+ γ
.

Finally, we have by the triangle inequality and the stability of exact ERM that

∣∣∣EZ,A
[
G(w̃)− Ĝ(ŵ)

]∣∣∣ ≤ EZ [EA |G(w̃)−G(ŵ)|] +
∣∣∣EZ

[
G(ŵ)− Ĝ(ŵ)

]∣∣∣

≤
√

2L2η

λ+ γ
+

4L2

(λ+ γ)n
.

Then Lemma 2 follows from the fact that that our stochastic objective (8) is equipped with

L-Lipschitz, λ-strongly convex loss φ(w) and γt-strongly convex regularizer γt
2 ‖w −wt−1‖2.
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A.3. Proof of Lemma 3

Proof We have by Lemma 2 that

|EIt [φIt(wt)− φ(wt)]| ≤
4L2

(λ+ γt)b
.

Take expectation of (6) over the random sampling of It and we obtain

λ+ γt
γt

EIt ‖wt −w‖2 ≤ ‖wt−1 −w‖2 − 2

γt
(EIt [φIt(wt)]− φ(w))

= ‖wt−1 −w‖2 − 2

γt
(EIt [φIt(wt)− φ(wt)] + EIt [φ(wt)− φ(w)])

≤ ‖wt−1 −w‖2 − 2

γt
EIt [φ(wt)− φ(w)] +

2

γt
|EIt [φIt(wt)− φ(wt)]|

≤ ‖wt−1 −w‖2 − 2

γt
EIt [φ(wt)− φ(w)] +

8L2

γt(λ+ γt)b
.

A.4. Proof of Theorem 4

Proof When ℓ(w, ξ) is weakly convex (i.e., λ = 0), we further set γt = γ for all t ≥ 1. Applying

Lemma 3 with w = w∗ yields

EIt [φ(wt)− φ(w∗)] ≤
γ

2

(
‖wt−1 −w∗‖2 − EIt ‖wt −w∗‖2

)
+

4L2

γb
. (20)

Summing (20) for t = 1, . . . , T yields

T∑

t=1

E [φ(wt)− φ(w∗)] ≤
γ

2
‖w0 −w∗‖2 +

4L2T

γb
.

Minimizing the RHS over γ gives the optimal choice

γ =

√
8T

b
· L

‖w0 −w∗‖
,

with a corresponding regret

1

T

T∑

t=1

E [φ(wt)− φ(w∗)] ≤
√
8L√
bT
‖w0 −w∗‖ .

As a result, by returning the uniform average ŵT = 1
T

∑T
t=1wt, we have due to the convexity of

φ(w) that

E [φ(ŵT )− φ(w∗)] ≤
√
8L√
bT
‖w0 −w∗‖ .
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A.5. Proof of Theorem 5

Proof Let ℓ(w, ξ) be λ-strongly convex for some λ > 0. Applying Lemma 3 with w = w∗ yields

EIt [φ(wt)− φ(w∗)] ≤
(
γt
2
‖wt−1 −w∗‖2 −

λ+ γt
2

EIt ‖wt −w∗‖2
)
+

4L2

(λ+ γt)b
. (21)

Setting γt =
λ(t−1)

2 for t = 1, . . . ,5, the above inequality becomes

EIt [φ(wt)− φ(w∗)] ≤
(
λ(t− 1)

4
‖wt−1 −w∗‖2 −

λ(t+ 1)

4
EIt ‖wt −w∗‖2

)
+

8L2

λb(t+ 1)

≤
(
λ(t− 1)

4
‖wt−1 −w∗‖2 −

λ(t+ 1)

4
EIt ‖wt −w∗‖2

)
+

8L2

λbt
,

and therefore

t · EIt [φ(wt)− φ(w∗)] ≤
λ

4

(
(t− 1)t ‖wt−1 −w∗‖2 − t(t+ 1)EIt ‖wt −w∗‖2

)
+

8L2

λb
.

Summing this inequality for t = 1, . . . , T yields

T∑

t=1

t · E [φ(wt)− φ(w∗)] ≤
8L2T

λb
.

As a result, by returning the weighted average ŵT = 2
T (T+1)

∑T
t=1 twt, we have due to the con-

vexity of φ(w) that φ(ŵT ) ≤ 2
T (T+1)

∑T
t=1 t · φ(wt) and

E [φ(ŵT )− φ(w∗)] ≤
2

T (T + 1)

T∑

t=1

t · E [φ(wt)− φ(w∗)] ≤
16L2

λb(T + 1)
.

Appendix B. Analysis of inexact minibatch-prox

B.1. Proof of Lemma 6

Proof Due to the (λ+ γt)-strong convexity of f̃t(w), we have

EA ‖w̃t − w̄t‖2 ≤
2

λ+ γt
EA
[
f̃t(w̃t)− f̃t(w̄t)

]
≤ 2ηt

λ+ γt
.

Applying Lemma 1 to the exact minimizer w̄t yields

φIt(w̄t)− φIt(w) ≤ γt
2
‖w̃t−1 −w‖2 − λ+ γt

2
‖w̄t −w‖2 .

5. This choice is inspired by the stepsize rule of Lacoste-Julien et al. (2012) for stochastic gradient descent.
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Therefore, for the t-th iteration, we have

EIt,A [φ(w̃t)− φ(w)]

= EIt,A [φ(w̃t)− φIt(w̄t)] + EIt [φIt(w̄t)− φIt(w)]

≤ 4L2

(λ+ γt)b
+

√
2L2ηt
λ+ γt

+
γt
2
‖w̃t−1 −w‖2 − λ+ γt

2
EIt ‖w̄t −w‖2

≤ 4L2

(λ+ γt)b
+

√
2L2ηt
λ+ γt

+
γt
2
‖w̃t−1 −w‖2 − λ+ γt

2
EIt,A (‖w̃t −w‖ − ‖w̃t − w̄t‖)2

≤ 4L2

(λ+ γt)b
+

√
2L2ηt
λ+ γt

+
γt
2
‖w̃t−1 −w‖2 − λ+ γt

2
EIt,A ‖w̃t −w‖2

+ (λ+ γt) · EIt,A [‖w̃t − w̄t‖ · ‖w̃t −w‖]

≤ 4L2

(λ+ γt)b
+

√
2L2ηt
λ+ γt

+
γt
2
‖w̃t−1 −w‖2 − λ+ γt

2
EIt,A ‖w̃t −w‖2

+ (λ+ γt)

√
EIt,A ‖w̃t − w̄t‖2 ·

√
EIt,A ‖w̃t −w‖2

≤ 4L2

(λ+ γt)b
+

√
2L2ηt
λ+ γt

+
γt
2
‖w̃t−1 −w‖2 − λ+ γt

2
EIt,A ‖w̃t −w‖2

+
√

2(λ+ γt)ηt ·
√
EIt,A ‖w̃t −w‖2

where we have applied Lemma 11 to the approximate minimizer w̃t in the first inequality, used

the triangle inequality ‖w̄t −w‖ ≥ |‖w̃t −w‖ − ‖w̃t − w̄t‖| in the second inequality, dropped a

negative term in the third inequality, and used the Cauchy-Schwarz inequality for random variables

in the fourth inequality.

