
Proceedings of Machine Learning for Healthcare 2017 JMLR W&C Track Volume 68

Predictive Hierarchical Clustering:
Learning clusters of CPT codes for improving surgical

outcomes

Elizabeth C. Lorenzi∗ elizabeth.lorenzi@duke.edu
Stephanie L. Brown∗ stephanielisa.brown@duke.edu
Department of Statistical Sciences
Duke University, Durham, NC

Zhifei Sun zhifei.sun@duke.edu
Department of Surgery
Duke University, Durham, NC

Katherine Heller katherine.heller@duke.edu

Department of Statistical Sciences

Duke University, Durham, NC

Abstract

We develop a novel algorithm, Predictive Hierarchical Clustering (PHC), for agglomerative
hierarchical clustering of current procedural terminology (CPT) codes. Our predictive hi-
erarchical clustering aims to cluster subgroups, not individual observations, found within
our data, such that the clusters discovered result in optimal performance of a classification
model. Therefore, merges are chosen based on a Bayesian hypothesis test, which chooses
pairings of the subgroups that result in the best model fit, as measured by held out predic-
tive likelihoods. We place a Dirichlet prior on the probability of merging clusters, allowing
us to adjust the size and sparsity of clusters. The motivation is to predict patient-specific
surgical outcomes using data from ACS NSQIP (American College of Surgeon’s National
Surgical Quality Improvement Program). An important predictor of surgical outcomes is
the actual surgical procedure performed as described by a CPT code. We use PHC to
cluster CPT codes, represented as subgroups, together in a way that enables us to bet-
ter predict patient-specific outcomes compared to currently used clusters based on clinical
judgment.

1. Introduction

With the widespread adoption of electronic health records (EHR) and the strong effort to
digitize health care, there is a tremendous opportunity to learn from past experiences with
patients to better adjust care for the current patient. Our goal is to use a surgical compli-
cations database (American College of Surgeon’s National Surgical Quality Improvement
Program) to train a model to predict post-operative surgical complications. Surgical com-
plications, such as pneumonia, renal failure, and infection, are associated with decreased
quality of life, inferior survival, and significant costs. Small improvements in prediction are
meaningful in this application; major complications add substantial costs to the healthcare
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system, with an estimated $11,500 of increased cost per event (Dimick et al., 2004). To
help align the interests of patients, providers, and payers, it is vitally important that health
systems minimize the occurrence of any complication.

A major characteristic in predicting complications is which surgical procedure will be
performed on the patient. The database contains 3,132 unique surgical codes, known as
current procedural terminology, or CPT codes, along with 317 other covariates including
patient specific information such as age, gender, lab values, and prior medical history. Clin-
ical guidance suggests that there are underlying groups of surgeries which have different
relationships between these predictors and the response of interest. Initial modeling via
penalized logistic regression uses clinically formed groupings of CPT codes, which groups
classes of similar surgeries together (e.g. general, cardiovascular, etc.). In this initial model-
ing, we fit separate models per grouping of CPT codes, resulting in different coefficients for
each grouping. These CPT categories reduce the CPT codes to 16 clusters of procedures,
however, these groupings are based on insurance and clinical information, and lack statisti-
cal learning behind the groups. In this paper, we develop a hierarchical clustering algorithm
of surgical procedures (via CPT codes), with the goal of finding clusters that optimize the
performance of a sparse logistic regression model for predicting surgical complications.

Clustering is used to find underlying patterns and group structure by partitioning data
into groups based on similarity between observations. Hierarchical clustering is one of
the most frequently used unsupervised learning techniques, where the algorithm creates a
binary tree (dendrogram) based on similarity between the data points (Duda et al., 1973).
The result is a hierarchically formed structure which provides multiple clustering solutions,
where often the hierarchy agrees with the intuitive organization of real-world data.

Many other clustering approaches exist that are in the form of hierarchically formed
clusters. For example, Bayesian Hierarchical Clustering (BHC), is a probabilistic approach
to hierarchical clustering that decides merges based on statistical hypothesis testing which
compares the probability of the data belonging in a single cluster versus being separated
based on marginal likelihoods (Heller and Ghahramani, 2005). Our approach adapts the
ideas of this paper, where instead of comparing marginal likelihoods of covariates, we com-
pare across predictive held out likelihoods based on learned penalized logistic regressions.
Unlike BHC, we do not implement a fully Bayesian model. For computational purposes, we
fit a lasso logistic regression using the R package, which greatly improves the speed of our
algorithm compared to a Bayesian implementation of lasso with a logistic or probit link.

