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Abstract

We consider learning a predictor which is non-discriminatory with respect to a “protected attribute”
according to the notion of “equalized odds” proposed by Hardt et al. (2016). We study the prob-
lem of learning such a non-discriminatory predictor from a finite training set, both statistically and
computationally. We show that a post-hoc correction approach, as suggested by Hardt et al, can be
highly suboptimal, present a nearly-optimal statistical procedure, argue that the associated compu-
tational problem is intractable, and suggest a second moment relaxation of the non-discrimination
definition for which learning is tractable.

1. Introduction

Machine learning algorithms are increasingly deployed in important decision making tasks that af-
fect people’s lives significantly. These tools already appear in domains such as lending, policing,
criminal sentencing, and targeted service offerings. In many of these domains, it is morally and
legally undesirable to discriminate based on certain “protected attributes” such as race and gender.
Even in seemingly innocent applications, such as ad placement and product recommendations, such
discrimination might be illegal or detrimental. Consequently, there has been abundant public, aca-
demic and technical interest in notions of non-discrimination and fairness, and achieving “equal
opportunity by design” is a major United States national Big Data challenge, White House (2016).

We consider non-discrimination in supervised learning where the goal is to learn a (potentially
randomized) predictor h(X) or! h(X, A) for a target quantity Y using features X and a protected
attribute A, while ensuring non-discrimination with respect to A. As an illustrative example, con-
sider a financial institution that wants to predict whether a particular individual will pay back a loan
or not, corresponding to Y = 1 and Y = 0, respectively. The features X could include financial as
well as other information, e.g. about education, driving, and housing history, languages spoken, and
the number of members in the household, all of which have a potential of being used inappropriately
as a surrogate for a protected attribute A, such as gender or race. It is important that the predictor
for loan repayment not be even implicitly discriminatory with respect to A.

Recent work has addressed the issue of defining what it means to be non-discriminatory—both
in the context of supervised learning e.g. Dwork et al. (2012); Pedreshi et al. (2008); Feldman et al.
(2015), and otherwise e.g. Joseph et al. (2016b,a). The particular notion of non-discrimination we
consider here is “equalized odds”, recently presented and studied by Hardt et al. (2016):

1. See Hardt et al. (2016) for a discussion on why it might be necessary for a non-discriminatory predictor to use A
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Definition 1 (Equalized odds) A possibly randomized predictor Y= h(X, A) for target Y is non-
discriminatory with respect to a protected attribute A if Y is independent of A conditioned on'Y .

Informally, we require that even when the correct label Y provides information about the protected
attribute A, if we already know Y, the prediction Y does not provide any additional information
about A. The definition can also be motivated in terms incentive structure and of moving the burden
of uncertainty from the protected population to the decision maker. See Hardt et al. (2016) for
further discussion of the definition, its implications, and comparisons to alternative notions.

In a binary prediction task with binary protected attribute, i.e. }A/, A,Y € {0, 1}, Definition 1
can be qualified in terms of true and false positive rates. Denote the group-conditional true and false
positive rates as, R R

YWwaY) =P =1]Y =y, A =a), €))
Then Definition 1 is equivalent to requiring that the class conditional true and false positive rates
agree across different groups (different values of A):

~ ~ ~ ~

Y00(Y) =701(Y) and  y0(Y) =y11(Y) 2

Returning to the loan example, this definition requires that the percentage of men who are wrongly
denied loans even though they would have paid it back must match the corresponding percentage
for women, and similarly the percentage of men who are wrongly given loans that they will not pay
back must also match the corresponding percentage of women. This does not however require that
the same percentage of male and female applicants will receive loans. For instance, if women pay
back loans with truly higher frequency than men, then the predictor would be allowed to deny loans
to men more often than women.

While Hardt et al. focused on the notion itself and how it behaves on the population, in this
work we tackle the problem of how to learn a good non-discriminatory predictor (i.e. satisfying the
equalized odds) from a finite training set. We examine this both from a statistical perspective of
how to best obtain a predictor from finite data that would be as accurate and non-discriminatory as
possible on the population, and from a computational perspective.

One possible approach to learning a non-discriminative predictor is the post hoc correction pro-
posed by Hardt et al. (2016): first learn a good, possibly discriminatory predictor. Afterwards, this
predictor is “corrected” by taking into account A in order to make the predictor non-discriminatory.
When Y is binary and the predictors Y are real-valued, they show that the unconstrained Bayes
optimal least-square regressor can be post hoc corrected to the optimal predictor with respect to the
0-1 loss. In Section 2, we consider more carefully the limitations of such a post hoc procedure.
In particular, we show that this approach can fail for the 0-1 and hinge losses, even if the Bayes
optimal predictor with respect to those losses is learned in the first step. We also show that even
when minimizing the squared loss, the approach can fail once the hypothesis class is constrained,
as is essential when learning from finite data. From this, we conclude that post hoc correction is
not sufficient, and that it is necessary to directly incorporate non-discrimination into the learning
process.

Turning to learning from finite data, we cannot hope to ensure exact non-discrimination on the
population. To this end, in Section 3 we define a notion of approximate non-discrimination, motivate
it, and explore its limits by analyzing the statistical problem of detecting whether or not a predictor
is at least a-discriminatory.
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We then turn to the main statistical question: given a finite training set, how can we best learn
a predictor that is ensured to be as non-discriminatory as possible (on the population) and com-
petes (in terms of its population loss) with the best non-discriminatory predictor in some given
hypothesis class (this is essentially an extension of the notion of agnostic PAC learning with a
non-discrimination constraint). In Section 4 we show that an ERM-type procedure, minimizing the
training error subject to an empirical non-discrimination constraint, is statistically sub-optimal, and
instead we present a statistically optimal (up to constant factors) two-step learning procedure for
non-discriminatory binary classification.

Unfortunately, learning a non-discriminatory binary classifier is computationally hard, which
we prove in Section 5. In order to allow tractable training, in Section 6, we present a relaxation of
equalized odds, based only on a second-moment condition instead of full conditional independence.
We show that under this second moment notion of non-discrimination it is computationally tractable
to learn a nearly optimal non-discriminatory linear predictor with respect to a convex loss.

2. Sub-optimality of post hoc correction

When the protected attribute A and the target Y are both binary, the post hoc correction algorithm
proposed by Hardt et al. (2016) can be applied to a binary or real-valued predictor Y €, deriving
a randomized binary predictor that is non-discriminatory. The algorithm is convenient because it
requires access only to the joint distribution over ()A/, A,Y') and does not use the features X, thus
it can be applied retroactively to an already trained predictor. Such predictors are formulated using
the notion of a derived predictor:

Definition 2 (Definition 4.1 in Hardt et al. (2016)) A predictor Y is derived from a random vari-
able R and protected attribute A if it is a possibly randomized function of (R, A) alone. In partic-
ular, Y is independent of X conditioned on (R, A).

For binary classification, the optimal post hoc correction Y for a binary or real valued predictor
Y € R is simply the non-discriminatory, derived, binary predictor that minimizes the expectation
of a loss ¢ over binary variables (Hardt et al., 2016):

Y = argmin E¢ (f(?,A),Y)
FRx{0,1}—{0,1}

st yo(f) =v(f)  Vy={0,1}

Two notable features of the corrected predictor Y are that a) it is not constrained to any particular
hypothesis class, and b) it may be a random function of Y and A; indeed for many distributions
and hypothesis classes there may not even exist a non-constant, deterministic, non-discriminatory
predictor. Nevertheless, Y does indirectly depend on the hypothesis class H from which Y was
learned and possibly a different loss over real valued variables used in training of Y.

We are interested in comparing the optimality of Y from post hoc correction to the following
Y™ which is the optimal non-discriminatory predictor in a hypothesis class H under consideration:

3)

Y* = arhgrr;{in El(h(X,A),Y) st. yyo(h) = yy1(h) vy ={0,1} (4)
€

Ideally, the expected loss of Y would compare favorably against that of Y*. Indeed, Hardt et al.
(2016) show that when the target Y is binary, if we can first find a predictor Y that is exactly or
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nearly Bayes optimal for the squared loss over an unconstrained hypothesis class, then applying the
post hoc correction (3) using the 0-1 loss (i.e. with £ = ¢! in (3)) to Y will yield a predictor Y that
is non-discriminatory and has loss no worse than Y *. This statement can be extended to the case of
first finding the optimal unconstrained predictor with resepect to any strictly convex loss, and then
using the post hoc correction (3) with the 0-1 loss.

Nevertheless, from a practical perspective this approach is very unsatisfying. First, for general
distributions, it is impossible to learn the Bayes optimal predictor from finite samples of data. Also,
as we will show, the post hoc correction of even the optimal unconstrained predictor with respect to
the 0-1 (non-convex) or even hinge (non-strict but convex) losses can have much worse performance
than the best non-discriminatory predictor. Moreover, if the hypothesis class is restricted there can
also be a gap between the post hoc correction of the optimal predictor in the hypothesis class and
the best non-discriminatory predictor, even when optimizing a strictly convex loss function.

In the following example, we see that when the loss function is not strictly convex, the post hoc
correction of even the unconstrained Bayes optimal predictor can have poor accuracy:

Example 1 When the hypothesis class is unconstrained, for any € € (0,1/4) there exists a distri-
bution D, such that a) the optimal non-discriminatory predictor Y * with respect to the 0-1 loss has
loss at most 2¢ but b) for unrestricted Bayes optimal predictor Y trained on 0-1 loss, the post hoc
correction of Y with 0-1 loss returns a predictor Y with loss at least 0.5.

A similar statement can also be made about predictors trained on hinge loss. For an uncon-
strained hypothesis class, for any ¢ € (0,1/4) and the same distribution D, a) the optimal non-
discriminatory predictor Y* with respect to the hinge loss has loss at most 4¢ but b) the post hoc
correction of the Bayes optimal unrestricted predictor trained on hinge loss has loss 1.