B.2. Proof of Theorem 7

When ℓ(w, ξ) is weakly convex (i.e., λ = 0), set γt = γ for all t ≥ 1 as in exact minibatch-prox.

Then summing (11) for t = 1, . . . , T yields

T∑

t=1

E [φ(w̃t)− φ(w∗)] +
γ

2
E ‖w̃T −w∗‖2 ≤

γ

2
‖w̃0 −w∗‖2 +

4L2T

γb
+

T∑

t=1

√
2L2ηt
γ

+
T∑

t=1

√
2γηt ·

√
E ‖w̃t −w∗‖2 (22)

where the expectation is taken over random sampling and the randomness of A in the first T itera-

tions. To resolve the recursion, we need the following lemma by Schmidt et al. (2011).
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Lemma 12 Assume that the non-negative sequence {uT } satisfies the following recursion for all

T ≥ 1:

u2T ≤ ST +
T∑

t=1

λtut,

with ST an increasing sequence, S0 ≥ u20 and λt ≥ 0 for all t. Then, for all T ≥ 1, we have

uT ≤
1

2

T∑

t=1

λt +


ST +

(
1

2

T∑

t=1

λt

)2



1
2

≤
√
ST +

T∑

t=1

λt.

We are now ready to prove Theorem 7.

Proof Bounding

√
E ‖w̃t −w∗‖2. Dropping the

∑T
t=1 E [φ(w̃t)− φ(w∗)] term from (22) which

is non-negative due to the optimality of w∗, we obtain

E ‖w̃T −w∗‖2 ≤ ‖w̃0 −w∗‖2 +
8L2T

γ2b
+

T∑

t=1

√
8L2ηt
γ3

+
T∑

t=1

√
8ηt
γ
·
√
E ‖w̃t −w∗‖2.

Now apply Lemma 12 (using uT =
√
E ‖w̃T −w∗‖2, ST = ‖w̃0 −w∗‖2+ 8L2T

γ2b
+
∑T

t=1

√
8L2ηt
γ3 ,

and λt =
√

8ηt
γ ) and the fact that

√
x+ y ≤ √x+

√
y for x, y ≥ 0, we have

√
E ‖w̃T −w∗‖2 ≤ ‖w̃0 −w∗‖+

√
8L2T

γ2b
+

T∑

t=1

√
8ηt
γ

+

√√√√
T∑

t=1

√
8L2ηt
γ3

We have thus bounded the sequence of

√
E ‖w̃T −w∗‖2 by a non-negative increasing sequence.

Bounding function values. Dropping the E ‖w̃T −w∗‖2 term from (22) which is non-negative,

we obtain

T∑

t=1

E [φ(w̃t)− φ(w∗)]

≤ γ

2
‖w̃0 −w∗‖2 +

4L2T

γb
+

T∑

t=1

√
2L2ηt
γ

+
T∑

t=1

√
2ηtγ ·

√
E ‖w̃t −w∗‖2

≤ γ

2
‖w̃0 −w∗‖2 +

4L2T

γb
+

T∑

t=1

√
2L2ηt
γ

+

(
T∑

t=1

√
2ηtγ

)
· max
1≤t≤T

√
E ‖w̃t −w∗‖2

≤ γ

2
‖w̃0 −w∗‖2 +

4L2T

γb
+

T∑

t=1

√
2L2ηt
γ

+

(
T∑

t=1

√
2ηtγ

)
·


‖w̃0 −w∗‖+

√
8L2T

γ2b
+

T∑

t=1

√
8ηt
γ

+

√√√√
T∑

t=1

√
8L2ηt
γ3


 . (23)
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To achieve the same order of regret as in exact minibatch-prox, we require that ηt decays with

t, and in particular

ηt ≤ min

(
c1

(
T

b

) 1
2

, c2

(
T

b

) 3
2

)
· L ‖w̃0 −w∗‖

t2+2δ
(24)

for some δ > 0. Note that ηt has the unit of function value. Let c :=
∑∞

i=1
1

i1+δ ≤ 1+δ
δ which only

depends on δ (as a concrete example, we have c = π2

6 when δ = 2).

Using the choice of γ =
√

8T
b · L

‖w0−w∗‖ , we obtain from (24) that

T∑

t=1

√
8ηt
γ

=
T∑

t=1

√√
8b

T
· ‖w0 −w∗‖

L
· ηt ≤ 8

1
4 c

1
2
1 ‖w̃0 −w∗‖

T∑

t=1

1

t1+δ

≤ 8
1
4 c

1
2
1 c ‖w̃0 −w∗‖ ,

T∑

t=1

√
8L2ηt
γ3

=
T∑

t=1

√√
b3

8T 3
· ‖w0 −w∗‖3

L
· ηt ≤ 8−

1
4 c

1
2
2 ‖w̃0 −w∗‖2

T∑

t=1

1

t1+δ

≤ 8−
1
4 c

1
2
2 c ‖w̃0 −w∗‖2 .

Continuing from (23) and substituting in the value of γ, we have

T∑

t=1

E [φ(w̃t)− φ(w∗)] ≤
√

8T

b
· L ‖w̃0 −w∗‖+

γ

2

T∑

t=1

√
8L2ηt
γ3

+
γ

2

(
T∑

t=1

√
8ηt
γ

)
·


2 ‖w̃0 −w∗‖+

T∑

t=1

√
8ηt
γ

+

√√√√
T∑

t=1

√
8L2ηt
γ3




=

√
8T

b
· L ‖w̃0 −w∗‖+

√
2T

b
· L

‖w0 −w∗‖
· 8− 1

4 c
1
2
2 c ‖w̃0 −w∗‖2

+

√
2T

b
· L

‖w0 −w∗‖
· 8 1

4 c
1
2
1 c ‖w̃0 −w∗‖×

(
2 ‖w̃0 −w∗‖+ 8

1
4 c

1
2
1 c ‖w̃0 −w∗‖+

√
8−

1
4 c

1
2
2 c ‖w̃0 −w∗‖2

)

= c3

√
T

b
· L ‖w̃0 −w∗‖ .

