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Abstract

Continuous emotion recognition (CER) is a task which requires the prediction of time series emo-
tional parameter outputs corresponding to query time series inputs given training data in the form
of matched pairs of input and output time series. In order to address this task, it is important to be
able to model not only relationships between points in the input and output spaces, but also tempo-
ral relationships between points within the output space. Gaussian process regression (GPR) is an
inference technique which has desirable properties for CER, including its ability to produce pre-
dictive distributions over the outputs rather than only point estimates. However, GPR is generally
applied to pointwise prediction or interpolation tasks, rather than to predictions of entire functional
outputs. We propose a covariance structure that is able to incorporate both input-output and tem-
poral information to produce predictions that take into account the functional nature of CER data.
We demonstrate the application of this method to simulated data, and to the AVEC2016 CER task,
showing that GPR with this covariance structure is able to make predictions of emotional arousal
from audio with over twice the accuracy of a straightforward pointwise application of GPR in the
input feature space, and is furthermore able to produce predictions with accuracy approaching that
of a competitive CER system using only very general component covariance models.

1. Introduction

Observations of temporally varying phenomena can often give rise to data which are most naturally
expressed as functions of time. If we are to carry out learning tasks which require the prediction of
functional outputs, or which must generalize from functional inputs, it is necessary to develop infer-
ence systems which are able to model not only relationships between input and output observations
at a particular moment in time, but also the temporal interrelationships between such data.

Continuous emotion recognition (CER) is a task with a functional prediction structure: CER
systems aim to describe the emotional content of a communication as a continuous function of time
mapping into a real vector valued emotional parameter space, which describes the emotional content
at a particular moment by decomposing it into a small set of emotional parameters. This contrasts
with earlier models that predicted discrete emotional labels, or assigned static emotional values to
entire utterances rather than continuously as a function of time. Wollmer et al. (2008); Gunes and
Schuller (2013); Grimm et al. (2007).

Successful and widely used emotional parameters include arousal, describing the level of activ-
ity or excitement associated with an emotion, valence, describing the positive or negative evaluation
associated with an emotion, and dominance, describing the level of social dominance or submissive-
ness conveyed by an emotional communication Wu et al. (2010). In particular, an arousal/valence
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Figure 1: Example of a set of emotional parameter annotations. The horizontal axis denotes time,
the grey lines the ratings submitted by individual human annotators, and the black line
their mean. The shaded grey area represents a two standard deviation region around
the mean. This uncertainty in estimating the emotional parameter values suggests that
methods which are able to predict or train from distributions over such outputs may be
more appropriate than methods which produce only point estimates.

emotional parameter space is often used in the CER setting. Due to the nature of emotion, these
parameter values cannot be observed directly to produce training data, but must be estimated by
humans; an example of a set of annotations for the arousal parameter over a short period of time is
shown in Figure 1. However, each human annotator may not agree as to the correct emotional pa-
rameter value at any given point in time, so it is not possible to obtain a known-correct ground truth
for training using this annotation method. This suggests that probabilistic methods which are able
to predict and train to distributions over these parameters may be more suitable than methods which
are able to model only pointwise outputs. Furthermore, we do not expect the nature of the relation-
ships between observations such as speech recordings and the corresponding emotional parameter
values to change significantly with time, nor do we expect the time indices of points residing in
separate recordings to be meaningfully related. As such, methods which are able to model local,
relative temporal structure without presuming a global temporal structure may be suitable for CER.

In practice, bidirectional long short-term memory neural networks (BLSTMs), a type of neural
network architecture which allows for the modelling of temporal relationships using non-decaying
memory cells, have been used successfully for CER Waéllmer et al. (2013); Pei et al. (2015). How-
ever, as a neural network method, BLSTM does not use an easily-interpretable model structure, so
it is much less straightforward to incorporate a priori information into the model than with GPR
covariance functions, and the trained network and its weights may be difficult for humans to mean-
ingfully interpret. Furthermore, BLSTM also is not a probabilistic method, and provides only point
predictions of output points, rather than the full posterior distribution produced by GPR.

Another method which has shown some success in CER is output-associative RVM (OA-RVM)
Nicolaou et al. (2012), which is a modification to the relevance vector machine method to account
for relationships between output points within a fixed temporal window, allowing it to perform
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regularization as well as replication for functional prediction tasks. Additionally, support vector
machines have been used for this task, but this is not a functional method, and does not itself
account for temporal relationships Valstar et al. (2016). In order to apply SVR to this problem,
the data must first be segmented into temporal windows which are processed individually, which
requires an a priori choice of window length upon which the performance of the predictions may
be strongly dependent.