We construct D, as follows:

1
@ X, A, Y €{0,1 P =
- i 2 5)

@ Pp(A=y|Y =y)=1—¢ Pp, (X =y|Y =y)=1—2e

Both X and A are highly predictive of Y, but A is slightly more so. Therefore, minimizing either
the 0-1 or the hinge loss, without regard for non- d1scr1m1nat10n returns ¥ = A and ignores X
entirely. Consequently, 7,1 (Y) = 1 and 7y0(Y) =0 # v (Y ) so the Bayes optimal predictor is
discriminatory, and the post hoc correction, which is required to be non-discriminatory and derived
from Y = A, is forced to return a constant predictor even though returning Y* = X would be
accurate and non-discriminatory. A more detailed proof is included in Appendix A.1

In the second example, we show that when the hypothesis class is restricted, the correction of
the optimal regressor in the class can yield a suboptimal classifier, even with squared loss.

Example 2 Let H be the class of linear predictors with L' norm at most % — 2¢, for some € €
(2/25,1/4). There exists a distribution D such that a) the optimal non-discriminatory predictor
in H with respect to the squared loss has square loss at most 1z + 36 + 3€2, but b) the post hoc
correction of the Bayes optimal square loss regressor in 'H returns a constant predictor which has
(trivial) square loss of 1/4.

Similarly, for the class H of sparse linear predictors, for any € € (0,1/4), there exists a distri-
bution D such that a) the optimal non-discriminatory predictor in H with respect to the squared
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loss has square loss at most 2¢ — 4€2, but b) the post hoc correction of the Bayes optimal squared
loss regressor in H again returns a constant predictor which has (trivial) square loss of 1/4.

The distribution D, is the same as was defined in (5). Again, A is slightly more predictive of
Y than X, and since the sparsity or the sparsity surrogate L' norm of the predictor is constrained
by the hypothesis class, the Bayes optimal predictor chooses to use just the feature A and ignore
X. Consequently, the optimal predictor is extremely discriminatory, and the post hoc correction
algorithm will return a highly sub-optimal constant predictor which performs no better than chance.
Details of the proof are deferred to Appendix A.2

From these examples, it is clear that simply finding the optimal predictor with respect to a
particular loss function and hypothesis class and correcting it post hoc can perfom very poorly. We
conclude that in order to learn a predictor that is simultaneously accurate and non-discriminatory in
the general case, it is essential to account for non-discrimination during the learning process.

3. Detecting Discrimination in Binary Predictors

In the following sections, we look at tools for integrating non-discrimination into the supervised
learning framework. In formulating algorithms for learning non-discriminatory predictors, it is
important to consider the non-asymptotic behavior under finite samples. Towards this, one of the
first issues to be addressed is that, using finite samples it is not feasible to ensure, or even verify if
a predictor Y satisfies the non-discrimination criterion in Definition 1. This necessitates defining a
notion of approximate non-discrimination which can be computed using finite samples and which
asymptotically generalizes to the equalized odds criteria in the population.

Let us consider the task of binary classification, where both A, Y € {0,1} and the predictors
Y output values in {0, 1}. Recall the definition of the population group-conditional true and false
positive rates fyya(f/) =P(Y =1|Y =y, A = a) and the fact that non-discrimination is equivalent
to satisfying oo = 701 and y19 = 711.

For a set of of n i.i.d. samples, S = {(z;, a;,yi)}i ~ P"(X, A,Y), the sample analogue of
Vya 18 defined as follows,

n

~ 1 <~
fyfa(Y) =5 ZY(%‘; a;)1(y; = y,a; = a), where nfa = Z 1(y; =y,a; =a). (6)
ya =1 i=1

To ensure non-discrimination, we could possibly require 750 = 751 on a large enough sample S,

however this not ideal for two reasons. First, even when ,nyO = ,szl on S, this almost certainly does
not ensure that v, = 7,1 on the population. For this same reason, it is impossible to be certain that
a given predictor is non-discriminatory on the population. Moreover, if ”50 #* ngl, it is typically
not feasible to match 750 = 751 for non-trivial predictors, e.g. if ”50 = 2 and ngl = 3, then
Yoo € {0,5,1} buty5; € {0,3,%,1}, thus the only predictors with ~;; = 75 would be the ones
which are constant conditioned on Y/, i.e. the constant predictors Y =0andY = 1, or the perfect
predictor Y =Y.

For these reasons, we define the following notion of approximate non-discrimination, which is

possible to ensure on a sample and, when it holds on a sample, generalizes to the population.
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Definition 3 (a-discrimination) A possibly randomized binary predictor Y is a-discriminatory
with respect to a binary protected attribute A on the population or on a sample S if, respectively,

P(Y) = max |50(Y) = (V)| <o or r(Y) = max, Yo (V) =11 (V)| <. ()
The decision to define approximate non-discrimination in terms of conditional rather than joint
probabilities is important, particularly in the case that the a,y pairs occur with widely varying
frequencies. For example, if approximate non-discrimination were defined in terms of the joint
probabilities P(Y = ,A = a,Y = y) and if P(A = 0,Y = 1) = «/10, then a predictor could
be “a-discriminatory” all while being arbitrarily unfair towards the A = 0,Y = 1 population.
This issue does not arise when using Definition 3 and it incentivizes collection of sufficient data for
minority groups to ensure non-discrimination.

For Definition 3, we propose a simple statistical test to test the hypothesis that a given predictor
Y is at most a-discriminatory on the population for some o > 0. Let S = {(z, a;, Vi) by ~
P"(X,Y, A) denote a set of n i.i.d. samples, and for y,a € {0,1},let Py, = P(Y =y, A =a). We
propose the following test for detecting a-discrimination:

T (?, S, a) ~1 (FS ¥) > a) )

16log32/6
a? minyg Pyq

Lemma4 Given n i.id. samples S, Yo € (0,1),6 € (0,1/2), if n >
probability greater than 1 — 6, T satisfies,

, then with

T(ff,s,g

) B {0 if Y is O-discriminatory on population
5) =

1 if Y is at least a-discriminatory on population.
The proof is based on the following concentration results for I'® and is provided in Appendix B.

8log8/d

mingg Pya’

P (\r(h) _TS(h)| > zmax,/logm/é) <5,
ya nPy,

4. Learning Optimal Non-discriminatory Binary Predictors

Lemma 5 Ford € (0,1/2) and a binary predictor h, if n > then

In Example 1, we saw that even though an almost perfect non-discriminatory predictor exists within
the hypothesis class, if we ignore non-discrimination in training with 0-1 loss, then optimal post hoc
correction of even the Bayes optimal predictor using (3) yields a poor predictor with no better than
chance accuracy. Thus, to find a predictor that is both nearly non-discriminatory and has nearly
optimal loss for general hypothesis classes, it is necessary to incorporate non-discrimination into
the learning process. For a hypothesis class H, we would ideally like to find the optimal non-
discriminatory predictor:

Y* = ar}?rr;n El(h(X,A),Y) st. yo(h) = y1(h) Vy ={0,1}. 9)
€
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However, as discussed in Section 3, it is impossible to learn O-discriminatory predictors from finite
samples. In this section, we address following question: given n i.i.d samples S, what level of
approximate non-discrimination and accuracy is it possible to ensure in a learned predictor?

We propose a two step framework for learning a non-discriminatory binary predictor that min-
imizes the expected 0-1 loss E(}A/) = IEKOl(}/;, Y)=E 1(17 # Y') over a binary hypothesis class
H ={h:X — {0,1}}. Broadly, the two-step framework is as follows:

1. Non-discrimination in training: Estimate an almost non-discriminatory empirical risk min-

imizer Y by incorporating approximate non-discrimination constraints on the samples.

2. Post-training correction: With additional samples from (EA/, Y, A), derive a randomized pre-

dictor Y to further reduce discrimination.

4.1. Two step framework for binary predictors

We partition the training data consisting of n independent samples S = {(z;, a;,yi) ~ P(X, A,Y)}"
into two subsets S1 and S5 to be used in Step 1 and Step 2, respectively®. For a predictor h € H
and y,a € {0, 1}, recall notation for the population and sample group-conditional true and false
positive rates 7,4 (h) and %ia(h) from (1) and (6), respectively. Additionally, for S; and Ss, let
ngg =2 ies, 1(yi = y,a; = a). In general the subsets need not be of equal size, but for simplicity,

let |Sl| = ’SQ| = n/2.

Step 1: Non-discrimination in training

For the first step, we estimate an empirical risk minimizing predictor Y € A, subject to the con-
straint that Y be a,-discriminatory on S, where «, is a tunable hyperparameter:

~ 2
Y = argmin — Z O (h(x:), y1)
hew T 1€51 (10)

& TS(h) = ‘Slh—51h<n.
s (h) yg}gﬁ}vyo() Vi (h)| <«

Step 2: Post-training correction

As Step 2, we propose a post hoc correction to Y estimated in Step 1 for improved non-discrimination.
Using samples in S5, which are independent of S, we estimate the best randomized predictor Y
derived from (Y, A) (Definition 2). Let P(Y) denote the set of randomized binary predictors that
can be derived solely from }P’(f/, A,Y) and let v, be a tunable hyperparameter, then Y is given by,

= .2 =
Y = argmin - Z Eg (Y (3i, as), vi)
So vy S2 (v So /17 ~
st D) = e [15(7) 2527 <

where for a randomized predictor Y, the group-conditional probabilities on a sample is defined to

be ’ygg (V) = ﬁ > ies, Ey1(Yi = 1,Y; = y, A; = a). The above optimization problem is a finite

sample adaptati%n of the post hoc correction in (3) proposed by Hardt et al. (2016).