The suboptimality of ŵT is then due to the convexity of φ(w):

E [φ(ŵT )− φ(w∗)] ≤
1

T

T∑

t=1

E [φ(w̃t)− φ(w∗)] =
c3L ‖w̃0 −w∗‖√

bT
.
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B.3. Proof of Theorem 8

Proof We have by Lemma 6 that

EIt,A [φ(w̃t)− φ(w∗)] ≤
λ(t− 1)

4
‖w̃t−1 −w∗‖2 −

λ(t+ 1)

4
EIt,A ‖w̃t −w∗‖2

+
8L2

λb(t+ 1)
+

√
4L2ηt

λ(t+ 1)
+
√
λ(t+ 1)ηt ·

√
EIt,A ‖w̃t −w∗‖2.

Relaxing the 1
t+1 to 1

t on the RHS, and multiplying both sides by t, we further obtain

t · EIt,A [φ(w̃t)− φ(w∗)] ≤
λ(t− 1)t

4
‖w̃t−1 −w∗‖2 −

λt(t+ 1)

4
EIt,A ‖w̃t −w∗‖2

+
8L2

λb
+

√
4L2tηt

λ
+
√
λtηt ·

√
EIt,A

[
t(t+ 1) ‖w̃t −w∗‖2

]
.

Summing this inequality for t = 1, . . . , T yields

T∑

t=1

t · E [φ(w̃t)− φ(w∗)] +
λT (T + 1)

4
E ‖w̃T −w∗‖2

≤ 8L2T

λb
+

T∑

t=1

√
4L2tηt

λ
+

T∑

t=1

√
λtηt ·

√
E

[
t(t+ 1) ‖w̃t −w∗‖2

]
. (25)

Bounding

√
E ‖w̃t −w∗‖2. Dropping the

∑T
t=1 t · E [φ(w̃t)− φ(w∗)] term from (25) which

is non-negative due to the optimality of w∗, we obtain

E

[
T (T + 1) ‖w̃T −w∗‖2

]
≤32L2T

λ2b
+

T∑

t=1

√
64L2tηt

λ3
+

T∑

t=1

√
16tηt
λ
·
√
E

[
t(t+ 1) ‖w̃t −w∗‖2

]
.

Applying Lemma 12 (using uT =

√
E

[
T (T + 1) ‖w̃T −w∗‖2

]
, ST = 32L2T

λ2b
+
∑T

t=1

√
64L2tηt

λ3 ,

and λt =
√

16tηt
λ ), we have

√
E

[
T (T + 1) ‖w̃T −w∗‖2

]
≤
√

32L2T

λ2b
+

T∑

t=1

√
16tηt
λ

+

√√√√
T∑

t=1

√
64L2tηt

λ3
.

Bounding function values. Dropping the E ‖w̃T −w∗‖2 term from (25) which is non-negative,

we obtain

T∑

t=1

t · E [φ(w̃t)− φ(w∗)] ≤
8L2T

λb
+

T∑

t=1

√
4L2tηt

λ

+

(
T∑

t=1

√
λtηt

)
·



√

32L2T

λ2b
+

T∑

t=1

√
16tηt
λ

+

√√√√
T∑

t=1

√
64L2tηt

λ3


 . (26)
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To achieve the same order of regret as in exact minibatch-prox, we require that ηt decays with

t, and in particular

ηt ≤ min

(
c1

(
T

b

)
, c2

(
T

b

)2
)
· L2

t3+2δλ
(27)

for some δ > 0. Note that ηt has the unit of function value. Let c :=
∑∞

i=1
1

i1+δ ≤ 1+δ
δ . Then (27)

ensures that

T∑

t=1

√
tηt
λ
≤ c
√
c1

√
L2T

λ2b
, and

T∑

t=1

√
L2tηt
λ3

≤ c
√
c2 ·

L2T

λ2b
.

Continuing from (26), we have

T∑

t=1

t · E [φ(w̃t)− φ(w∗)] ≤
8L2T

λb
+ 2c
√
c2 ·

L2T

λb

+ c
√
c1

√
L2T

b

(√
32L2T

λ2b
+ 4c
√
c1

√
L2T

λ2b
+

4
√
64c2c2

√
L2T

λ2b

)

=
c3
2
· L

2T

λb
.

In view of the convexity of φ(w), by returning the weighted average ŵT = 2
T (T+1)

∑T
t=1 tw̃t, we

have

E [φ(ŵT )− φ(w∗)] ≤
2

T (T + 1)

T∑

t=1

t · E [φ(w̃t)− φ(w∗)] ≤
c3L

2

λb(T + 1)
.

B.4. Connection to minibatch stochastic gradient descent

To see the connection between minibatch-prox and minibatch SGD, note that if we solve the lin-

earized minibatch problem exactly, we obtain the minibatch stochastic gradient descent algorithm:

w̃t = argmin
w∈Ω

φIt(w̃t−1) +∇〈φIt(w̃t−1), w − w̃t−1〉+
γt
2
‖w − w̃t−1‖2 .

Following Cotter et al. (2011), we assume that ℓ(w, ξ) is β-smooth:

∥∥∇ℓ(w, ξ)−∇ℓ(w′, ξ)
∥∥ ≤ β

∥∥w −w′∥∥ , ∀w,w′ ∈ Ω.

We then have the following guarantee for each iterate of minbatch SGD.

Proposition 13 For iteration t of minibatch SGD, we have

EIt [φ(w̃t)− φ(w∗)] ≤
2L2

(γt − β)b
+

γt − λ

2
‖w∗ − w̃t−1‖2 −

γt
2
EIt ‖w∗ − w̃t‖2 . (28)
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Proof Our proof closely follows that of Cotter et al. (2011).