Gaussian process regression (GPR) is an inference technique which allows the estimation of a
posterior distribution over test outputs given a set of training pairs of input and output points. It is a
fully Bayesian method, allowing it to deal directly with distributions over outputs. While GPR has
generally been applied to interpolation or to the prediction of non-functional values, it permits the
specification of a detailed covariance structure, so it may be applied to functional prediction tasks
such as CER if a suitable covariance model is constructed.

While GPR has generally been applied to pointwise prediction, some attempts have been made
to apply the technique to limited classes of functional prediction tasks. In Shi et al. (2005), an
approach is developed which uses a mixture of Gaussian processes mediated by a latent indicator
variable, and this model is applied to a task in which the center of mass of the body of a paraplegic
patient in the process of performing an electrically-assisted standing-up maneuver is predicted from
the forces and torques measured at the arms of the chair, under the patient’s feet etc. In Shi et al.
(2007), the model is modified to include a separate estimate of the mean structure of the predicted
process, with GPR used to model the covariance structure. In Wang and Shi (2014), the approach is
generalized to admit non-Gaussian output variables. However, this line of approach is not generally
suitable for modelling functional relationships with only local temporal structure such as those
encountered in CER, as it relies on an alignment between the time indices of separate series of
observations, which is not generally applicable to CER.

In Lian (2010), a more general functional GPR model was developed, using a covariance
function composed of the product of an isotropic covariance function in the input space with an
isotropic covariance function in time. This model was demonstrated to produce successful results
in a multiple-step-ahead time series prediction task, but due to the multiplicative covariance struc-
ture, when the time-based component tends to zero due to the temporal distance between points,
the whole covariance function is forced to be small, such that points which are distant in time will
have low covariances even if they are nearby in the input space. This precludes modelling of input-
space relationships between temporally distant points, confining the applicability of this method to
extrapolation or interpolation tasks in which only temporally local points are considered in each
predictive distribution. However, for CER, we wish to be able to predict the emotional parameter
values corresponding to recordings for which we have no access to emotional annotations, in which
case neither interpolation or extrapolation is possible.

In this paper, we propose a covariance structure which can be used to apply GPR to functional
inference tasks such as CER that require the modelling of both temporal relationships between
points nearby in time, and non-temporal relationships between points at any temporal distance, using
separate covariance functions which are combined additively. This approach is then demonstrated
by applying it to both simulated data and a real-world CER task.
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2. Continuous Prediction and Global Temporal Invariance

Gaussian process regression (GPR) is a Bayesian technique for supervised learning. A Gaussian
process is simply a collection of random variables of which any finite subset has a jointly Gaussian
distribution. GPR uses Gaussian processes as distributions over a function space, allowing Bayesian
inference to be carried out to produce a posterior distribution over functional test points, conditioned
on the known values at some training points. This technique has a number of desirable properties.
As a fully-Bayesian inference method, it provides a joint posterior distribution over the test outputs,
rather than merely a point estimate. Furthermore, there is no requirement for observations to be
regular in time or space; samples can be handled at arbitrary coordinates.

When used in GPR, a Gaussian process is specified by its mean function m(x) and covariance
function (or kernel function) k(x, 2’). The mean function specifies the mean value of the output as a
function of the corresponding input, while the covariance function specifies the covariance between
any pair of output values y = f(x) and y' = f(2’) in terms of their corresponding input values x
and x’ Because the covariance function is defined in terms of the input values, which are known for
both training and test points, we can write the joint distribution over a set of training output points
Y corresponding to a matrix of input points X, and a set of test output points Y, (which we intend
to predict) corresponding to a matrix of test inputs X, even though the values Y, are unknown.

GPR is a particularly suitable approach for affective computing problems such as CER due to
its ability to predict distributions over the outputs rather than simply making a point prediction of
each output value. Not only does this provide a measure of confidence in each prediction, which can
be obtained by examining the variance of the output distribution, but it also allows the parameters
of the system to be trained using a distribution over each training output rather than a single known
ground truth value. Because it is not possible to directly observe emotional parameters, training
data for CER tasks must be obtained by human annotation. However, each human annotator may
not agree as to the correct emotional parameter value at any given point in time, so it is not possible
to obtain a known-correct ground truth for training using this annotation method.

An important property of the relationship between the inputs and outputs in a CER setting is
global temporal invariance: we do not expect the nature of the relationship between input and
output points to depend on their absolute time indices, but we do wish to model relative temporal
relationships within the same time series. In CER, this condition corresponds to the practical fact
that the start point ¢ = 0 of each recording is arbitrary: we would not expect the observation at n
seconds after the start of a given recording to have any particular relationship with the observation
at n seconds after the start of another recording made at a different time, nor would we expect the
relationship between the inputs and outputs to change if we were to shift the time indices of each
observation by a constant amount.