2. We occasionally overload the S to also denote the indices [n], e.g. ¢ € S to denote the i™ sample (z;, ai,y:) € S.
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As with the post hoc correction on the population (3), estimating a predictor Y € 73(17) derived
from (Y, A) is a simple optimization over the following four parameters that completely specify Y,

Pja = Dja(Y) =P(Y =1|Y =3, A = a) for j,a € {0,1}. (12)

In Section 4.2, we discuss how the post hoc correction step offers statistical advantages over the
one-shot approach of using all of the training data for Step 1. Besides these statistical advantages,
the post hoc correction step is also motivated from other practical considerations: (a) the derived
predictors only need access to samples from ]P’(?, Y, A) and can be deployed without explicit access
to predictive features X, and (b) the proposed correction step (11) can be easily optimized using
ternary search and can be repeated multiple times as more and more samples from ]P’(l?, Y, A) are
seen by the system, without having to retrain the classifier from scratch.

4.2. Statistical guarantees

In this section, we discuss the statistical properties of the estimators Y and Y from Step 1 and Step
2, respectively. We define the following notation for succinctly describing the quality of a predictor:

Definition 6 Q(L,a) = {h : X — {0,1} : I'(h) < «a,L(h) < L} denotes the set of a-

discriminatory binary predictors with loss L.

The following theorem shows the statistical learnability of hypothesis classes H with respect to
the best non-discriminatory predictor in H using the two-step framework. In the following results,
for y,a € {0, 1}, recall the notation Py, = P(Y = y, A = a) for the group-outcome probabili-
ties. Additionally, for a € {0, 1}, and let VC(H) denote the Vapnik-Chervonenkis dimension of a
hypothesis class H.

Theorem 7 Letn=2 (maxya lolgéyla/ 5) and the hyperparameters satisfy o, o, = O (maxya (;gpié 5) .

For a binary hypothesis class H, any distribution P(X,Y, A), and any § € (0,1/2), if Y* € H
is a non-discriminatory predictor, then with probability greater than 1 — §, the output of the two
step procedure Y satisfies the following for absolute constants C1 and C,

L‘(?) < L(Y™") + Ci max \/VC(H) + log 1/5, and I‘(f/) < Cy max \/m.
ya nPy, va o

Thus, with n = Q(V%H) + 2 )ﬁ samples, and an appropriate choice of cu,, Qip, the

a? ) ming, P

two step framework returns Y € Q(L(Y™) + €, ) with high probability.

The proof is based on the following two Lemmas. The first is a statistical guarantee on the loss
and non-discrimination after training in Step 1:

Lemma 8 Under the conditions in Theorem 7, if o, > 2maxy, loflgi/ 6, then w.p. greater than
1-6Y from Step 1 satisfies
s vc log1/6 s vc log1/4
L) < LY +01\/ () +1081/0 i T(P) < an + Co max\/ (H) +1og1/0
n ya nPyq,
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The following second lemma ensures that if Y from Step 1 is approximately non-discriminatory,
the correction in the second step does not incur significant additional loss:

Lemma9 If h is an a-discriminatory binary predictor h € Q(L(h), ), then the optimal 0-
discriminatory derived predictor Y*(h) from (3) using 0-1 loss satisfies Y*(h) € Q(L(h) + a,0).

This lemma, along with the examples in Section 2 further motivates an integrated learning step,
such as Step 1, where non-discrimination is explicitly encouraged in training.

Notice that, unlike to the guarantees for Y in Theorem 7, the upper bound on non-discrimination
for Y in Lemma 8 scales with the complexity of the hypothesis class VC(H). In the Step 2, we
search over a much restricted space of derived predictors P(Y") which is essentially the convex hull
of | A| conditional predictors of Y. This allows us to obtain a guarantee on non-discrimination for
Y that does not scale with VC(#). See Appendix C.3 for the remainder of the proof.

Finally, although Lemma 8 is only an upper bound on non-discrimination from Step 1, the fol-
lowing theorem shows that the level of non-discrimination using just the first step of the procedure
can indeed grow with the complexity of the hypothesis class.

Theorem 10 There exists a finite, binary hypothesis class H and a data distribution D such that

with probability at least 1/2, the classifier Y learned from Step 1 using n samples from D is at least

3log [#]—1

il T .
I, discriminatory on the population.

maxy

Theorem 10 suggests that the non-discrimination guarantee provided by Lemma 8 has the cor-
rect dependence on the problem parameters. Thus, for the intermediate predictor Y from Step 1,
without the post hoc correction, the tolerance for non-discrimination that can be guaranteed grows
with the complexity of the hypothesis class (Lemma 8). On the other hand, when using the two step
procedure, the sample complexity of ensuring that the final predictor Y is at most a-discriminatory
is Q(maxy, 1/a?Py,) (Theorem 7) which does not depend on the complexity of the hypothesis
class, and also matches the sample complexity of merely detecting a-discrimination from Lemma 4.

We also note that the sample complexity dependence on P, in Theorem 7 is unavoidable for
our definition of approximate non-discrimination. If there is a rare group or group-outcome combi-
nation, we still need enough samples from that group to ensure that the loss and sample conditional
distributions fyfa generalize to the population for every A = a,Y = y. This is the same reason why
the dependence on Py, arises in Lemma 4. This bottleneck provides further incentive to actively
seek samples and target labels for minority populations, which might otherwise be disregarded if
non-discrimination were not a consideration.

5. Computational Intractability of Learning Non-discriminatory Predictors

The proposed procedure for learning non-discriminatory predictors from a finite sample is statis-
tically optimal, but it is clearly computationally intractable for almost any interesting hypothesis
class since the first step (10) involves minimizing the 0-1 loss. As is typically done with intractable
learning problems, we therefore look to alternative loss functions and hypothesis classes in order to
find a computationally feasible procedure.

A natural choice is the hypothesis class of real valued linear predictors with a convex loss
function. In this case, we would like to have an efficient algorithm for finding a non-discriminatory
predictor that has convex loss that is approximately as good as the loss of the best non-discriminatory



WOODWORTH GUNASEKAR OHANNESSIAN SREBRO

linear predictor. However, even in the case of binary A and Y and even with a convex loss, for real-
valued predictors h(x) € R, the non-discrimination constraint in Defination 1 is extremely strong,
requiring that the group-conditional true and false positive rates match at every threshold. In fact, the
mere existence of a non-trivial (i.e. non-constant) linear predictor that is non-discriminatory requires
a relatively special distribution. This is the case even when considering a real-valued analogue of
a-approximate non-discrimination.

For binary targets Y € {0, 1}, one could relax the problem one step further with a less restrictive
non-discrimination requirement. Consider the class of linear predictors with a convex loss where
only the sign of the predictor need be non-discriminatory. Unfortunately, using a result by Daniely
(2015) even this is computationally intractable:

Theorem 11 Let L* be the hinge loss of the optimal linear predictor whose sign is non-discriminatory.
Subject to the assumption that refuting random K-XOR formulas is computationally hard, the
learning problem of finding a possibly randomized function f such that £'"g¢(f) < L* + € such
that sign(f) is a-discriminatory requires exponential time in the worst case for € < % and a < %.

The proof goes through a reduction from the hardness of improper, agnostic PAC learning of HALF-
SPACES. Given a distribution D over (X, Y) and the knowledge that there is a linear predictor which
achieves 0-1 loss L* on D, we construct a new distribution D over (X, A,Y") such that an approxi-
mately non-discriminatory predictor with small hinge loss can be used to make accurate predictions
on D, even if it is not a linear function. The distribution D is identical to the original distribution
D when conditioned on A = 1, and is supported on only two points conditioned on A = 0. The
probabilities of the two points are constructed so that satisfying non-discrimination requires making
accurate predictions on the A = 1 population, and thus on D. In particular, for parameters €, &« < %,
the predictor will have 0-1 loss at most %L* + % on D, which is bounded away from % when
L* < %. Since Daniely (2015) prove that finding a predictor with accuracy bounded away from %
is hard in general, we conclude that the learning problem is computationally hard. See Appendix D
for a complete proof.

To summarize, learning a non-discriminatory binary predictor with the 0-1 loss is hard; learning
a real-valued linear predictor with respect to a convex loss function is problematic due to the poten-
tial inexistence of a non-trivial non-discriminatory linear predictor; and even requiring only that the
sign of the linear predictor be non-discriminatory is computationally hard. A more significant re-
laxation of non-discrimination is therefore required to arrive at a computationally tractable learning
problem.

6. Relaxing Non-discrimination for Tractable Estimation

Motivated by the hardness result in Section 5, we now proceed to relax the criterion of equalized
odds. More precisely, we seek to identify a more tractable notion of non-discrimination based on
second order moments. The most similar prior work to this is given by Zafar et al. (2016), who
suggest a notion of non-discrimination based on first order moments. However, this may be viewed
as a constraint on second order moments provided that A is binary. Namely, their notion amounts to
relaxing the equalized odds constraint that P(Y =5 | Y =y, A=0)=P(Y =7 |Y =y, A =1)
to the constraint that IE[)A/ |Y =y, A=0] = E[}Af | Y = y, A = 1]. They propose optimizing
a convex loss subject to an approximation of this constraint. Their work is primarily applied and

3. See Daniely (2015) for a description of the problem.

10
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gives no learning or non-discrimination guarantees for their learning rule, both of which we address
in this section for a different relaxation.

In particular we propose the notion of equalized correlations. Equalized correlations is generally
a weaker condition than equalized odds, but when considering the squared loss and when X, A, Y
are jointly Gaussian, it is in fact equivalent.

Definition 12 (Equalized correlations) We say that a real-valued predictor R satisfies equalized
correlations or is second-moment non-discriminatory with respect to the protected attribute A and
target Y, if R, A, and Y satisfy the following:

ORACY = ORYOYA, (13)
where 0,53 = E|(a — E|a — E|B)])] is the covariance between two random variables o and 3.
B

Theorem 13 (Gaussian non-discrimination) If X, A, andY are jointly Gaussian, then the squared
loss optimal (equalized odds) non-discriminatory predictor is linear. Furthermore, for all linear
predictors in this setting, non-discrimination is equivalent to satisfying (13).

Theorem 13 means in particular that in the Gaussian setting under the squared loss, the optimal
predictor that is non-discriminatory in the sense of Definition 1 is the same as the optimal predictor
that is non-discriminatory in the more relaxed sense of Definition 12. We stress that this is generally
not the case for non-Gaussian scenarios and with losses other than the squared loss that may result
in non-linear optimal predictors.