Due to the smoothness of φ, we have that

φ(w̃t) ≤ φ(w̃t−1) + 〈∇φ(w̃t−1), w̃t − w̃t−1〉+
β

2
‖w̃t − w̃t−1‖2

≤ φ(w̃t−1) + 〈∇φ(w̃t−1)−∇φIt(w̃t−1), w̃t − w̃t−1〉+
β

2
‖w̃t − w̃t−1‖2

+ 〈∇φIt(w̃t−1), w̃t − w̃t−1〉

= φ(w̃t−1) + ‖∇φ(w̃t−1)−∇φIt(w̃t−1)‖ · ‖w̃t − w̃t−1‖+
β

2
‖w̃t − w̃t−1‖2

+ 〈∇φIt(w̃t−1), w̃t − w̃t−1〉

≤ φ(w̃t−1) +
1

2(γt − β)
‖∇φ(w̃t−1)−∇φIt(w̃t−1)‖2 +

γt − β

2
‖w̃t − w̃t−1‖2

+
β

2
‖w̃t − w̃t−1‖2 + 〈∇φIt(w̃t−1), w̃t − w̃t−1〉

= φ(w̃t−1) +
1

2(γt − β)
‖∇φ(w̃t−1)−∇φIt(w̃t−1)‖2 +

γt
2
‖w̃t − w̃t−1‖2

+ 〈∇φIt(w̃t−1), w̃t − w̃t−1〉 (29)

where we have used the Cauchy-Schwarz inequality in the second inequality, and the inequality

xy ≤ x2

2α + αy2

2 in the third inequality.

Now, since w̃t is the minimizer of the γt-strongly convex function

γt
2
‖w − w̃t−1‖2 + 〈∇φIt(w̃t−1), w − w̃t−1〉

in Ω, we have according to Lemma 1 (replacing the local objective with its linear approximation)

that

γt
2
‖w∗ − w̃t−1‖2 + 〈∇φIt(w̃t−1), w∗ − w̃t−1〉

≥ γt
2
‖w̃t − w̃t−1‖2 + 〈∇φIt(w̃t−1), w̃t − w̃t−1〉+

γt
2
‖w∗ − w̃t‖2 .

Substituting this into (29) gives

φ(w̃t) ≤ φ(w̃t−1) +
1

2(γt − β)
‖∇φ(w̃t−1)−∇φIt(w̃t−1)‖2 +

γt
2
‖w∗ − w̃t−1‖2

+ 〈∇φIt(w̃t−1), w∗ − w̃t−1〉 −
γt
2
‖w∗ − w̃t‖2 .

Taking expectation of this inequality over the random sampling of It further leads to

EIt [φ(w̃t)] ≤ φ(w̃t−1) +
1

2(γt − β)
EIt ‖∇φ(w̃t−1)−∇φIt(w̃t−1)‖2 +

γt
2
‖w∗ − w̃t−1‖2

+ 〈∇φ(w̃t−1), w∗ − w̃t−1〉 −
γt
2
EIt ‖w∗ − w̃t‖2

≤ φ(w∗) +
1

2(γt − β)
EIt ‖∇φ(w̃t−1)−∇φIt(w̃t−1)‖2

+
γt − λ

2
‖w∗ − w̃t−1‖2 −

γt
2
EIt ‖w∗ − w̃t‖2 (30)
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where in the second inequality we have used the fact that

φ(w∗) ≥ φ(w̃t−1) + 〈∇φ(w̃t−1), w∗ − w̃t−1〉+
λ

2
‖w∗ − w̃t−1‖2

due to the convexity of φ(w).
On the other hand, let It = {ξ1, . . . , ξb}, we have

EIt ‖∇φ(w)−∇φIt(w)‖2

= EIt

∥∥∥∥∥∇φ(w)− 1

b

b∑

i=1

∇ℓ(w, ξi)

∥∥∥∥∥

2

= EIt

∥∥∥∥∥
1

b

b∑

i=1

(∇φ(w)−∇ℓ(w, ξi))

∥∥∥∥∥

2

=
1

b2

b∑

i=1

Eξi ‖∇φ(w)−∇ℓ(w, ξi)‖2 +
1

b2

∑

i 6=j

EIt 〈∇φ(w)−∇ℓ(w, ξi), ∇φ(w)−∇ℓ(w, ξj)〉

=
1

b
· Eξ ‖∇φ(w)−∇ℓ(w, ξ)‖2

≤ 4L2

b

where we used the fact that the samples are i.i.d. in the fourth equality, and that ‖∇φ(w)‖ , ‖∇ℓ(w, ξ)‖ ≤
L in the last inequality. Continuing from (30) yields the desired result.

Comparing this result to (20) and (21), we observe that minibatch SGD has a similar recursion

to that exact minibatch-prox, except the appearance of β in the denominator of the “stability” term.

We now show that this difference leads to significant difference in convergence rate.

Let ℓ(w, ξ) be weakly convex (λ = 0), and γt = γ for all t ≥ 1. Summing (28) over t =
1, . . . , T gives

T∑

t=1

E [φ(w̃t)− φ(w∗)] ≤
2L2T

(γ − β)b
+

γ

2
‖w∗ − w̃0‖2 .

Minimizing the RHS over γ gives

γ = β +

√
4T

b
· L

‖w∗ − w̃0‖
,

which leads to

1

T

T∑

t=1

E [φ(w̃t)− φ(w∗)] ≤
2L ‖w∗ − w̃0‖√

bT
+

β ‖w∗ − w̃0‖2
2T

.

So we obtain the familiar O
(

1√
bT

+ 1
T

)
rate for minibatch SGD.
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Appendix C. Proof of Theorem 10

Proof On the one hand, as we choose γ as Theorem 7 suggested, we just need to verify that the

inexactness conditions in Theorem 7 is satisfied, i.e., for t = 1, . . . , T , we require (recall that

w∗
t = argmin

w
f̃t(w))

f̃t(wt)− f̃t(w
∗
t ) ≤

1

104
·min

((
T

bm

)1/2

,

(
T

bm

)3/2
)
· LB
t3

.

On the other hand, we can bound the initial suboptimality of f̃t(w) when initializing from wt−1.