3. Proposed Covariance Structure

We wish to construct a covariance structure which will allow GPR to be applied to tasks such as CER
where training data consist of pairs of corresponding input and output time series, and at test time,
we wish to generate a predictive distribution over an output time series given an input query time
series. Our proposed approach to applying GPR to this class of problem is to combine two separate
covariance functions: one, x, to represent relationships between input and output points, and one,
K¢, to represent temporal relationships amongst output points, each of which can be independently
specified according to the structure of the problem. A weighted sum is then taken over the kernels,
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Figure 2: Diagrammatic representation of the covariance structure specified in Equation 1. Two
input observations are shown on the left; time indices ¢ and ¢’ and time-series identifiers
i and i’ are processed by the time kernel £, and the observation vectors x*(t) and z*' (t')
for each feature modality are processed by the input-output kernel «,. These components
are then combined according to the tradeoff parameter cv. The result is then scaled by o2
to produce the final covariance value.

which is a novel approach to the combination of temporal and feature-space information for GPR:

k((z,t,1), (x,t',4"))
= o2 (are((t,1), (', 1) + (1 — @) kg (, ")) (1)

where each input point has the form (x, ¢, 7), where ¢ is the time index corresponding to observation
x and 7 is a unique identifier representing the particular series of observations (individual recording)
of which (x,t) is a part. In Equation 1, « controls the tradeoff between the relative importance
placed on temporal vs input-output relationships, and o controls the overall variance of the process.
Figure 2 shows a diagrammatic representation of this covariance structure. This additive model was
chosen as it is able to model relationships between points based on either their relative temporal
locations or their positions in the input space, unlike multiplicative models such as proposed in
Lian (2010), where temporally unrelated points will have a low covariance even if they are strongly
related under the input-output kernel, and vice-versa. To ensure global temporal invariance, we
restrict x; as follows:

kee(t —t')  wherei =7

’ft((tvi)a (t,ai/)) = (2)

0 otherwise

that is, the relationships between points can depend only on relative temporal distances within a
single recording, not on the absolute time index of any point. Furthermore, as points in separate
recordings have no meaningful temporal relations, in these cases we simply set ¢ to zero.
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This covariance structure generalizes two standard approaches to the practical application of
GPR: the use of a one-dimensional temporal covariance function to perform pointwise interpola-
tion in time, and the use of a typically multidimensional covariance function to model a mapping
between individual points in an input and output space. This approach combines the two, with
the influence of each model controlled by a single tradeoff parameter .. This allows the system
to predict the values of a time-varying function within an output space based on a corresponding
time-varying function within an input space, while simultaneously imposing temporal relationships
(generally, smoothness or periodicity conditions) on the output function and carrying out interpola-
tion from known temporally nearby values within the output space if they are available.

4. Experiments
4.1. Simulated data

To demonstrate the advantages of the proposed approach over the straightforward application of
GPR to the input-output relationships and over a multiplicative model similar to that proposed in
Lian (2010), we constructed a simple data set with the following components:

e A time index set 7', of which input and output data are functions.
e An output function f,(¢) : T'— Y = R, which we expect to vary smoothly with time.

e An input function f,(¢) : T — X = R2, for which if f,(¢) and f,(¢') are similar, then f,(t)
and f,(t") will tend to be similar.

To model these relationships with GPR, we can construct a composite covariance function s by
first specifying functions k., and x; to model the non-temporal relationships between points in X
and Y, and the relative temporal relationships between points within 7" respectively. As component
kernels, we use squared-exponential kernels which decrease isotropically with distance and have
characteristic lengthscale /, evaluated over two dimensions for «, and one for r;:

2
ke(x, ') = exp <_\a:2l§3|> 3)
t— tl 2
Kt (t, 1) = exp <—‘2lt2‘> “4)
’{(($7 t)7 ($,, t,)) = 02 (aﬁx(ma ml) + (1 - O‘)’{t(ta t)) (5)

For the simulation experiment, the time series f,(7") was generated randomly by taking 40 normally-
distributed points at evenly spaced intervals along 2000 time indices, which were then interpolated
with cubic curves to produce smoothly-varying functions of time. f,(7') was then generated by
sampling from a Gaussian distribution with a covariance matrix derived from x with preset parame-
ters l; = 10,1, = 1.5, = 0.5, 0> = 2, which were not used during training. The central 500 points
of f,(T") were set aside as test data, and the others were used to train the system (that is, three times
as much training data as test data). In the training process, the kernel parameters were estimated by
maximizing the likelihood of the training data. Then, the trained kernel was used to predict the 500
test points, and the concordance correlation coefficient between the mean values of the predictive
distributions and the known test outputs was evaluated. The concordance correlation coefficient p.