One may also consider intermediate notions of non-discrimination between equalized odds and
equalized correlations. One such option is to require that the conditional covariance o 4|y vanishes.
We do not elaborate further, except to note that it is immediate that equalized odds implies this to
be the case and this in turn generally implies equalized correlations.

Since linear prediction can be thought of as the hallmark of Gaussian processes, one could there-
fore justify the relaxation of Definition 12 as being the appropriate notion of non-discrimination
when we restrict our predictors to be linear. Linear predictors, especially under kernel transfor-
mations, are used in a wide array of applications. They thus form a practically relevant family of
predictors where one would like to achieve non-discrimination. Therefore, in the remainder of this
section, we develop a theory for non-discriminating linear predictors.

A particularly attractive feature of equalized correlations is that, for linear predictors, Equation
(13) amounts to a linear constraint. With any convex loss (-, -), finding the optimal second-moment
non-discriminatory predictor can be written as (where Y. . are covariance matrices):

n%li)nE[E(KwT[iﬂ)} s.t. wT<Z[§],AU%—E[§]’YUY,4> =0

This is a convex optimization problem with a single linear constraint, and is thus generally tractable.

In what follows, we take X to be a real-valued vector, A to be a scalar, and the target to be binary
Y € {=£1}, unless otherwise noted. We also commit to the squared loss (R — Y)? throughout.
Without loss of generality, we assume that X, A, and Y all have zero mean. Recall the definition of
the optimal linear predictor:

R= argmin E[Y —r(X,A4)) =7(X, A), (14)

r(x,a):wT[i]

11
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where one can determine that 7(x, a) = @’ [%] with
. -1 _
@ =R [[X] L ) ELE)Y] =2k ) B
[A ] ’ [ A] Al
The optimal linear predictor may, in general, be discriminatory, so we define the optimal second-
moment non-discriminatory linear predictor as follows:

R*= argmin E[(Y —r(X, A))Q] =r*(X,A) s.t. O’T(X7A)7AO'}2/ = 0(x,4),y0va (15)

r(x,a):wT[g]

thus the predictor is constrained to be linear and to satisfy (13), which is a single linear constraint.
We can give a closed-form expression for R* (see Section E.2 in Appendix E for details). We have
that 7*(x, a) = w*’ [%], where

v =iy (o)

where v is a vector encoding the non-discrimination constraint and « is a scalar defined as

LTy
vyt v
X1 [x
[A][3]
Written as such, R* is a function of X and A. Nevertheless, it turns out that this optimal
non-discriminatory linear predictor can be derived, in the sense of Definition 2, from the optimal
(possibly discriminatory) linear predictor R of Equation 14 and without access to X individually.

vy

VZE[%],A_Z[*X],YUYA/U% and «

Theorem 14 (Derived) The second-moment non-discriminatory linear predictor minimizing the
squared loss can be derived from the optimal least squares linear predictor R and the joint (second
moment) statistics of (R, A,Y). Specifically,

R*=R—-a (A — EO’YA/O'%> )

with )
Oy A — 0'1'%7YO'YA/O'Y

0%~ 2ova2/o} + oqy(ova®/(03)?

o =

Theorem 14 shows that, as far as the equalized correlation criterion is concerned, there is no
penalty for first finding an optimal linear predictor and then correcting it. Consequently, this crite-
rion easily enforceable on existing predictors. Intuitively, one must simply “subtract” any potential
correlation one could derive about protected attributes from the prediction score and the outcome,
and this can be entirely determined from the statistics of the optimal linear predictor R, the pro-
tected attribute A, and the outcome Y, without the need to know the extended set of attributes X .
We emphasize that this result does not rely on any Gaussian assumptions, but simply on the fact
that we have limited ourselves to linear predictors and the relaxed notion of non-discrimination.
Finally, it is worth mentioning that a two-step procedure, as in Section 4, could be developed also
for learning second-moment (approximately) non-discriminatory linear predictors from samples.

12
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7. Conclusion

In this work we took the first steps toward a statistical and computational theory of learning non-
discriminatory (equalized odds) predictors. We saw that post hoc correction might not be opti-
mal and devised a statistically optimal two-step procedure, after observing that a straightforward
ERM-type approach is not sufficient. Computationally, working with binary non-discrimination is
essentially has hard as agnostically learning binary predictors, and so we should expect to have to
resort to relaxations. We took the first step to this end in Section 6 where we considered a second
moment relaxation of non-discrimination which leads to tractable learning. We hope this will not be
the final word on learning non-discriminatory predictors and that this work will spur interest in fur-
ther understanding our relaxation, suggesting other relaxations, and studying other computationally
efficient procedures with provable guarantees.

13
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Appendix A. Deferred Proofs from Section 2
A.1. Proof of Example 1

We restate the example for convenience:

Example 1 When the hypothesis class is unconstrained, for any € € (0,1/4) there exists a distri-
bution D, such that a) the optimal non-discriminatory predictor Y * with respect to the 0-1 loss has
loss at most 2¢ but b) for unrestricted Bayes optimal predictor Y trained on 0-1 loss, the post hoc
correction of Y with 0-1 loss returns a predictor Y with loss at least 0.5.

A similar statement can also be made about predictors trained on hinge loss. For an uncon-
strained hypothesis class, for any ¢ € (0,1/4) and the same distribution D, a) the optimal non-
discriminatory predictor Y* with respect to the hinge loss has loss at most 4€ but b) the post hoc
correction of the Bayes optimal unrestricted predictor trained on hinge loss has loss 1.

Consider the unconstrained hypothesis class of all (possibly randomized) functions from (X, A)
to {0, 1}. Let D, be the following distribution over (X, A,Y), with X, A, Y € {0,1}:

P(Y =1)=0.5 PA=y|Y=y)=1—c¢ PX=y|Y=y)=1-2¢ (16)

The graphical model representing this distribution is

O——®

Clearly, X L A|Y,soY"* = X is non-discriminatory and achieves a 0-1 loss of 2¢. This same
predictor achieves hinge loss 4e. This predictor, being non-discriminatory, upper bounds the loss of
the optimal non-discriminatory predictor with respect to the 0-1 and hinge losses.

The optimal predictor with respect to the 0-1 loss, which might be discriminatory, is in the
convex hull (i.e. it might be randomized combination) of the sized mappings from {0, 1} x {0,1} —
{0, 1}. The Bayes optimal predictor with respect to the 0-1 loss is the hypothesis

ﬁ(x, a)=argmax P(Y =y | X =z, A=a) (17)
ye{0,1}

Given a € {0, 1}, note that since € < 1/4

1

PY=a|X=0aA=0qa)=

1+ P(A=a | Y=1-a)P(X=a | Y=1—a)
P(A=a | Y=a)P(X=a | Y=a) (18)
B 1 1
- €)(2€ 9°
pemcomy
Similarly
PY =a|X=1-aA=a)= | 4 PéA=a | Y=1—a)P(X=1-a | Y=1—a)
P(A=a | Y=a)P(X=1-a | Y=a) (19)
o 1
o e(1—2¢) 5
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Therefore, the Bayes optimal predictor is E(X ,A) = A, which is 1-discriminatory, as

P(h(X,A)=1|Y =y, A=0)=0 but PHhX,A)=1|Y=yA=1)=1 (0)
Consider now the post-hoc correction h of h. The best non-discriminatory predictor Y derived
from the joint distribution (h, A,Y) = (A, A,Y) is given by the following optimization problem

Y = argmin £(h)
h

s.t. yyo(h) = vy1(h) fory =0,1
[70“(’1)} € ConvHull m | 10a (h) , Y0a(1 = h) , H fora =0, 1.
’Yla(h) 0 'Yla(h) 71(1(1 - h) 1
21

The first constraint requires that the resultant predictor be non-discriminatory. The second requires
that the class conditional true positive and false positive rates of the predictor be in the convex hull
of the constant 0 predictor, the constant 1 predictor, the predictor & and its negative. This constraint
is equivalent to requiring that / be derived from h. Because 7y,0(h) = 0 and y,1 (k) = 1, the second
constraint requires the predictor have equal true and false positive rates. As P(Y = 1) = 0.5, 0.5 is
optimal true and false positive rate and L(h) = 0.5.

Using the same distribution, but with X, A,Y € {—1,1} instead of {0, 1}, the optimal non-
discriminatory predictor with respect to the hinge loss is no worse than the predictor which returns
X, achieving hinge loss 4¢. However, the Bayes optimal predictor with respect to the hinge loss is
again that predictor which returns

E(m,a) =argmax P(Y =y | X =z,A=a) =a.
yE{O,l}

By the same line of reasoning, the post hoc correction of iAL, which must have identical statistics for
A = 0and A = 1 is forced to have equal true and false positive rates, and thus the best derived
predictor is identically 0 which has hinge loss 1.

A.2. Proof of Example 2
We restate the example for convenience:

Example 2 Let H be the class of linear predictors with L' norm at most % — 2¢, for some € €
(2/25,1/4). There exists a distribution D, such that a) the optimal non-discriminatory predictor
in H with respect to the squared loss has square loss at most 1—16 + % + 3€2, but b) the post hoc
correction of the Bayes optimal square loss regressor in H returns a constant predictor which has
(trivial) square loss of 1/4.

Similarly, for the class H of sparse linear predictors, for any € € (0,1/4), there exists a distri-
bution D such that a) the optimal non-discriminatory predictor in H with respect to the squared
loss has square loss at most 2¢ — 4€2, but b) the post hoc correction of the Bayes optimal squared
loss regressor in H again returns a constant predictor which has (trivial) square loss of 1/4.