This is because, by the optimality of w∗
t , we have ‖w∗

t −wt−1‖ =
∥∥∥ 1
γ∇φIt(w

∗
t )
∥∥∥ ≤ L/γ, and

f̃t(wt−1)− f̃t(w
∗
t ) = 0 + φIt(wt−1)−

γ

2
‖w∗

t −wt−1‖2 − φIt(w
∗
t )

≤ φIt(wt−1)− φIt(w
∗
t ) ≤ L ‖w∗

t −wt−1‖ ≤ L2/γ. (31)

Combining the above two inequalities, the initial versus final error for the K DSVRG iterations is

bounded by

104 ·max

((
bm

T

)1/2

,

(
bm

T

)3/2
)
· t3 · L

Bγ

= 104 ·max

((
bm

T

)1/2

,

(
bm

T

)3/2
)
· T 3 · L

B
· bmB√

8n(ε)L

= O
(
max

(
n(ε)2

bm
, bm · n(ε)

))

= O
(
n2(ε)

)

where we have used the definition of γ and T = n(ε)
bm in the first and second step respectively.

By the iteration complexity results for sampling without-replacement DSVRG (Shamir, 2016,

Theorem 4), we have the desired suboptimality in f̃t(w) using

K = O (log n(ε)) (32)

iterations, as long as the batch size b/pi is larger than the problem condition number.

Now, the condition number of f̃(w) is

β + γ

γ
= O

(
βbmB√
n(ε)L

)
.

Equating this to the batch size b/pi yields the pi specified in the theorem. It is also easy to check that
K
γ = O(bm), i.e., the total number of stochastic updates is less than the total number of samples, as

required by Shamir (2016, Theorem 4).

Communication: the total rounds of communication required by Algorithm 1 is

KT = O
(
n(ε)

mb
log n(ε)

)
.
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Computation: For each communication round, each machine need to compute the local full

gradient, which can be done in parallel, and then one of the machines perform b/pi steps of stochas-

tic update. So the computation cost is

KT

(
b+

b

pi

)
= O

(
n(ε)

m
log n(ε)

)
.

Memory: It is straightforward to see each machine only need to maintain b samples.

Appendix D. Communication-efficient distributed minibatch-prox with DANE

As discussed in Section 4, it is also possible to use other efficient distributed optimization solver

for minibatch-prox. Here we present a novel method that use the distributed optimization algorithm

DANE (Shamir et al., 2014) and its accelerated variant AIDE (Reddi et al., 2016) for solving (12),

which define better local objectives than EMSO and take into consideration the similarity between

local objectives.

We detail our algorithm, named MP-DANE, in Algorithm 2. The algorithm consists of three

nested loops, where t, r and k are iteration counters for minibatch-prox (the outer for-loop), AIDE

(the intermediate for-loop) and DANE (the inner for-loop) respectively. Compared to EMSO,

DANE adds a gradient correction term to (13) which can be compute efficiently with one round of

communication. On top of that, AIDE uses the idea of universal catalyst (Lin et al., 2015) and adds

an extra quadratic term to improve the strong-convexity of the objective for faster convergence, i.e.,

in order to solve (12), AIDE solves multiple instances of the “augmented large minibatch” problems

of the form

min
w∈Ω

f̄t,r(w) := φIt(w) +
γ

2
‖w −wt−1‖2 +

κ

2
‖w − yr−1‖2 (36)

with carefully chosen extrapolation points yr−1. At each DANE iteration, we perform two rounds

of communication, one for averaging the local gradients, and one for averaging the local updates,

and the amount of data we communicate per round has the same size of the predictor.

To sum up, in Algorithm 2, we have introduced two levels of inexactness. First, we only approx-

imately solve the “large minibatch” subproblem (12) in each outer loop; results from the previous

section guarantee the convergence of this approach. Second, we only approximately solve the local

subproblems (33) to sufficient accuracy in each inner loop; the analysis of “inexact DANE” (for the

non-stochastic setting) provides guarantee for this approach (Reddi et al., 2016), and enables us to

use state-of-the-art SGD methods (e.g., SVRG Johnson and Zhang, 2013; Xiao and Zhang, 2014)

for solving local subproblems. Overall, we obtain a convergent algorithm for distributed stochastic

convex optimization.

We now present detailed analysis for the computation/communication complexity of Algo-

rithm 2 for stochastic quadratic problems, and compare it with related methods in the literature.

D.1. Efficiency of MP-DANE

We present the main results of this section (full analysis is deferred to Appendix D.3), which show

that with careful choices of the minibatch size and the desired accuracy in each level of approxi-
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Algorithm 2 MP-DANE for distributed stochastic convex optimization.

Initialize w0.

for t = 1, 2, . . . , T do

Each machine i draws a minibatch I
(i)
t of b samples from the underlying data distribution.

Initialize y0 ← wt−1, x0 ← wt−1.

for r = 1, 2, . . . , R do

Initialize z0 ← yr−1, α0 =
√
γ/(γ + κ).

for k = 1, 2, . . . ,K do

1. All machines perform one round of communication to compute the average gradient

∇φIt(zk−1)←
1

m

m∑

i=1

∇φ
I
(i)
t
(zk−1).

2. Each machine i approximately solves the local objective to θ-accuracy:

apply prox-SVRG to find z
(i)
k s.t.

∥∥∥z(i)k − z
(i)∗
k

∥∥∥ ≤ θ
∥∥∥zk−1 − z

(i)∗
k

∥∥∥

where z
(i)∗

k = argmin
z∈Ω

φ
I
(i)
t
(z) +

〈
∇φIt(zk−1)−∇φI

(i)
t
(zk−1), z

〉
+

γ

2
‖z−wt−1‖2

+
κ

2
‖z− yr−1‖2 . (33)

3. All machines reach consensus by averaging local updates through another round of

communication:

zk ←
1

m

m∑

i=1

z
(i)
k . (34)

end for

Update xr ← zK .

Compute αr ∈ (0, 1) such that α2
r = (1− αr)α

2
r−1 + γαk/(γ + κ), and compute

yr = xr +

(
αr−1(1− αr−1)

αr + α2
r−1

)
(xr − xr−1). (35)

end for

Update wt ← xr.

end for

Output: wT is the approximate solution.

mate solution, MP-DANE achieves both communication and computation efficiency with the op-

timal sample complexity. Interestingly, the choices of parameters differ in two regimes which are

separated by an “optimal” minibatch size (also denoted as bmp-dane in the main text)

b∗ =
n(ε)L2

32m2β2B2 log(md)
.