We aim to learn clusters not based on similarity of data points, as learned through a
marginal likelihood of a probabilistic model over data, but instead by which clusters, when
merged, most improve the accuracy of prediction. This is done by comparing the probability
that all data in a potential merge were generated from the same conditional distribution,
p(y|X, θ), to whether they were derived from separate models. In addition, we aim to cluster
subgroups within our data; we approach this data challenge by initializing each cohort of
patients with the same CPT code as a single cluster in our data. We learn a regression
model for each potential merge on a training set using two-thirds of the data, then test each
model on the held out third for evaluation in the testing set using predictive likelihoods
under the learned regression model. The result is a dendrogram that hierarchically relates
CPT codes based on which cohorts of patients improve the prediction of the overall model.



2. Algorithm

2.1 Overview

Predictive hierarchical clustering (PHC) is similar to the traditional agglomerative cluster-
ing algorithm with its one-pass bottom-up approach that iteratively merges pairs of clusters.
However, our clustering challenge involves additional data components, such as a response
variable, y, a set of predictors, X, and nested subgroups within the data, z.

Let D = {(x1, y1)..., (xn, yn)} denote the data set, and Di ∈ D the set of data points
at the leaves of the subtree, Ti. The data, D, contains G subgroups, representing the G
unique CPT codes. Each row of our data,(xi, yi), has a group assignment, zi = g, where
g ∈ {1, ..., G}. The algorithm is initialized with G trees, each containing all data for a single
CPT procedural code, Dg = {(Xi,yi) : ∀ i s.t. zi = g}. At each iteration, the algorithm
considers merging all pairs of existing trees. If Ti and Tj are merged into the new tree
Tk, then the associated set of data for Tk is now Dk = Di ∪ Dj . We restrict our search of
merges to only partitions in the data consistent with the subtrees, Ti and Tj . This reduces
the number of comparisons at each potential merge, allowing for a more computationally
efficient algorithm.

Two hypotheses are considered for each potential merge. The first hypothesis, denoted
byHk1 , states that the data considered, Dk, are generated from the same model, p(yk|Xk, θk),
with unknown parameter, θk. We learn the model p(yk|Xk, θk) using a penalized logistic
regression over a training set of the data, Dk,train. To evaluate the probability of the data
under this hypothesis, p(Dk|Hk1), we compute a predictive likelihood on a held out set of
data.

p(Dk|Hk1) = p(yk,test|g(Xk,test, θ̂k)) (1)

The predictive likelihood is solved by first estimating the predicted probability of an
outcome under the learned logistic model,

p̂ = g(Xk,test, θ̂k) = p(yk,test = 1|Xk,test, θ̂k) =
1

1 + exp {−Xk,testθ̂k}
(2)

where θ̂k are the learned coefficients from the model. We then evaluate the likelihood of our
data under those predicted probabilities, p(yk,test|p̂) =

∏nk
i∈k Bernoulli(yk,test, p̂). Though

our application works with a binary response, this is easily adapted for continuous response
data using a normal likelihood and solving first for the predicted mean instead of p̂.

The second hypothesis, denoted by Hk2 , states that the data considered, Dk = {Di∪Dj},
are generated from separate models with different parameters {θi, θj}. When evaluating
the second hypothesis, we are always considering clusterings that partition the data in a
manner consistent with the subtrees, Ti and Tj . This allows us to avoid summing over
the exponential number of possible ways of dividing the data, Dk, into two clusters, and
allows us to utilize recursion in evaluating the probability of the two data sets, Di, Dj ,
under each previously merged tree, p(Di|Ti) and p(Dj |Tj) (defined in Equation (3)). The
probability of the data under the second hypothesis is p(Dk|Hk2) = p(Di|Ti)p(Dj |Tj). To
evaluate the probabiilty of the data under each tree, we combine the probability of the



data under both hypotheses and weight by a prior probability that all points belong to one
cluster, πk = p(Hk1).

p(Dk|Tk) = πkp(Dk|Hk1) + (1− πk)p(Di|Ti)p(Dj |Tj) (3)

For each possible merge we first compute these hypotheses, then choose our next merge
based on which trees, {Ti, Tj} when merged into a single tree Tk result in the largest im-

provement in p(yk|g(Xk, θ̂k)) compared to p(yi|g(Xi, θ̂i))p(yj |g(Xj , θ̂j)). We evaluate this
improvement using Bayes rule, where we compute rk = p(Hk1 |Dk), shown in Equation (4).

rk =
πkp(Dk|Hk1)

πkp(Dk|Hk1) + (1− πk)p(Dk|Hk2)
(4)

The two hypothesis effectively test that the association of the predictors with a surgical
outcome variable, y, is the same for considered data, Dk = {Di ∪ Dj}, versus allowing
the association to be specific to each tree under consideration. The formal algorithm is
presented in Algorithm 1.