39



GPR FOR CONTINUOUS EMOTION RECOGNITION

is a modification of the standard Pearson correlation coefficient which penalizes differences in both
shape and magnitude:
2p0 0y

o+ T+ (e — 1)

pc(m ’ y) = (6)
where p is the Pearson correlation coefficient between the sequences x and y, p, and p, are the
corresponding means, and o2 oy are the variances. The component kernels x, and x; were also
used to make predictions which were evaluated against the test data. We also tested a multiplicative
kernel K

x (1), (2, 1) = 0° (Ko, )R (2,1)) 7

4.2. Results

This process was performed 50 times with newly-generated data each time. The average concor-
dance values obtained were 0.73 for «, 0.00 for x4, 0.02 for k, and 0.39 for k«, where a higher
value corresponds to a more accurate prediction of the test data. While neither the input-output
model k. or the temporal model x; were able to produce reliably accurate predictions on this data,
the models x and k, by combining these two kernels, were able to produce significantly more ro-
bust predictions. Figure 3 shows the results obtained for a single simulated dataset. Note that while
the predictions produced by ., which do not use any temporal information, vary more rapidly than
the true values, the addition of the time component x; to produce the composite kernel x imposes a
smoothness condition on the output which reduces the rate at which the prediction varies, and under
this condition, the system is able to use both the input values x and the corresponding time indices ¢
to produce a prediction which more closely resembles the true output function. Furthermore, in the
regions near the edge of the 500 point test region, where temporally nearby training outputs exist,
the time kernel x; is also able to provide an extrapolative capability. Both « and x benefit from this
effect, and as such they both produce accurate predictions in these edge regions. However, within
the central region, where there are no temporally nearby training points from which to extrapolate,
the temporal covariance component «; between points in this region and training points is close to
zero. In the multiplicative model x, this means that the complete covariance is forced to be close
to zero, limiting the ability of this model to make meaningful predictions from the training data in
this region. However, in the proposed additive model «, a zero temporal covariance merely causes
the predictions to rely only on the input-output covariance model .

4.3. Continuous Emotion recognition

To demonstrate the applicability of the proposed approach to CER, we applied it to the AVEC 2016
affect recognition sub-challenge Valstar et al. (2016), which requires continuous arousal and valence
values to be predicted for spontaneous, task-driven dyadic interactions using the recorded outputs
of audio, video and electrophysiological sensors, along with annotations of perceived arousal and
valence values produced by a panel of humans to obtain an approximation to the ground-truth emo-
tional content of the training recordings. However, in this case, we restricted our attention to audio
data only, and we attempt to predict arousal, as it is considered to have a stronger relationship
with audio-derived acoustic features than valence Gunes and Schuller (2013). As per the challenge
specifications, the accuracy of predictions was evaluated using the concordance correlation coeffi-
cient between predicted time series (which in this case will be taken as the mean of the predicted
distribution) and the average of the human annotations.
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Figure 3: Predicted values from randomly-generated simulated data. The bold solid line represents
the true test output generated to have covariances specified by a model covariance func-
tion with both temporal and input-output relationships, the thin solid line the mean value
of the predictive distribution produced by the model covariance function k, the dashed
line the mean value of the predictive distribution produced by the non-temporal compo-
nent kernel ., and the dotted line he mean value of the predictive distribution produced
by the multiplicative kernel . The predictions produced by the feature-only kernel x,
do not benefit from extrapolation in the edge regions or regularization in the central re-
gion, and so this model is not able to produce an accurate prediction relative to x, which
additionally accounts for temporal relationships. Further, while both the additive model
x and the multiplicative model xy incorporate both temporal and input-output relation-
ships, the multiplicative model is unable to produce accurate predictions in the central
regions where no temporally nearby training points are present.

In order to apply the proposed approach to this task, we must specify a covariance function k,,
to represent relationships between the content of the input audio recording at a particular point in
time and the corresponding output emotional parameter value, a covariance function x; to represent
the temporal interrelationships between output points, and a method of optimization to determine
the values of the system parameters. For the temporal covariance model x;, we use a squared-
exponential function:
exp (— |tgl%/|2> where 1 = 7/

0 otherwise

’{T((ta i)a (tlv Z,)) =

This covariance function corresponds to the assumption that the emotional content of a communi-
cation does not change arbitrarily with time: if you are angry at a particular moment in time, then
you are more likely to remain angry for the following second than to suddenly become happy. In
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the case where the points are from different recordings (that is, where 7 # ¢', and therefore ¢ and ¢/
are not comparable), then we do not attempt to model a temporal relationship between them, simply
setting k4 to 0.