In this example, we consider the squared loss and the hypothesis class of linear predictors with
L' norm at most £ — 2¢ for some € € (2/25,1/4):

1
H:{w1X+w2A+b:]w1]+|w2]§2—26}.
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With this parameter €, we use the same distribution as in the proof of Theorem 1:
P(Y=1)=0.5 PA=y|Y=y)=1—c¢ PX=y|Y =y =1-2¢

Since X L A|Y, any linear function of X only will be non-discriminatory and h(X) = (1 — 2¢) X+
% + € has the required L' norm and achieves squared loss % + % + 3€2. This predictor, being non-
discriminatory, upper bounds the squared loss of the optimal non-discriminatory predictor.

To derive the optimal potentially discriminatory predictor, it will be useful to begin by calculat-
ing the covariances between each of the variables:

E[X]=E[4]=E[Y]=; 22)
E[X?] =E[4) =E[v?] = 23)
E[XA] = % — %e + 2¢2 (24)

1-2
E[XY] = — ¢ (25)

1—
E[AY] = — ¢ (26)
The optimal predictor optimizes
h = argmin E [(w1 X +waA+b—y)?]

w1 ,w2,b (27)

st Jwn] 4 wa| < % — 2.
Forming the Lagrangian:
— w?E [X?] + wiE [A?] + B2 + E [V2] + 2wiwsE [X A] + 2w, bE [X]
— 2w E [XY] + 2wabE [A] — 2woE[AY] — 2bE [Y] + A <|w1 + |wa| — % — 26)

2 2
1
_witwpl e + wiwa(1 — 3e + 4€%) + w1b — wy (1 — 2€) + wob

2
1
—wz(l—E)—b+)\<\w1|+\w2\—2—26>- (28)
At the following values:
1 1 1
w; =0 w2—§—26 b—Z—i-e A_Z 29)
the subdifferential of £ contains 0 for any € € (2/25,1/4). Looking term by term we have:
ol
o~ W + wy(1 — 3e 4 4€?) + b — (1 — 2€) + Asign(w1) (30)
w1
1 9y 1 1.
= 5—26 (1—36+46)+Z+6—(1—26)+1S1gl’1(0) 31)

1
= —sign(0) — 8¢ + 8¢ — = —

1
- 2
1 5 1 (32)

17
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where sign(0) is an arbitrary value in [—1, 1] which is the subdifferential of f(z) = |z| at 0. For any
€€ (2/25,1/4)

g3 ig2_ € 1_1 ot
8e” 4 8¢ > 4<4:>Oeaw1 (33)
Furthermore,
ov 9 .
@—:wl(l—36+46)+w2+b—(1—e)+)\s1gn(w2)
o 1 1 1 (34)
:§_2€+Z+6_(1_6)+Z:07
and
4
%ZQb—F’wl—ng—l
b . . (35)
=—-+2 - —2—-1=0.
2+ e+2 € 0

This proves that E(X JA) = (% — 26) A+ % + € is the Bayes optimal predictor in H with respect
to the squared loss. Furthermore, the random variable is supported on only two points: % + € when
A=0and % — e when A = 1. Itis clear that h is not independent of A conditioned on Y.

Since £ is a deterministic function of A, the post hoc correction 1, which must be independent
of A conditioned on Y, is forced to be independent of A, and consequently Y. Thus, i = 0.5 is the
best possible derived predictor, achieving square loss 1/4.

Considering the class of 1-sparse linear predictors, the predictor h(X, A) = (1 — 4¢)X +
2¢, being conditionally independent of A is non-discriminatory and achieves squared loss 2¢ —
4¢2, upper bounding the loss of the optimal non-discriminatory 1-sparse linear predictor. Without
regard for non-discrimination, the optimal hypothesis in the class with respect to the squared loss is

h(X,A) = (1 — 2¢)A + €. This post hoc correction of this predictor suffers from the same issue as
in the bounded norm case, resulting in a predictor that can have squared loss no better than 1/4.

Appendix B. Deferred Proofs From Section 3

Recall the notation I'yq(h) = maxy |vy0(h) — Yy1(h)| and I‘ga(h) = maxy ‘%}%(h) - 751(h)|
from Definition 3. To avoid clutter, we sometimes drop the dependence on h for 7,, when h
is evident from the context. Also, recall that S = {(z;,vi,a;) : @ € [n]} ~ P*"(X,Y,A) and
Py =PY =y, A=a).

B.1. Proof of Lemma 4

Lemma 4 Given n i.id. samples S, Yo € (0,1),d € (0,1/2), if n > 16108320 " 1o yith

a? minyq Py’

probability greater than 1 — 6, T satisfies,

T (}7 g oz) ~_Jo if Y is O-discriminatory on population
T2 1 if Y is at least a-discriminatory on population.
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Proof Recall that T(Y, S, o) = 1 (FS (?) > a). Let o, > 0 be any parameter chosen to satisfy,

log32/6 log32/6
2max 0g 32/ < ap < a—2max log 32/0 / . (36)
ya nPyq ya nPyq,

Then the following results readily follow from Lemma 5,
1. If Y is non- discriminatory, i.e. F(Y) = 0, then

\V)

P(T(7.5,00) = 1) =B(¥) > ) < IP’(FS(?) >I(¥) +2ma bvgﬁ’gj/é> <?

2. Similarly, suppose is Y is at least a-discriminatory on the population, i.e. F()A/) > a, then

~ ~ ~ ~ log 32/§ o
—0) = S S _ hd
P(T@z&a@__Q._PQ“oqscm)gp<r(Y)groq 2y [ = o >g2.

Thus, if § > 2 maxy, 1051;9’5&/ 9 then a,, = $ satisfies (36) and Lemma 4 follows for T(?, S,5). .

B.2. Proof of Lemma 5

810g8/6

Lemma 5 For ¢ € (0,1/2) and a binary predictor h, if n > , then
log 16/
P(meJﬂmﬂ>2mm Oga/)gd (37)
ya nPy,

Proof Recall that n;ja = > . 1(yi = y,a; = a). With slight abuse of notation, we define random

variables Sy, = {i : y; = y,a; = a}.
Ljesya MTi0) g

We then have 'yga(h)|Sya = s s Binomial(7y,,, n 5a) with Ehya|8ya] = Yya-

ya

P (175, = al > ) L STP (175 = al > t1S00) P (Sy0)
Sya

nPyq
<P (nz‘ja < 2?/ > + Z ("}’il - 'Yya‘ > t‘Sya) P (Sya)
Sya 7’LS >nPya
(b) Py
< exp (— 2y )+ Z 2exp(—2t2n5a)}P’(5’ya)
Sya TL >Tlpya
(9§
< 3 + 2exp (—thPya), (38)
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where in (a) the summation is over all 2" possible configurations of Sy, C [n], (b) follow from
Chernoff bound on nfa ~ Binomial(n, P,,) and Hoeffding’s bound on 75a | Sya ~ %%Binomial(nga, Yya)s
and (c) follows from the condition on nP,, in Lemma 5.

Further, for y € {0, 1}, using a series of triangle inequality,

S S S S S S S
170 — Y1l — 190 — wal] < 1o — 11 — o + Y1l < 1o — Y0l + g1 — V1|, and

S S S S
Ps (|ly0 — g1l — w0 — wl] > 2t) < Ps (Ingo — ol + lvr — | > 2t)
(a) 5 <
< H”’s(\vyo — Yol > t) + PS(h/yl = Yy1| > t)

(b)

B)
<7+ dexp (—t°nPy,) < -, (39)

N >

where (a) follows from union bound, and (b) follows from (38) using ¢ = max, y/ %. The
lemma follows from collecting the failure probabilities for y = 0, 1. |

Appendix C. Deferred Proofs From Section 4

We use the notation A <5 B to denote that A < B holds with probability greater than 1 — 6.
Recall the notation I'yq(h) = maxy |yy0(h) — Y41 (h)| and Ffa(h) = max, \750(]1) — ’)’51(h)’
from Definition 3. To avoid clutter, we sometimes drop the dependence on A for «y,, when h is
evident from the context. Finally, in this section C, C; and Cs denote absolute constants that are
not necessarily the same at each occurrence.

C.1. Proof of Lemma 8
The following intermediate lemma is used in proof of Lemma 8.

Lemma 15 Let H3! = {h € H : T (h) < o} denote the subset of hypothesis that satisfy the

constraints in (10). If V(y, a), nPy, > 16log 8/6 and o, in (10) satisfies o, > 2 maxy, 212%53/5
then with probability greater than 1 — 2, Y* € H3 forall Y* € Q(L(Y*),0) NH.
Proof Given Y* € H N Q(L*,0),
(a) log 64
P(Y* ¢ HS) =PTSN(Y*) > ap) < ]P’(Fsl (Y*) > 2max 2%6/%
ya nPyq
(®) 2log 64
ya nPy,
(©§
< - 41
ST (41)

where (a) follows from the condition on «,, (b) follows from I'(Y*) = 0 assumption, and (c) fol-
lows from Lemma 5 as | S| = n/2. [ |
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Lemma 8 Under the conditions in Theorem 7, if o, > 2maxyq 4/ 21%%,53/ 5, then w.p. greater
than1—6,Y from Step 1 satisfies

£ SE(Y*)JFCI\/VC’(H):logl/é,a N " \/VC(H)+1og1/5_

ndT'(Y) < o, + Co max Py,

Proof Recall that the training data for Step 1 are denoted by S1 = {(zi,ai,yi) : i € [n/2]} ~
P*/2(X,A,Y) and Py, = P(Y =y, A = a). From Using Hoeffding’s inequality on the empir-
ical 0-1 loss £%1(h), and using concentration results for I'>1(h) from Lemma 5, respectively, the
following holds for ¢ € (0,1/2) and min,, nPy, > 161og8/4.