Algorithm 1: Predictive Hierarchical Clustering

Data: Response: y ∈ {y1, ..., yn}
Predictors: X ∈ {x1, ...,xn}
Group Membership: z = {z1, ..., zn} where zi ∈ {1, ..., G}

Initialize: Number of clusters c = G
Dg = {(xi, yi) : zi = g}
Fit model Dg,train ∀ g
Save p(Dg,test|Hg

1) ∀ g
while c > 1 do

Find the pair Di and Dj with the highest probability of the merged hypothesis:

rk =
πkp(Dk|Hk

1)

πkp(Dk|Hk
1) + (1− πk)p(Dk|Hk

2)

Using the following steps:

• ∀ Dk = Di ∪ Dj s.t. i 6= j, fit p(yk,train|Xk,train, θk) to learn θ̂k

• Predict on test set of data using learned coefficients: p̂ = p(yk,test = 1|Xk,test, θ̂k)

• Calculate likelihood of test data under predicted probability, p(yk,test|p̂), to learn p(Dk|Hk
1)

• Use previously stored rk to evaluate p(Dk|Hk
2)

• Solve for rk

Merge Dk ← Di ∪ Dj

Delete Di and Dj

c= c-1
end

2.2 Implementation

The model is initialized by running a regression for each subset of data, Dg. We then
consider all possible merges, for example merging trees Ts and Tt into Tu, by running a



model on the subset of data where zi = s combined with the data where zi = t. The
regression model for this application is the lasso logistic regression using all covariates
as main effects with no interactions, penalizing the complexity of the models with the
lasso penalty. We choose the lasso penalization for its ability to handle strongly correlated
covariates and to perform variable selection (Tibshirani, 1996). This method was preferred
over an assortment of commonly used binary classifiers based on its predictive performance
and computational efficiency. The logistic regression equation with the incorporated penalty
is shown in (5). Any type of classification or regression model is usable in this algorithm,
making the framework flexible for many different data problems.

L(β) = arg min
β

n∑
i=1

yixiβ − log(1 + exp (xiβ)) + λ1‖β‖1 (5)

Because the algorithm requires the fitting of multiple regressions at each iteration of the
tree, our algorithm is constructed in a way that allows parallelization. The complexity of
computing the tree is O(n2), however, as each hypothesis comparison is independent of all
others we can compute the merge metric for multiple considered merges simultaneously. At
each iteration of the algorithm, we push the possible models to learn to separate cores of
the machine to reduce the computational time by a factor of the number of available cores.

Once the hierarchical tree is learned, we cut the tree to retrieve cluster solutions. The
merges in the tree are made at the chosen rk for that iteration of the algorithm, resulting
in the merge being plotted in the dendrogram at a height equal to rk. When the weighted
probability of the merged hypothesis, rk > 0.5, the merges are justified. Therefore, the tree
should be cut at points where rk < 0.5.

2.3 Learning πk

Algorithm 2: Updating πk
Initialize: Each node of tree i to

have di = α, πi = 1
for each internal node k do

dk = αΓ(nk) + dleftkdrightk

πk =
αΓ(nk)

dk

end

To learn an appropriate πk, or the prior probability
of the merged hypothesis, a Dirichlet prior is placed
on this parameter and updated at each step of our
algorithm. The approach is similar to Dirichlet Pro-
cess mixture models (DPM), where the probability
of a new data point belonging to a cluster is propor-
tional to the number of points already in that cluster
(Blackwell and MacQueen, 1973). This is commonly
modeled with a Dirichlet prior (for finite models) or a
Dirichlet Process prior (for infinite models) over the
sampling proportions of each cluster with a concen-
tration parameter, α, that controls the expected number of clusters. Although we are not
approximating a Dirichlet process mixture model, the prior over πk represents the proba-
bility of merging over all the possible partitions in the tree. The resulting prior update on
the merged hypothesis calculates the relative mass of all subgroups, zk, belonging to one
cluster versus the subgroups, zk, remaining in their current partition as defined by the tree
structure. This process is clearly defined in Algorithm 2, where we denote the right subtree
of Tk as rightk the left subtree as leftk, and the number of subgroups within the tree as nk.