29



WANG WANG SREBRO

Theorem 14 (Efficiency of MP-DANE for b ≤ b∗) Set the parameters in Algorithm 2 as follows:

(outer loop) b ≤ b∗ =
n(ε)L2

32m2β2B2 log(md)
, T =

n(ε)

bm
, γ =

√
8n(ε)L

bmB
,

(intermediate loop) κ = 0, R = 1,

(inner loop) θ =
1

6
, K = O (logn(ε)) .

Then we have E

[
φ
(

1
T

∑T
t=1wt

)
− φ(w∗)

]
≤

√
40BL√
n(ε)

= O (ε) .

Moreover, Algorithm 2 can be implemented with Õ
(
n(ε)
bm

)
rounds of communication, and each

machine performs Õ
(
n(ε)
m

)
vector operations in total, where the notation Õ(·) hides poly-logarithmic

dependences on n(ε).

When we choose b = b∗, Algorithm 1 can be implemented with Õ
(
mβ2B2

L2

)
rounds of commu-

nication, Õ
(
n(ε)
bm

)
vector operations, and O

(
n(ε)L2

m2β2B2

)
memory for each machine.

We comment on the choice of parameters. For sample efficiency, we fix the sample size n(ε)
and number of machines m, and so we can tradeoff the local minibatch size b and the total number

of outer iterations T , maintaining bT = n(ε)
m . For any b, the regularization parameters in the “large

minibatch” problem is set to γ =
√

8T
bm · LB =

√
8n(ε)L

bmB according to Theorem 7. When b ≤ b∗, we

note that (37) can be satisfied with κ = 0 and there is no need for acceleration by AIDE (R = 1).

Then the values of θ and K follow from Lemma 18.

Remark 15 The above theorem suggests that in the regime of b ≤ b∗, we only need to have loga-

rithmic number of DANE iterations for solving each “large minibatch” problem, and logarithmic

number of passes over the local data during each DANE iteration. We present experimental results

validating our theory in Appendix E.

The next theorem shows that when we use a large minibatch size b in Algorithm 2, we can still

satisfy the condition (37) by adding extra regularization (κ > 0), and then apply accelerated DANE.

Theorem 16 (Efficiency of MP-DANE for b ≥ b∗) Set the parameters in Algorithm 2 as follows:

(outer loop) b ≥ b∗ =
n(ε)L2

32m2β2B2 log(md)
, T =

n(ε)

bm
, γ =

√
8n(ε)L

bmB
,

(intermediate loop) κ = 16β

√
log(dm)

b
− γ, R = O

(
b1/4m1/2 · β1/2B1/2

n(ε)1/4 · L1/2
log n(ε)

)
,

(inner loop) θ =
1

6
, K = O (logn(ε)) .

Then we have E

[
φ
(

1
T

∑T
t=1wt

)
− φ(w∗)

]
≤

√
40BL√
n(ε)

= O (ε) .

Moreover, Algorithm 2 can be implemented with Õ
(
n(ε)3/4·β1/2B1/2

b3/4m1/2·L1/2

)
rounds of communication,

and each machine performs Õ
(
b1/4n(ε)3/4·β1/2B1/2

m1/2·L1/2

)
vector operations in total, where the notation

Õ(·) hides poly-logarithmic dependences on n(ε).
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Samples Communication Computation Memory

1 ≤ b ≤ b∗ n(ε) n(ε)/mb n(ε)/m b
b = b∗ n(ε) B2m n(ε)/m n(ε)/(m2B2)

b∗ < b ≤ bmax n(ε) B1/2n(ε)3/4/(m1/2b3/4) B1/2n(ε)3/4b1/4/m1/2 b

Table 2: Summary of resources required by MP-DANE for distributed stochastic convex optimiza-

tion, in units of vector operations/communications/memory per machine, ignoring con-

stants and log-factors. Here b∗ ≍ n(ε)/(m2B2), and bmax = n(ε)/m.

D.2. Two regimes of multiple resource tradeoffs

From the above analysis, we summarized in Table 2 the resources required by MP-DANE. We

observe two interesting regimes, separated by the minibatch size b∗ ≍ n(ε)/(m2B2), that present

different tradeoffs between communication, computation and memory.

• When 1 ≤ b ≤ b∗, the computation complexity remains Õ (n(ε)/m) which is independent

of b. This means we always achieve near-linear speedup in this regime. Moreover, there is

a tradeoff between communication and memory: the communication complexity decreases,

while the memory cost increases as the minibatch size b increases, both at the linear rate.

Thus in this regime, we can trade communication for memory without affecting computation.

• When b∗ < b ≤ bmax, the computation starts to increase with b at the rate b1/4 which is

slower than linear, while the communication cost continues to decrease at the rate b3/4 which

is also slower than linear. Thus in this regime, we can trade communication for computation

and memory.

D.3. Analysis of MP-DANE

In order to fully analyze Algorithm 2, we need several auxiliary lemmas that characterize the itera-

tion complexity of solving the local problem (33) by prox-SVRG (Xiao and Zhang, 2014), the large

minibatch problem (12) by DANE (Shamir et al., 2014) and AIDE (Reddi et al., 2016).

D.3.1. SOME AUXILIARY LEMMAS

First, we apply prox-SVRG to the local problem (33), pushing all terms but φ
I
(i)
t
(z) in to the prox-

imal operator. The benefit of this approach (as opposed to using plain SVRG Johnson and Zhang,

2013) is that the smoothness parameter that determines the iteration complexity is simply β, same

results hold when applying prox-SAGA (Defazio et al., 2014) as well. For sampling without re-

placement SVRG, the current analysis works only for plain SVRG, so we quote the results from

(Shamir, 2016).

Lemma 17 (Iteration complexity of SVRG for (33)) For any target accuracy θ > 0, with initial-

ization zk−1, prox-SVRG outputs z
(i)
k such that

∥∥∥z(i)k − z
(i)∗
k

∥∥∥ ≤ θ
∥∥∥zk−1 − z

(i)∗
k

∥∥∥ after

O
((

b+
β

γ + κ

)
· log (β + γ + κ)

(γ + κ)θ2

)
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vector operations, and sampling without replacement SVRG outputs z
(i)
k such that

∥∥∥z(i)k − z
(i)∗
k

∥∥∥ ≤
θ
∥∥∥zk−1 − z

(i)∗
k

∥∥∥ after

O
((

b+
β + κ

γ + κ

)
· log (β + γ + κ)

(γ + κ)θ2

)

vector operations.