1 [210g 64
1£(h) = £51(h)| <g/4 1/ 088/0 " ind |T(R) = TS (h) <44 2max 2os64/0 )
n ya nPy,

Using (42) and the standard VC dimension uniform bound (Bousquet et al., 2004), the following
holds with high probability for absolute constants C; and CY,

S S log 1
1L(Y) _£S1(Y)| §6/4 Cl\/VC(H):L_ 0og /5’ and
(43)
VCO(H) +log1/6

T(Y)-T5(Y)| <
IT(Y) (V)] <54 Co H;%X\/ by

Finally, from Lemma 15, with probability greater than 1 — §/4, any O-discriminatory Y € H is in
the feasible set for Step 1 in (10), and thus from the optimality of Y, £°1(Y) <5/4 L3(Y) <5/4

L(Y*)+ Cy w. Thus,

VC(H) +logl/é VC(H) +1log1/é

<52 L(YT) +201\/ ,

EF) <y £5(0) + oy

n n
= VC(H) +logl/d
I'(Y) §6/4 an + O max\/ (%) +log 1/ . (44)
ya nPyq
The lemma follows from combining the failure probabilities in the above equation. |

C.2. Proof of Lemma 9

Lemma 9 [f h is an a-discriminatory binary predictor h € Q(L(h), ), then the optimal 0-
discriminatory derived predictor Y*(h) from (3) using 0-1 loss satisfies Y*(h) € Q(L(h) + o, 0).
Proof The intuition is to conservatively bound the true and false positive rates of the non-discriminatory
derived predictor using the class conditional rates for h. In the case of binary predictors, Y being
derived from h is equivalent to requiring that

(VOa(?(h»a ’Yla(Y(h))) € Conv ((O> O)a (17 1)7 (’VOa(h)a Vla(h))a (1 - ’YOa(h)v 1- ’Yla(h)» (45)
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In the figure below, ?*(h) is the actual optimal derived non-discriminatory predictor, but we esti-
mate it conservatively using the worse of the class conditional true and false positive rates of h:

v11(h)

a (k)

Y10(h) ¥ ()

Yoo(h) Yo1(h)

Without loss of generality, assume ~y14(h) > 0.5 and Y4 (h) < 0.5 for all a (the hypothesis is
at least as good as chance). Consider the predictor Y such that for both a € {0, 1},

(Y0a(Y), 71a(Y)) = (max(y00,701), min(y10,711)) € Conv ((0,0), (1, 1), (Yoa(h), y1a(h)))

that is, Y has the greater of the two false positive rates and lesser of the two true positive rates for
both classes A = 1 and A = 0. Additionally, Lemma 9 requires that Yy, |v,1(h) — vy0(h)| < o
Thus, for a € {0, 1},

'YOa(Y) - ’YOa(h) = HzE}XVOa’(h) - 'YOa(h) < «, and

> (46)
Ya(h) = 71a(Y) = y1a(h) — rr(lli/nvla/(h) <a.

Clearly, this choice of Y is both non- dlscrlmlnatory (as ’yya(Y) is set independent of a for all
), as well as derived (as ’yya(Y) satisfy (45)). Thus Y is a feasible point for (3), and we have

B ()] <EL D) = Y PocroaP) + Y Prall = ma(Y))
ac{0,1} ac{0,1}
(a)
< Y Po(oat)+a)+ Y Pra(l—(na(h) —a)) @D
ac{0,1} ac{0,1}

< EY(h)] + a,

where (a) follows from (47). [ |

C.3. Proof of Theorem 7

The following supporting lemma on concentration of non-discrimination for randomized predictors
is used in the proof of Theorem 7.
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Lemma 16 For ¢ € (0,1/2) and h € H, if nPy, > 16log 8/, For any randomized predictor Y
derived from (Y, A), i.e.Y € P(Y), satisfies the following for |Sa| = n/2 iid sampels:

L(T) = £5(F)] <51/ 2820 and |D(F) — 1% (V)] <5 2max, /”‘)gpm/‘g. 48)
n ya nPyq,

Proof The proof essentially follows the same arguments that were used for (42) and Lemma 5.
For a randomized predictor Y,

~ ~ 2 ~ ~
L2(Y) = L(Y) = - > B l(Y (G5 ai),yi) — ExayEgl(Y,Y)
i€S2

Here £52(Y) — £(Y) is merely a sum of n,/2 independent and [0, 1] bounded random variables and
Hoeftdings bound can be applied to get the required concentration on L%, _
Similarly, for any randomized predictor Y, the conditional random variable yig(Y)\Sgya =
Z j Eg ?(37 a ) =~
/€520 S;V """ is a sum of [0,1] bounded random variables with mean E[fyysg(Y)]Sgya] =
Nygd

Yya(Y'), the proof of Lemma 5 can be repeated verbatim for the randomized prediction where in-
stead of the Hoeffdings’ bound on Binomial random variables, we use the identical Hoeffdings’
bound for [0, 1] bounded random variables. [

Theorem 7 Letn=¥X) (maxya blg)yla/ 6) and the hyperparameters satisfy o, &t = © (maxym / lfﬁgx a).
For a binary hypothesis class H, any distribution P(X,Y, A), and any § € (0,1/2), if Y* € H
is a non-discriminatory predictor, then with probability greater than 1 — 4, the output of the two

step procedure Y satisfies the following for absolute constants Cy and Co,

L(V) < L(Y*) + C) max \/ VOGO EI8L0 g 1(¥) < Cymax (2112,

ya nPy, ya nPy,

Thus, with n = Q(&gm + 2 ) 1 samples, and an appropriate choice of cu,, Gy, the

€ a? ) mingg Pya

two step framework returns Y € Q(L(Y™) + €, ) with high probability.

Proof We begin with the following result from from Lemma 16 which shows the concentration of
loss and discrimination in radomized derived predictors: if nP,, > 161og8/4, for any randomized

predictor I derived from (17, A),ie. he P(EA/), satisfies the following:

LR — £ (R)] <sa ) B22 and [D(R) — D3| <gya 2max |80 (4
n ya nPy,
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VC dimension of P(Y):  If |Y| and |.A| are finite, consider a finite hypothesis class denoted by
Hy 4 that includes all deterministic mappings from (Y A) to binary values {0, 1}. If Y and A are

both binary, then there are 4% = 16 such mappings Ho 4= {h :{0,1} x {0,1} — {0,1}}.

Further, recall that the feasible set of (randomlzed) blnary predictors derived from ]P’(Y Y, A)
is denoted by P(Y), and any Y € P(Y) is completely specified by four parameters, {py@(Y) =

PY =1]Y =7,A=a): y, a € {0,1}}. With the above definition of %y, ,, any such randomized
derived predictor Y € 79( ) derived from (Y, A) is in the convex hull of Hy ,. This implies,
VCO(P(Y)) = VC(conv(Hy ,)) = log 16 which is a constant.

Thus, for V)f € P(Y) estimated from Step 2 in (11), using the standard VC dimension uniform
bound over P(Y) (Bousquet et al., 2004) along with (49) we have the following,

LV) g4 L2(V) +Cry/ lognl/d, and T(Y) <g/4 @ + Cy max | /l‘ﬁf/d. (50)
ya ya

Upper bound on £52 (17) For any derived Y* € P (f’) that is O-discriminatory, using (49) and
the identical arguments as that of Lemma 15, we have the following:

b
210g64/5) (S) g’

_ (a) _
P(TS2(V*) > &p) < IP(F52 (Y*) > 2max
ya nPy,
where (a) follows from the condition on v, and (b) from Lemma 16. R
From the optimality of £°2(Y") and Lemma 16, VY* € Q(£(Y™*),0) N P(Y) we have,

~ ~ ~ 1
L2(Y) <54 L2(Y™) <50 L)+ C) Og:/‘s. (51)

Upper bound on /J(l?*): The rest of the proof involves obtaining an upper bound for E(f/*)
using Lemma 9. Recall from Lemma 9 that if /1 is an a-discriminatory binary predictor, the optimum
non-discriminatory derived predictor Y*(h) given by (3) satisfies, Y*(h) € Q(L(h) + «,0).

Thus, for h = }7, a derived non-discriminatory predictor Y* (EA/) obtained from (3) satisfies,

VC(H) +log1/s

52
b (52)

~. ~. (a)
LY*(Y)) <s LY")+apn +Cs max\/
ya

where in (a) Y* € H is any non-discriminatory predictor from the original hypothesis class H and

the inequality follows from combining Lemma 8 and Lemma 9 as with probability atleast 1 — 9, Y

is atmost ov = F()A’) < ay, + Coymaxy, W discriminatory.
ya

Combining (50), (51), and (52), with probability atleast 1 — 27,

~ vC log1/6
LV) < L(Y*) + an + Cy max\/ (H) +1og1/0
ya nPy,
(53)
~ - log1/6
I'(Y) < a, + Cy max og 1/
ya nPy,
Theorem 7 follows from appropriate choice of «,, &, and rescaling 9. |
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C.4. Proof of Theorem 10

Let the marginal distribution over (A,Y") be given by p = min, ,P(A = a,Y = y). Since the
definiton of fairness is invariant to re-labelling of A,Y’, assume without loss of generality that p
corresponds to A = 1,Y = 1. For a € (0,1/2), the distribution D over (X, A4,Y) € {0,1}" x
{0,1} x {0, 1} is described by

P(X1=y|Y =y) =1-a

PX;=0]Y=0,A=0) =1 fori =2,3,...,n

P(X;=1|Y =1,A=0) =1 fori=2,3,...n (54)
PX;=0]Y=0,A=1) =1 fori =2,3,...,n
P(X;=1|Y=1,A=1) =1-a fori=23,..n

Consider the following hypothesis class % = {h;}.-, with h;(X, A) = X,. The hypothesis h;
has 0-1 loss Lo1(h1) = P(X; # Y) = « and is exactly non-discriminatory since X; L A |Y by
construction. For every other i = 2, 3, ..., n, the 0-1 loss of h; is the same:

Lot(h) =Y Y P(Xi=1-y|Y =y, A=a)P(Y =y, A=a) = pa (55)
Y a

however, for these hypotheses |P(h; =1|Y =1,A=1) - P(h; =1]Y =1,A=0)| = aso h; is
a-discriminatory.

We will now show that on a sample S of size m, the empirical risk minimizer subject to an
approximate non-discrimination constraint, h, will be h; for i # 1 with probability 0.5. Hence,
the first step alone cannot assure with probability better than 0.5 a classifier that is better than a-
discriminatory.