3. Results

3.1 Simulated Results

To validate the PHC algorithm, we simulate data which inherently is structured with sub-
groups and verify that the subgroups of data are merged appropriately. We first simulate
four sets of coefficients, {θ1, θ2, θ3, θ4} drawn from a standard normal, and next create X
from standard normal draws. We convert some of the variables in X to binary variables
(using a normal CDF) to be as representative of our data as possible. Next, we compute
the associated y with twenty subgroups, drawn from a Bernoulli distribution with the prob-
ability of the outcome being the inverse logit of Xθ, where the first set of five subgroups
use θ1, the second five subgroups use θ2, etc.; therefore giving the inherent clustering of
the twenty subgroups into four larger clusters. For simplicity, subgroups 1-5 are generated
from one distribution of coefficients, 6-10 another, 11-15 a third, and 16-20 the fourth. The

Figure 1: Clusters discovered by PHC (left) and clusters discovered by traditional hierarchical
clustering with complete linkage (right). Evaluated on simulated data with twenty subgroups and
four underlying groups.

dendrogram in Figure 1 left confirms that we are able to find the underlying structure in
the data. As a comparison to other methods, Figure 1 right displays the results from run-
ning traditional hierarchical clustering with complete linkage, using the R package, hclust.
Performing traditional hierarchical clustering on this simulated data with n observations
falling into G subgroups would result in a dendrogram with n nodes instead of G. Therefore,
we average over each predictors for each subgroup, and then calculate Euclidean distance
between these points. The resulting hclust dendrogram is unable to separate the data into
the four true subgroups when clustering based solely on similarity.

We additionally are interested in whether these new clusters improve the overall pre-
diction of the penalized logistic regression. We test the clusters by fitting models for each
of the four groups found by PHC and compare these to cutting the hclust dendrogram at
four clusters then fitting models. As a further comparison, we fit models for each of the 20
subgroups individually. The data is split into a training set to fit the models and a testing
set to generate predictions. We plot the ROC curves and compare the results. As can be
seen in Figure 2, the four clusters found by PHC substantially outperform the traditional
hierarchical clustering approach and the twenty subgroups modeled individually.



Figure 2: ROC curve (left) and precision recall curve (right) from simulated data showing clustering
solutions for PHC (dark green) compared to hierarchical clustering with average linkage (blue) and
treating each subgroup as an individual clulster (pink). Data corresponds to that used in Figure 1.

3.2 Experimental Results

The development of PHC is motivated by our goal of accurately predicting the risk of ad-
verse outcomes for individual patients while incorporating procedural information in an
informed way. We work with data from American College of Surgeons’ NSQIP, a national
surgery program collected from participating hospitals across the country. The data contain
information about surgery patients’ demographic, medical history, lab results, procedural in-
formation via CPT codes, diagnosis information via Clinical Classifications Software (CCS)
categories, and postoperative outcomes.

Specifically, we are working with 317 predictor variables not including the CPT infor-
mation. These predictors include continuous variables, such as lab values, as well as binary
indicators of patient history, such as whether a patient has diabetes. Many of the indica-
tor variables are sparse, with the majority of indicators with means less than 5%. Some
of the continuous variables are highly skewed, so a normal scores transform is applied to
handle the non-normality (Bogner et al., 2012). In addition, we have diagnosis information
grouped through CCS categories, providing context to which ailment the patients have.
The six post-operative outcomes are any morbidity (any type of complication), surgical site
infection (SSI), respiratory complication, septic, 30-day mortality, and renal failure. We
use a subset from NSQIP with data spanning from 2005-2014. This subset of the data is a
sample of 3,723,252 patients, with 3,132 unique CPT codes. Each patient has one unique
surgical CPT code describing the main surgical procedure performed.