Proof Observe that the objective (33) by f
(i)
k (z), which is an quadratic function of z with the

Hessian matrix Hi = ∇2φ
I
(i)
t
(z) + (γ + κ)I � (γ + κ)I. As a result, the suboptimality of z

(i)
k is

ǫfinal = f
(i)
k (z

(i)
k )− f

(i)
k (z

(i)∗
k ) =

1

2

(
z
(i)
k − z

(i)∗
k

)⊤
Hi

(
z
(i)
k − z

(i)∗
k

)
≥ γ + κ

2

∥∥∥z(i)k − z
(i)∗
k

∥∥∥
2
.

To satisfy the requirement of

∥∥∥z(i)k − z
(i)∗
k

∥∥∥ ≤ θ
∥∥∥zk−1 − z

(i)∗
k

∥∥∥, we require

ǫfinal ≤
(γ + κ)θ2

2

∥∥∥zk−1 − z
(i)∗
k

∥∥∥
2
.

On the other hand, when initializing from zk−1, the initial suboptimality is

ǫinit = f
(i)
k (zk−1)− f

(i)
k (z

(i)∗
k ) ≤ σmax(Hi)

2

∥∥∥zk−1 − z
(i)∗
k

∥∥∥
2
≤ β + γ + κ

2

∥∥∥zk−1 − z
(i)∗
k

∥∥∥
2
.

Therefore, it suffices to have

ǫinit

ǫfinal

=
(β + γ + κ)

(γ + κ)θ2
.

Noting that φ
I
(i)
t
(z) is the sum of b components, and each component is β-smooth while the

overall function f
(i)
k is (γ + κ)-strongly convex, the lemma follows directly from the convergence

guarantee of prox-SVRG (Xiao and Zhang, 2014, Corollary 1), and sampling without replacement

SVRG (Shamir, 2016, Theorem 4).

Next, we state the convergence rates of “inexact DANE” and AIDE, which can be easily derived

from Reddi et al. (2016). At the outer loop t and intermediate loop r, let x∗
r = argmin

w
f̄t,r(w)

be the exact minimizer of the “augmented large minibatch” problem (36), which is approximately

solved by the inner DANE iterations.

Lemma 18 (Iteration Complexity of inexact DANE) Let θ = 1
6 , and assume that

b(γ + κ)2 ≥ 256β2 log(dm/δ). (37)

By initializing from yr−1, and setting the number of inner iterations in Algorithm 2 to be

K =
⌈1
2
log4/3

(β + γ + κ)

(γ + κ)η

⌉
,

we have with probability 1− δ over the sample set It that

f̄t,r(xr)− f̄t,r(x
∗
r) ≤ η

(
f̄t,r(yr−1)− f̄t,r(x

∗
r)
)
.
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Proof Denote by Hi = ∇2φ
I
(i)
t
(z) + (γ + κ)I the Hessian matrix of the local objective (33)

for machine i. Let H = 1
m

∑m
i=1Hi be the Hessian matrix of the global objective (36), and

H̃−1 = 1
m

∑m
i=1H

−1
i . As our objective is quadratic, Hi, H, H̃−1 remain unchanged during the

inner iterations. By Reddi et al. (2016, Theorem 1), we have

‖zk − x∗
r‖ ≤

(∥∥∥H̃−1H − I

∥∥∥+ θ

m

m∑

i=1

∥∥H−1
i H

∥∥
)
‖zk−1 − x∗

r‖ . (38)

Since∇2ℓ(w, ξ) ≤ β, by Shamir et al. (2014, Lemma 2), we have with probability at least 1−δ
over the sample set It that

‖Hi −H‖ ≤
√

32β2 log(dm/δ)

b
=: ρ, i = 1, . . . ,m.

On the other hand, we have Hi � (γ + κ)I and

4ρ2

(γ + κ)2
=

128β2 log(dm/δ)

b(γ + κ)2
≤ 1

2

by our assumption (37). By Shamir et al. (2014, Lemma 1), we have

∥∥∥H̃−1H − I

∥∥∥ ≤ 1

2
. (39)

Moreover, we have

θ

m

m∑

i=1

∥∥H−1
i H

∥∥ ≤ θ

m

m∑

i=1

(1 +
∥∥H−1

i H − I
∥∥)

≤ θ

m

m∑

i=1

(1 +
∥∥H−1

i

∥∥ ∥∥H −H−1
i

∥∥)

≤ θ

m

m∑

i=1

(
1 +

ρ

γ + κ

)

≤ θ

m

m∑

i=1

(
1 +

1

2
√
2

)

≤ 3θ

2
≤ 1

4
. (40)

Plugging (39) and (40) into (38) yields

‖zk − x∗
r‖ ≤

3

4
‖zk−1 − x∗

r‖ ,
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and thus ‖zK − x∗
r‖ ≤ (3/4)K ‖yr−1 − x∗

r‖. To guarantee the suboptimality in the objective

f̄t,r(w), we note that

f̄t,r(zK)− f̄t,r(x
∗
r) =

1

2
(zK − x∗

r)
⊤H(zK − x∗

r) ≤
β + γ + κ

2
‖zK − x∗

r‖2

≤
(
3

4

)2K β + γ + κ

2
‖yr−1 − x∗

r‖2

≤
(
3

4

)2K β + γ + κ

γ + κ

(
f̄t,r(yr−1)− f̄t,r(x

∗
r)
)

where we have used the fact that ft,r(w) is (γ + κ)-strongly convex in the last inequality. Setting(
3
4

)2K β+γ+κ
γ+κ = η, and noting xr = zK , we obtain the desired iteration complexity.

At the outer iteration t of Algorithm 2, we are trying to approximately minimize the objec-

tive (12) by iteratively (approximately) solving R instances of the “augmented” problem (36). Let

w∗
t be the exact minimizer of the “large minibatch” subproblem (12):

w∗
t = argmin

w

f̃t(w).

The following lemma characterizes the accelerated convergence rate.

Lemma 19 (Acceleration by universal catalyst, Theorem 3.1 of Lin et al. (2015)) Assume that

for all r ≥ 1, we have

f̄t,r(xr)− f̄t,r(x
∗
r) ≤

2

9

(
1− 9

10

√
γ

γ + κ

)R

·
(
f̃t(x0)− f̃t(w

∗
t )
)
,

then

f̃t(xR)− f̃t(w
∗
t ) ≤

800(γ + κ)

γ

(
1− 9

10

√
γ

γ + κ

)R+1 (
f̃t(x0)− f̃t(w

∗
t )
)
.