To model the relationships between the content of the audio recordings, we first applied feature
extraction using the eGeMAPS acoustic feature set with a 4 second window for the calculation
of functionals, which is specified as the standard audio feature set for arousal in the AVEC2016
affect recognition challenge Eyben et al. (2016); Valstar et al. (2016). Then, in order to reduce the
computational resources required for model training, the 88 eGeMAPS features were then reduced
to 40 dimensions using PCA. We then treat these 40 principal components as the inputs to ;.
However, a simple spherical covariance function such as the squared-exponential used for x; may
not be suitable for ., as the 40-dimensional input space is large and our data is limited, so we may
need to make predictions for query points which have no nearby training points in the input space.
As such, we used a multidimensional additive covariance function as presented in Duvenaud et al.
(2011), which allows for the modelling of interactions within any subset of the dimensions of the
feature space. As component kernels, we used 40 one-dimensional squared exponential functions,
each corresponding to one of the principal component axes. The hyperparameters of the additive
kernel were optimized by maximizing the likelihood of the training data by gradient ascent. Then,
the remaining parameters of the system were optimized using the Spearmint black-box optimizer
Snoek et al. (2012) targeting the average concordance correlation coefficient produced on a two-fold
cross validation over the training data.

With a system trained as described above, a concordance correlation coefficient of 0.598 was
obtained on the training set when predicting the averaged arousal annotations. For comparison, the
AVEC2016 baseline system was able to produce a coefficient of 0.648 Valstar et al. (2016). As
such, this indicates that while the implemented system does not outperform the state-of-the-art, it is
able to produce reasonable performance on a difficult real-world CER task, which suggests that the
proposed approach of using GPR with additively combined temporal and input-output covariance
models has some applicability to this type of task. To demonstrate the contribution of the temporal
component of the model, we randomly partitioned the training data, using two thirds to train a
system which was tested on the remaining third. In each experiment, all parameters of the model
except o were kept constant. By varying «, we can isolate the effect of the addition of the time
kernel x;: when o = 0, only k. is used to make predictions, which corresponds to an ordinary
pointwise use of GPR. As « increases, the influence of the temporal component increases and
eventually comes to dominate. In this practical case, the size of the covariances produced by «, are
of a much greater magnitude than the covariances produced by k; as such, we definea = 1—-107¢,
as the values of interest for « are close to 1. Figure 4 shows a plot of the concordance correlation
coefficients achieved by models with various values of a. As can be seen in the figure, while at
a = 0 (a = 0), where the model uses only input-output relationships, the prediction generated is
meaningful, with a concordance correlation coefficient of 0.38, the introduction of the time kernel
is able to increase the accuracy of the predictions up to a coefficient of 0.78 where @ = 1 — 1077,
Past this point, the performance reduces rapidly as the time kernel comes to dominate, and the
covariance structure is no longer able to properly model input-output relationships.
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Figure 4: Concordance correlation coefficients obtained when varying a while making predictions
of the arousal parameter corresponding to partition of the AVEC2016 training data. The
horizontal axis represents a where « = 1 — 107*. At a = 0, only the input-output
covariance model is used, corresponding to an straightforward pointwise use of GPR. As
a increases, the relative influence of the temporal model is increased, which improves the
performance of the system up to an optimum value around a = —7.5, after which the
accuracy drops towards zero as information about the inputs is attenuated.

5. Conclusion

In this paper, we propose a covariance model which allows Gaussian process regression to be ap-
plied to functional prediction tasks that require modelling of both input-output relationships and
temporal relationships. To construct this model, we additively combine separate covariance func-
tions to represent temporal and input-output relationships, and we restrict the temporal covariance
function so as to incorporate an assumption of global temporal invariance: only relative temporal
distances are considered, not the absolute time indices of each point. This model was then applied
to both simulated data and a real-world CER task, demonstrating its ability to make predictions
of emotional arousal from audio with accuracy approaching that of a competitive baseline system,
while offering the qualitative advantages of fully Bayesian inference. Furthermore, in experiments
using a partitioning of the training data, we show that the addition of the proposed temporal struc-
ture to the covariance model produces predictions with over twice the accuracy of a straightforward
pointwise application of GPR in the input feature space.
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