CPT codes naturally fall into a hierarchical system where there exist coarse groupings of
CPT codes based on the type of surgery performed. For example, CPT codes in the range
of 30000:32999 are all surgeries performed on respiratory system, codes in the range of
40490:49999 are digestive system surgeries, and others fall into categories for cardiovascular
system, urinary system, and nervous system amongst others (Association, 2017). There are
a total of 16 categories a code may fall in. We use these categories as a baseline to compare
to our hierarchically learned groupings. In addition, we compare to using all CPT codes



Outcome Prevalence AUROC AUPRC
(PHC/Clinic/All) (PHC/Clinic/All)

Morbidity 14.51% 0.839/0.801/0.798 0.685/0.600/0.605
SSI 4.13% 0.671/0.655/0.651 0.209/0.191/0.184

Respiratory 2.77% 0.845/0.833/0.810 0.410/0.407/0.381
Septic 2.57% 0.740/0.738/0.728 0.292/0.274/0.289

Mortality 1.27% 0.869/0.861/0.835 0.381/0.356/0.293
Renal 0.65% 0.808/0.801/0.804 0.157/0.137/0.149

Table 1: Prevalence of each outcome, along with area under receiver operator curve (AUROC)
and area under precision recall curve (AUPRC) as found by regressions using the PHC clusters,
predetermined course CPT groupings and a regression with each CPT in its own group. We denote
the 16 clinically formed clusters of CPT codes as “Clinic” in the table.

(without being clustered) to assure that the learned clusterings do not lose information that
could be gained from using the data directly.

The number of patients with the same CPT code varies greatly. Some procedures only
occur once or twice in our data while other more common procedures occur tens of thousands
of times. In addition, the proportion of adverse outcomes varies between CPT codes and is
often less than 2%; in Table 1, we show the prevalence of each outcome across all CPT codes.
As there is little information for a model to learn on small groups with few realizations of
adverse outcomes, we restrict the number of observations per CPT code to be included in
our model. For model stability we choose groups with at least 500 patients. This allows
646 of the 3132 possible CPT codes to be considered, but the excluded CPT codes are so
small that the ones included encompass 94% of the data available. Large subgroups are
needed due to the sparsity of outcomes in combination with the need to split the data into
train (learn each model), test (calculate predictive likelihood), and validation sets (evaluate
performance of clusters outside of algorithm), and the need for the training set to be split
further for cross-validation of the lasso shrinkage parameter.

After running PHC independently for each outcome, we observe the resulting dendro-
gram and decide where to cut the tree as guided by the predictive likelihoods from the
output of the tree, as discussed in the previous section. To verify that the PHC clusters
improve the model over the baselines, we compute the area under the ROC curve and pre-
cision recall using held-out validation data. We use baselines of Lasso models fit using the
same structure but with different groupings of CPT codes; unique random slopes for each
PHC cluster, clinical cluster, or CPT code. The results are shown in Table 1, where we see
improvement for the majority of the outcomes using PHC. Specifically, our learned clusters
improve the AUC for the outcome, overall morbidity, by 3.8% compared to the baselines
and more than 1% for surgical site infection (SSI) and respiratory outcomes. The margin
of improvement from PHC over the baselines decreases for the sparser outcomes. Because
our algorithm fits separate models for each CPT code initially, if that CPT code has fewer
patients and fewer instances of that outcome, then the model fit may suffer and therefore
the algorithm has trouble merging these groups. In final testing, once clusters are learned,
it is common for the clusters encompassing the most patients to perform best. Additionally,
the models trained on the clinical groups often perform better than the clusters per CPT
models. There is a clear indication that larger training samples in each cluster improves
model fit.



Though the improvements for some outcomes are marginal, in an application of predict-
ing surgical outcomes, where costs are high and lives are at stake, even small improvements
can make a meaningful difference. Beyond the accuracy of prediction, the model parameters
are also impactful for future clinical decision making. Learning clusters that are based on
improved model fit, provides better estimates of coefficients that better guide clinicians to
the patient’s characteristics that are most attributing to their risk.

In order to better assist doctors, we developed a software platform to display the pre-
dicted risk of complications and suggest interventions based on the predictors that are
most influential in the inflated risk for a given patient. Our resulting clusters each have
learned coefficients describing the relationship between the predictors and the outcome.
Using the many-to-one mapping between the clusters and CPT codes, we can efficiently
provide personalized results for the patient based on the surgical procedure the patient
will undergo. For example, if the model learns that high levels of a certain lab value are
associated with increased risk of renal failure after a specific procedure and that patient
shows an abnormally high value of that lab, clinicians can be alerted and intervene with
appropriate treatment to help mitigate the risk of that outcome. As the influence of each
predictor varies across clusters it is essential that we correctly determine clusters for each
procedure. The interpretability of the model provides tools for clinical interventions to
prevent complications.