D.3.2. PROOF OF THEOREM 14

Proof First of all, because R = 1, our algorithm collapses into two nested loops.

On the one hand, as we choose γ as Theorem 7 suggested, we just need to verify the in-

exactness conditions in Theorem 7 is satisfied, i.e., for t = 1, . . . , T , we require (recall that

w∗
t = argmin

w
f̃t(w))

f̃t(wt)− f̃t(w
∗
t ) ≤

1

104
·min

((
T

bm

)1/2

,

(
T

bm

)3/2
)
· 2LB

t3
.

On the other hand, we can bound the initial suboptimality f̃t(w) (cf. derivation for (31)):

f̃t(w̃t−1)− f̃t(w
∗
t ) ≤ L2/γ.

Using Lemma 18, we know as long as the inequality (37) is satisfied, we have the desired

suboptimality in f̃t(w) using (cf. the derivation for (32))

K = O (log n(ε))
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rounds of communication, where we have plugged in the value of γ in the second step.

It remains to verify the condition (37), by our choice of γ and b, we have

bγ2 =
8n(ε)L2

bm2B2
≥ 8n(ε)L2

b∗m2B2
= 256β2 log(md), (41)

as desired.

Next we summarize the communication, computation, and memory efficiency.

Communication: the total rounds of communication required by Algorithm 2 is

KRT = O
(
n(ε)

mb
log n(ε)

)
.

Computation: For each communication round, we need to solve the local problem (33) using

prox-SVRG. Now, in view of (41), we have β = O(
√
bγ). This implies that β

γ = O(
√
b) and thus

by Lemma 17, the dominant term of the iteration complexity of prox-SVRG is

O
(
b log

β + γ

γ

)
= O (b log n(ε)) .

Multiplying this with the number of communication rounds yields the desired computation com-

plexity.

Memory: It is straightforward to see each machine only need to maintain b samples.

D.3.3. PROOF OF THEOREM 16

Proof First, it is straightforward to verify the condition (37):

b(γ + κ)2 = 256β2 log(dm).

Similarly to Theorem 14, we need the ratio between final versus initial error for the R AIDE

iterations to be

ratio = O(n(ε)).

Equating this ratio to be
800(γ+κ)

γ

(
1− 9

10

√
γ

γ+κ

)R+1
, we have

R =
10

9

√
γ + κ

γ
log

(
800(γ + κ)

γ
· 1

ratio

)

= O
(
b1/4m1/2 · β1/2B1/2

n(ε)1/4 · L1/2
log n(ε)

)
.

Now according to Lemma 19, the final suboptimality for f̄t,r(w) need to be

ǫfinal =
2

9

(
1− 9

10

√
γ

γ + κ

)R

·
(
f̃t(x0)− f̃t(w

∗
t )
)
.
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Let us initialize minw f̄t,r(w) by x0. By definition, we have f̄t,r(w) ≥ f̃t(w) and thus

ǫinit = f̄t,r(x0)− f̄t,r(x
∗
r)

≤ f̃t(x0)− f̃t(xr∗)
≤ f̃t(x0)− f̃t(w

∗
t )

where we have used the fact that w∗
t is the minimizer of f̃t(w) in the second inequality.

This means we only need the initial versus final suboptimality of solving f̄t,r(w) to be

1

η
=

ǫinit

ǫfinal

=
9

2

(
1− 9

10

√
γ

γ + κ

)−R

,

which, according to Lemma 18, is achieved by inexact DANE with

K = O
(
log

1

η
+ log

β + γ + κ

γ + κ

)

= O
(
R

√
γ

γ + κ

)

= O (log n(ε)) .

iterations.

Next we analyze the communication and computation efficiency of our algorithm.

Communication: The total rounds of communication is

KRT = O
(
log n(ε) · b

1/4m1/2 · β1/2B1/2

n(ε)1/4 · L1/2
log n(ε) · n(ε)

bm

)

= O
(
n(ε)3/4 · β1/2B1/2

b3/4m1/2 · L1/2
log2 n(ε)

)
.

Computation: Similar to the case of b ≤ b∗, for each DANE local subproblem (33), the sample

size b is larger than its condition number. Therefore, the total computational cost is

O(bKRT ) = O
(
b1/4n(ε)3/4 · β1/2B1/2

m1/2 · L1/2
log2 n(ε)

)
.

Appendix E. Experiments

In this section we present empirical results to support our theoretical analysis of MP-DANE. We

perform least squares regression and classification on several publicly available datasets6; the statis-

tics of these datasets and the corresponding losses are summarized in Table 3. For each dataset, we

6. https://www.csie.ntu.edu.tw/˜cjlin/libsvm/
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Table 3: List of datasets used in the experiments.

Name #Samples #Features loss

codrna 271,617 8 logistic

covtype 581,012 54 logistic

kddcup99 1,131,571 127 logistic

year 463,715 90 squared

randomly select half of the samples for training, and the remaining samples are used for estimating

the stochastic objective.

For MP-DANE, we use SAGA (Defazio et al., 2014) to solve each local DANE subproblem (33)

and fix the number of SAGA steps to b (i.e., we just make one pass over the local data), while

varying the number of DANE rounds K over {1, 2, 4, 8, 16}. For simplicity, we do not use catalyst

acceleration and set R = 1 and κ = 0 in all experiments. Our experiments simulate a distributed

environment with m machines, for m = 4, 8, 16. We conduct a simple comparison with minibatch

SGD. Stepsizes for SAGA and minibatch SGD are set based on the smoothness parameter of the

loss.

We plot in Figure 3 the estimated population objective vs. minibatch size b for different param-

eters. We make the following observations.

• For minibatch SGD, as b increases, the objective often increases quickly, this is because

minibatch SGD can not uses large minibatch sizes while preserving sample efficiency.

• For MP-DANE, the objective increases much more slowly as b increases. This demonstrates

the effectiveness of minibatch-prox for using large minibatch sizes.

• Running more iterations of DANE often helps, but with diminishing returns. This validates

our theory that only a near-constant number of DANE iterations is needed for solving the

large minibatch objective, without affecting the sample efficiency.
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Figure 3: Illustration of the convergence properties of MP-DANE, for different minibatch size b,
number of machines m, and number of DANE iterations K.
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