First, we note that the predictions of h; and h; are independent for 7 # j since X; and X;
are independent. Therefore, the number of errors made by each classifier i; on the sample S are
independent and

P(Ly (h) =0) = (1—a)™ P(LG) (hi) = 0) = (1 — pa)™ fori=2,3,....,n (56)

Since a classifier that makes zero errors on .S is automatically non-discriminatory on S, if h; makes
at least 1 mistake on .S and some h; does not make any errors, then i1 will be the optimum of (10).
This event occurs with probability:

P (L8 (h1) > 0ATi L5 (hi) =0) =(1—(1—a)™) (1 =P (Vi>1L5(h) >0)) (57
=(1-01-a)") (1 - H (1—(1— pa)m)> (58)
—(1-0-am(1-0-0-p™) 59

From here, we use that

VEeNvzel0,1]] (1-2)f< (60)
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Thus, since 1 — pa, a € [0, 1]:

P (L1 (he) > 0 A 30 L5 (i) = 0) = (1 - u—a>>(r—u—41—pw ") 61)

() () @

mo 1
1+ ma (1 1+ma>1—|—(n—1)(1—pa)m (63)

This expression is is greater than 1/2 if the first term is at least 2/3 and the second term is at most
1/6. Thus

mao 2 2
> - = a> — 64
1+ma~ 3 “= (64)
and
1 1 1
1-— < =
l+ma) 1+ (n—1)(1—-pa)™ ~ 6
(65)
— ! <1<:>10 ! log
1+(n—1)(1—pa)m_6 gl—pa m

Since —log(1 — ) < %= forz € (0,1), and p % the expression (63) is at least 1/2 when
3

2 log 2
2 <a< 2085 (66)
m 4pm

Therefore, when o« = giog;n , with probability 0.5 h; has non-zero error on S and a different

predictor has zero error. We conclude that there exists a dlStI‘lbuthH and hypothesis class such that

with probability 0.5, the hypothesis returned by the first step is 2 —dlscrlmlnatory

Appendix D. Proof of Theorem 11

Let A be an algorithm that takes as inputs a hypothesis class #, a distribution D over ()~( , A , 37) with
A €{0,1} and Y € {—1,+1}, an accuracy parameter ¢ > 0, and a non-discrimination parameter
a > 0 and returns a predictor f = A(D, €, ) such that with probability 1 — ¢

ey < omin | L) 4e (67)
b heHO-disc (D) D

P5(f20|V =y d=0)-P5(f=0

The possibly randomized predictor f need not be in the hypothesis class 7, but it is being compared
against the best predictor in H whose sign is non-discriminatory.

We will show that such an algorithm can be used to improperly weakly learn HALFSPACE which,
subject to the complexity assumption that refuting random K-XOR formulas is hard, was shown to
be computationally hard by Daniely (2015). We conclude that .4 must be computationally hard to
compute.

The HALFSPACE problem is to take a distribution D over (X,Y) with X € R% and Y €
{—1,+1}, and find the linear predictor

?:y,Z:l)‘ga fory=—1,4+1

h* () = sign(w*T z) where w* = argmin E [sign(wT:c) # (68)
weRrd TY~D
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The proof of hardenss of the HALFSPACE problem was shown using a distribution over the unit
hypercube in d-dimensions, thus we will assume that D is a bounded distribution. We assume
access to the distribution D, knowledge of L%} (h*), and for now, access to the joint distribution of
(h*(X),Y):

n-- =Pp(h*(X) =—-1,Y = —-1) n-+ =Pp(h*(X) = -1,Y = +1)

69
Mo =Ep((X) = +1Y =—1) gy =Bp(h*(X) = 41,Y =+1) O

however, we will show later that it is not necessary to know the 7’s. Since it is always possible to
get 0-1 loss at most % with a HALFSPACE predictor, we assume thatny +7__ > ni_ +n_4 =
LY (h*). From the distribution D we construct a new distribution Dover (X, A,Y) with X € R,
A e {0,1},and Y € {1, +1} in the following manner:

Ps(A =0) =1-6

Ps(A=1) =6

Ps(X=-e,Y =-1|A=0) =1__

P5(X = —e,Y =+1|A=0) =n_. (70)
Ps(X=e,Y =—1|A=0) =7

Ps(X=e,Y =+1|A=0) =n4t

P5(X =[0,z],Y =y|A=1) =Pp(X =Y =y) Y,y

where e; is the first standard basis vector in R4t!. In other words, when A = 1 the distribution D
is identical to D besides a zero appended to the beginning of X. When A=0Dis supported on
two points —e; and e;.

We will apply the algorithm A to the distribution D with parameters € and « to be determined
later. In this case H is the class of linear predictors so the hinge loss of f on D must be competitve
with the hinge loss of the best linear predictor whose sign is non-discriminatory.

Using the following lemmas, we show that the output of .4 must have small hinge loss on D, that
this output can then be modified so that it has small 0-1 loss on D, and finally that it can be further
modified to achieve small 0-1 loss on D. The proofs are deferred to the end of this discussion.

Lemma 17 There exists a linear predictor h whose sign is 0-discrminatory such that
LI (h) = 2(1 = 8) LY (h*) + 26

By Lemma 17 and the defintion of f from (67),

hinge (1Y < min  LUEC(R) € < 2(1 — 0)LY(h*) + 26 + € (71)
D he€Ho.disc (D) P
and the sign of f is a-discriminatory. Next,

Lemma 18 The predictor f can be efficiently modified to yield a new predictor f' whose sign is is
a-discriminatory such that

LE(f) < (1=6)Lp (h*) +26 +e

27



WOODWORTH GUNASEKAR OHANNESSIAN SREBRO

Finally,
Lemma 19 The predictor f"(z) = f/([0,2],1) achieves L1 (f") < E%l(f’) +a(l—9).
The predictor f” described in Lemma 19 thus has 0-1 loss on D
LH(f") < (1 =8)(Lp(h*) +a) + 20 +¢ (72)

Theorem 1.3 from Daniely (2015) proves that there is no algorithm running in time polynomial
in the dimension d that can return a predictor achieving 0-1 error < % — d~¢ with high probability
for a constant ¢ > 0 for an arbitrary distribution, even with the knowledge that £ (h*) < L* for
L* < 1/2. Thus, A(IN), €, ) cannot run in time polynomial in the dimension d for any parameters
LY (h*), €, o, and § such that (72) is greater than % —d ¢forany ¢ > 0. Fore,a < %, and setting
o= 1—16, (72) shows that

47
128

For any L* < % this is at most % — % and does not depend on the dimension.

In this proof we assumed knowledge of the parameters 1 which describe the conditional error
rates of h*. If a polynomial time algorithm for A existed, then it would be possible to perform
two-dimensional grid search over the 7. Calls made to .4 with the incorrect values of 7 might result
in very inaccurate or discriminatory predictors, but using an estimate of 7 up to O(«a) accuracy
is sufficient to approximate the HALFSPACES solution using ,A. Thus at most O(log?(1/c)) calls
to the polynomial time algorithm would be needed. Therefore, in order for A to guarantee for an
arbitrary D that its output would have excess hinge loss at most % and its sign would be at most
%—discriminatory, it must run in time super-polynomial in the dimension in the worst case.

Ly (f") < %ﬁ%(h*) + (73)

D.1. Deferred proofs

T
Proof [Proof of Lemma 17] Define h(X, A) = sign ([J*] X). Then h(—e1,0) = —1, h(e1,0) =

1, and h([0,z],1) = h*(x), where h* is as defined in (68). Since the sign function is invariant to
scaling, L2 (h*) = L% (ch*) for any ¢ > 0.

Theorem 1.3 in Daniely (2015) involves a distribution D that is supported on the unit hypercube
in RY, thus the predictor Hw*}iﬁ € [—1, 1] with probability 1, and has the same 0-1 loss as h*.

By the definition of D, n4_, and n_:

Psh>0|V =-1,A=0)= —— " _
P5(Y =—1]A=0)
-
Po(¥ = —1) (74)

=Pp(h* >0|Y = —1)
=Ps(h >0|Y =-1,A=1)
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Psh <0V =1,A=0)= —="—*_
P5(Y =1|A=0)
_ n—+
- Pp(Y =1) (75)

=Pp(h* <0]Y =1)
=Ps(h <0|Y =1,A=1)

Therefore, h is O-discriminatory at threshold 0. Also

0,Y =—1) (76)
+[1 — h(20)|+P5(X = 29, A =0,Y

L) = 1+ h(an)]sPp(X = a1, A=

+/ 1+ (@) +P5(X =2,A=1,Y = ~1)dz
X

s [ -l Ps(X =0 A=1.F = 1da
X

IN

214 Ps(A = 0) + 27 P5(A = 0) 77)

+2/ (Pﬁ(ffzx,ﬁz1,17:—1)+P5()?:x,/?:1,y:1))dx
X

2P5(A =0)(ns— +ny)+2P5(A=1) (78)
= 2(1-0)(n— +nm4-)+20 (79)
|

Proof [Proof of Lemma 18] Since only the sign of f is required to be a-discriminatory, we can
modify the magnitude of its predictions without affecting its level of non-discrimination. Therefore,
we first truncate the output of f to lie in the range [—1, 1], which can only reduce the hinge loss.

Ignoring for the moment that the sign of f must be a-discriminatory, we would like to define
f/ so that f'(—e;,0) = —1 and f’(e;,0) = 1 with probability 1. In this case, the hinge loss when
A=0is exactly 2(n4+— + n—). With that being said, any modification to f that changes the
distribution of the sign of the predictor risks rendering it more than a-discriminatory. With this in
mind, we construct f’ such that

e ) =1 wp. P(f(~e1,0) <0
a ”m_{o wp. B(f(~e1,0) > 0

f/(ela 0) — 1 w.p. P(f(ela 0) Z 0) (80)
-0 w.p. P(f(e1,0) <0)

f/([()?x]? 1) = f([owr]? 1)

where —0 is a negative number of arbitrarily small magnitude. Constructed this way, the distri-
bution of the sign of f’ conditioned on A is identical to that of f, meaning that the sign of f’ is
a-discriminatory.