We aim to test feasibility and measure the benefit of using this software in actual practice
on a surgical ward. Validation of the software will support its adoption in daily medical
practice, both at our institution and elsewhere. The interface will eventually be linked to
the health system’s EHR, making it an easy transition into the daily work flow of health
care providers. This is in contrast to the ACS risk calculator that requires manual data
input prior to any risk calculations being obtained (Bilimoria et al., 2013).

4. Related Work

Prediction and clustering are two very commonly used data mining techniques. In Blockeel
et al. (2000), they present a method that adapts decision trees to the task of clustering
for prediction by employing instance-based learning. Similarly, in Ženko et al. (2005), they
introduce predictive clustering rules, where each clustering can be considered as a “rule”
that defines that cluster. Another realm of clustering is ”clusterwise linear regression”, first
introduced by Späth (1979), who proposed an algorithm that forms K partitions with corre-
sponding sets of parameters that minimize the sum of errors across each cluster. In DeSarbo
and Cron (1988), they present a conditional mixture, maximum likelihood approach to learn
clusterwise linear regression. The downside to these clusterwise linear regression approaches
include requiring the number of clusters and initial partitions to be pre-specified, and the
proclivity of getting stuck in local modes.

Many other clustering approaches exist that are in the form of hierarchically learned
clusters. For example, we have discussed how PHC relates to Bayesian Hierarchical Clus-
tering (BHC), a probabilistic approach based on marginal likelihood calculations (Heller
and Ghahramani, 2005). Similarly, Neal (2001) uses Dirichlet diffusion trees to provide
a probabilistic hierarchical clustering approach. The work of Teh et al. (2009), Bayesian
Agglomerative Clustering with Coalescents, is a fully Bayesian approach for hierarchical



clustering based on a prior over trees called Kingman’s coalescent. Other similar approaches
can be seen in (Williams, 1999), (Kemp et al., 2004),(Roy et al., 2007).

The cited works have proposed predictive clustering techniques, however, none have
learned clusters of nested subgroups in the data to improve overall prediction. The impor-
tance of clustering subgroups in our work is essential for future predictions. By learning
a many-to-one mapping of CPT codes to clusters, we immediately can evaluate a current
patient’s risk without requiring updated clustering. The shared disadvantage of the men-
tioned probabilistic hierarchical clustering algorithms is their neglect of improving predictive
performance of a model.

5. Discussion

We present a novel algorithm for predictive hierarchical clustering, where the end result are
clusters of CPT codes which improve prediction of a regression model. Though our method
is inspired by surgical complications data, PHC is very applicable in other applications.
The algorithm has the advantage of transforming thousands of nested subgroups in data
into larger clusters that better inform the models’ predictive capabilities. Clustering has
proven useful in countless applications to group data by similarity, and the added power of
grouping to improve prediction will be crucial in many applications.

A current limitation of PHC is its inability to work with subgroups that contain only
small amounts of sparse data. With sparse outcomes and minimal signal we were forced to
restrict the CPT groups used in the algorithm to those containing 500 or more observations.
In addition, even with subgroups of that size, some CPT codes have more heterogeneous
patient populations which results in models with little to no signal (in Lasso, this is seen
through all variables being zeroed out). This is expected when considering this application.
For example, a CPT code for gallbladder removal most likely encompasses a large patient
population with very different characteristics making it difficult for a model to relate patient
covariates to an outcome. Whereas, open heart surgery tends to be performed on a more
specific type of patient, so the model can better learn the relationship between those patients
and an outcome. A further limitation is the runtime, which is quadratic in the number of
subgroups. By eventually exploiting a randomized version of the algorithm, we can decrease
the runtime to O(nlogn).

Our overarching goal of this work is to expand and test a Clinical Analytic & Learning
Platform in Surgical Outcomes (CALYPSO). Our objective is to develop an integrated
computing platform for (1) data intake from the EHR, and (2) prediction of surgical risk
using the described predictive models. The user-interface incorporates existing data from
the EHR and estimates an individual patients relative and absolute risk profile. We also
display the most important and modifiable predictors via our user-interface based on the
patient’s profile and model coefficients. Each flagged predictor is then linked to a set of
accepted best practice interventions that specifically targets the risk factor. Visualizing
these individualized risks and interventions at the point-of-care allows clinicians to make
data-driven decisions rapidly.
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