The hinge loss of f’ is an upper bound on the 0-1 loss, and in order to show that f” achieves
small O-1 loss, we will show that the hinge loss is a loose upper bound. The construction of
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D and the predictions of f’ conditioned on A = 0 creates a substantial gap between the losses.

2

-1 0 1

Notice that when f’ makes a prediction of magnitude 1 that has the correct sign, both the hinge
loss and the 0-1 loss evaluate to 0. Similarly, when f” makes a prediction of magnitude 0 with the
incorrect sign, both losses are 1. Thus in each of these cases, the hinge loss is equivalent to the 0-1
loss.

However, if f’ makes a prediction of magnitude 1 with the incorrect sign, the hinge loss is 2
but the 0-1 loss is only 1, and when f’ makes a prediction of magnitude 0 with the correct sign, the
hinge loss is 1 but the 0-1 loss is 0. Consequently, in each of these cases there is a gap of 1 between
the hinge and 0-1 losses. Thus,

E [ghinge(f/) _ EOl (f/)

E:O}:P(]f’\:l,sign(f’);«éf/‘ﬁ:O) 1)

Considering each term separately:
P(1f'1=1,sien(f') #7 | A=0)
:P(f’(—el,O):—l,f/:l’X:—el,lzo)ﬂb(i:—el ’Z:o) (82)
+P<f’(61,0):1,}7:—1‘f(:el,ﬁ:())ﬁ”(f(:el‘ZzO)
:]P(f’(—el,o):-1)1@(5(:—61,17:1(21:0) (83)
+P(f’(el,0):1)1@(5(:61,?:—1‘Z:o)
=P (f(=e1,0) <0)n—t +P(f(e1,0) = 0) - (84)
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With (83) following from the fact that conditioned on Xand A =0, 1 ()? ,0) is a random variable
that is independent of the value of Y. Similarly,

i (\f/()?,@)\ — 0,sign(f/(X,0)) = Y ) A= o)
:P(f’(—el,())zo,ff:1‘X:—el,ZZO)P( — e ‘Z:o) (85)
+P(f’(e1,o):—0,17:—1}f(:el,ﬁzo)]}»()?zel’E:o)
:P(f’(—el,O):o)P(X‘:—el,?:l’E:o) (86)
+P (f(e1,0) = — )P()?:el,f/:—l‘ﬁ:o)
=P (f(—€1,0) 2 0)n—y +P(f(e1,0) <0)my— (87)
Combining (81) with (84) and (87), we see that

E [Zhinge(fl) _ EOI(]N)

A=0] =P(f(=€1,0) < 0)n-s +P(f(e1,0) = 0)mi—  (88)

+P(f(—€1,0) 2 0)n—t + P (f(e1,0) <0)ns—
=1t + 74— (89)

The 0-1 loss of f/ can be decomposed as
£2(f') = P(A = 0)E [ (1) ‘ A=0] +P(A=1E (1) ‘ A=1] (90)
By (89),
P(A =0 [(f) | A=0] = (1= 8) (E[d™(r) | A=0] =n-s = ns) O]
and since the hinge loss is always an upper bound on the 0-1 loss
P(A = 1)E [zm( f) ] A= 1} < 0K [ehinge( f) ] A= 1} 92)

From Lemma 17, the hinge loss of f’ (which is at most the hinge loss of f) is upper bounded by
2(1 = 6)(n—4 +n4—) + 20 + €. Thus,

L2 < (1= 0) (B[emee(f) | A= 0] =y =y ) + 0E [te=(p) | A=1]  ©3)

= LE(f) = (1= 8)(n—t + 1) ©4
<A =08)M—g+n4—)+20+¢ (95)
|

Proof [Proof of Lemma 19] Because f’ is a-discriminatory at threshold 0

’Pg(f’zm?:—1,71:0)—1?75(f’zo\?:-1,ﬁ:1)‘ <a o6

‘Pﬁ(f’<0|1~/:1, A=0)-P5(f <0|V =1, Ad=1)|<a
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Let f"(z) = f'([0,2],1), then
LU(h) =P5(Y = -1, A=0)Ps(f' >0]Y =-1,A=0) 97)
+P5(Y =1, A=0)P5(f' <0|Y =1, A=0)
+P5(Y =L A=1)P5(f >0|Y =-1,A=1)
+P5(Y =1, A=1P5(f' <0|Y =1, A=1)

>Ps(Y =-1,A=0)(P5(f/>0|V =-1,4= )—a> 98)
+P5(Y =1, A=0)(P5(f <0V =1, Azl)—a)
+P5(Y =1L, A=1)P5(f >0|Y = -1,A=1)
+P5(Y =1, A=1P5(f' <0|Y =1, A=1)

- (Pﬁ(?:—l,Z:O)JrIPﬁ(Y:—LZ: ))Pﬁ(f’>0\y_—1 A=1) (99)
+(IP’5(Y:1, A=0)+P5Y =1, A= ))]P)ﬁ(f <0|YV=1, A=1)
+(IP>5(17:—1,1:0)+P~(17:1 A_o))( )

=P5(Y = —1)P5(f >0|Y =-1,A=1) (100)
+P5(Y =1) P5(f<0|Y =1, A=1)-aPs(A=0) (101)

=Pp(Y =-1)Pp(f"20|Y = ~1) (102)
+PD( )Pp(f” <0 | Y = 1) - 04(1 - (5)
= LU (") — a1 = 6) (103)

The lemma follows immediately.

Appendix E. Proofs for Section 6 - Relaxing non-discrimination

We use Y. to denote covariances involving a vector and we reserve o. for scalar covariances. We

start with recalling some facts about Gaussian random variables.
Proposition 20 If (U, V, W) are jointly Gaussian, then:
e Conditional expectation E[U|V| is linear in V and is given by:

EUV] = E[U] + Sy sy (V - E[V]).

e Conditional covariance Xy vy does not depend on W and it is always equal to:

—1
Yuviw = Zuyv — BuwEy Zwv.
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E.1. Proof of Theorem 13

First, let us show the second claim. Let R be any linear predictor. By linearity, it follows that
(R, A,Y) are jointly Gaussian. By the conditional covariance formula, we have:

2
ORAlY = ORA — ORYOYA/Oy.

If R satisfies equalized correlations, then the right-hand side here is 0. It follows that R and A
are uncorrelated conditionally on Y. But since they are jointly Gaussian, they are also independent
conditionally on Y. Therefore R also satisfies equalized odds non-discrimination. The converse
also holds: if R satisfies equalized odds, then R and A are uncorrelated given Y, and therefore
equalized correlations is satified.

Now let us move back to the main claim. Assume, without loss of generality, that all variables
are centered. Let us first find the optimal (a priori not necessarily linear) predictor that satisfies
the relaxed second-moment non-discrimination criterion. In particular, the Lagrangian to minimize
may be written as:

E[(R—Y)?] — A (03 E[RA] — oayE[RY]),

But just like in the unconstrained least squares problem, we may apply the law of total expectatons
to condition the loss and the R- terms in the second-moment non-discrimination constraint to be
conditioned on X and A. Thus the optimum is achieved for each X, A by minimizing the following
Lagrangian:

E[(R—Y)*X,A] — X (05 AR — o ayE[Y|X, A|R)

or equivalently
R* —2E[Y|X, AR — X (6§ AR — oayE[Y|X, A]R) .

It follows that the optimal R is a linear function of A, E[Y'|X, A] and A. X is determined over the
statistics of the problem, and therefore it is a constant that does not depend on specific values of X
and A, and E[Y'| X, A] in the Gaussian setting is linear. It thus follows that the optimum, let’s call
it R,, is a linear function of X and A. It minimizes the expected square loss subject to a relaxed
non-discrimination criterion, therefore it is not larger than the optimizer under the stricter constraint.
Conversely, by linearity it does also satisfy the stricter constraint, and is thus no smaller than the
optimizer under that constraint (recall that we didn’t start out by imposing linearity). Therefore R,
is precisely the squared loss optimal equalized odds non-discriminatory predictor.

E.2. Optimal equalized correlations linear predictor

We write the proofs more generally for a vector-valued protected attribute A, and the scalar case
follows directly. In this case v is a matrix and « is a vector mixing the columns of v (so the
correction has the term va). First note that condition (13) translates into a linear constraint on
w in the least-squares problem of (15). Using the bilinearity of the covariance, this constraint is
equivalent to:

wTE[ﬁ]A - sz[fg],Y EY,A/U%/ = wTV =0.

We can now write the cost function with a vector of Lagrange multipliers:

J(w,\) =E[(Y —wT [fg])ﬂ +wlv,
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whose gradient is
Vi = 2% w — 2% + VA
v A [Z]>
Setting this to zero, the optimality conditions give us the claimed functional form. The vector o can

then be obtained by enforcing the constraint:

wlv = (EYvHﬂ —aTl VT> Eﬁf]:[ﬂv =0
and thus
Tz 1 — TZ_l N
UM T I
E.3. Proof of Theorem 14
First, let us rewrite R* as:
R* _ w*T )Ig]

Next, recall that

and since
XoIx
Yrx1ix] = X7[A} =X rx »t = [ Odim(A)xdim(x) Ldim(4) ]
] R AR X)) ’
we have
VTE&%]{X] =lor]—Yayw' /oy
Therefore N
_ R
g A=A g Ty

and can be derived from (R A,Y). Then multiplying from the right by v and using the bilinearity
of the covariance, we get the terms in o

VIR g7 = S S - Sy (Saa - ey Sa).
dvisrl by
T

This shows that o also derives from (]SL, A,Y) as stated. To simplify the expression of « to the
one claimed, note that we have 2 A= Yy, a. This is because R is the squared loss optimal linear

_ _ 1 ~
v = Say — 7 SayShy

predictor of Y given A and X, and thus R—Y is uncorrelated with any linear function of A and X,
and in particular A. This completes the proof.
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