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Accurate referral to a medical specialist is a challenging part of medical care, especially for
patients with rare diseases. Because of the diversity of rare diseases, finding a specialist
that has experience with the particular rare disease is important. This burden often falls on
the patients and families, but they do not necessarily have the time or scientific expertise to
evaluate the medical literature to identify experts. To help patients, families, and general
practitioners find specialists in a particular rare disease, we trained machine learning models
to predict the expertise of researchers in every rare disease based on their publication record.
We compile a dataset of 209,110 disease-author associations from the literature and evaluate
the performance of six machine learning methods, classifying known rare disease experts
with 79.4% accuracy and predicting 41,129 disease-expert associations.

1. Introduction

Rare diseases affect over 350 million people worldwide, 50% of whom are children (Jacque-
line, 2017; Mendlovic et al., 2016). Because each disease is rare, a general physician may
have never seen a patient with a particular disease in their entire career. Symptoms can
also vary considerably between individual cases, making correct diagnosis difficult (Singh
et al., 2013). Misdiagnosis and incorrect treatment are extremely costly and potentially
dangerous, so it is important for patients to be referred to specialists that have experience
with their condition. For rare and undiagnosed conditions, the burden can often fall on the
patient to find a specialist that has experience with their condition. The National Insti-
tutes of Health (NIH) website for rare diseases recommends patients to review the medical
literatures themselves to find specialists.! However, it can be a daunting task for individ-

1. See https://rarediseases.info.nih.gov/guides/pages/25/how-to-find-a-disease-specialist
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uals without a medical background to evaluate the literature to identify experts in related
conditions.

Automated expert assessment and discovery systems have been applied to a number
of problems, from companies identifying subject matter experts to hire (Maybury, 2006),
to researchers identifying reviewers for submitted papers (Charlin et al., 2013). Some ex-
pert finding systems are based on a manual process, and use expert self-nomination and a
knowledge directory system (Vivacqua et al., 1999). While manual approaches are difficult
to scale, data mining can be used to identify expertise from large datasets in an automated
fashion. The Internet enabled new research into expert finding systems that use email com-
munications (Foner, 1997; Campbell et al., 2003), online bulletin board data (Swartz et al.,
1993; Krulwich et al., 1996), and recently social network data (Xie et al., 2016) to identify
experts. Several methods, including Referral Web (Kautz et al., 1997) and Autonomy?,
have used authors’ publication history to determine their expertise, and recently machine
learning methods have been applied to propose reviewers for academic papers (Charlin et
al., 2013). Yet, to our knowledge, such expert finding systems have not yet been applied to
finding specialists in particular disease areas.

To facilitate the specialist referral process, we trained machine learning models to pre-
dict the expertise of researchers in every rare disease based on their publication record.
We compare the performance of six methods (a baseline method, logistic regression, SVM,
random forest, Naive Bayes, and a neural network) on a dataset of 209,110 disease-author
associations and are able to classify rare disease experts from GeneReviews with 79.4% ac-
curacy and predict 41,129 new disease-expert associations. Automated specialist evaluation
methods have immense potential to help patients, families, and general practitioners search
for specialists for rare diseases.

2. Materials and Methods

2.1 Data Description

We compiled a data set of 2,160 known disease-expert associations and 206,950 unknown
disease-author associations, based on the authorship of publications associated with rare
diseases. Known disease-expert associations were obtained by downloading 664 GeneRe-
views chapters.® GeneReviews provides high-quality peer-reviewed summaries of a variety
of inherited conditions (Pagon, 1993). GeneReviews chapters are written by one or more
experts and focus on a specific condition or disease. Unknown disease-author associations
were obtained using the API for OMIM.org, an online catalog of rare inherited diseases
(Amberger et al., 2015). OMIM provides a list of primary source publications associated
with each rare disease. The positive disease-expert associations from GeneReviews publi-
cations were combined with the unlabeled disease-author associations from OMIM to form
the complete data set.

2. http://www.ttivanguard.com/sfreconn/autonomy.pdf
3. Code available at https://github.com/AvinWangZH/RareDiseaseExpertIdentification



2.2 Processing

We preprocess the data in two main steps: name standardization and mapping disease-
author associations. GeneReviews provides full author names, but the OMIM reference
lists use IEEE citation format (e.g., Smith, J.). In order to compare across these datasets,
we first convert author names from GeneReviews into the IEEE format (e.g. James Smith
as Smith, J..) to match those in OMIM. Next, we map disease-author associations from
GeneReviews to those from the OMIM API using the OMIM associations provided by most
GeneReviews chapters. We filtered out 35 GeneReviews articles that did not provide any
corresponding OMIM identifier. For GeneReviews articles that listed multiple OMIM IDs,
each was evaluate separately. The 2,160 positive disease-author associations were taken
as the set of 6,555 GeneReviews disease-author associations that also appeared in OMIM.
Table 1 shows an example of the processed data.

Table 1: Snapshot of processed GeneReviews dataset and corresponding OMIM publica-

tions
GeneReviews GeneReviews authors | Related | Number of pub- | Number of unique
disease name (considered experts) OMIM lications  linked | authors
1D from OMIM
Cohen Heng Wang, 216550 57 291
Syndrome Marni J. Falk,
Christine Wensel, 607817 14 157
Elias I Traboulsi
Debra S Regier, 230500 36 138
GLB1-Related Cynthia J Tifft 230600 14 59
Disorders 230650 25 84
253010 15 7
611458 47 196

2.3 Feature Design

We annotated each author-disease association with 18 features across five categories, shown
in Table 2: (i) Author Publications; (ii) Disease Publications; (iii) Publication Contribu-
tion; (iv) Year of Publication; (v) Publication venues. Author Publications are quantitative
measurements of the number of publications by the researcher, overall and for the spe-
cific disease. Disease Publications are metrics across publications for the disease, to capture
differences in publication volume between different diseases. Publication Contribution mea-
sures the impact of the researchers placement in authorship lists, such as first author or last
author. Expertise may change over time, so features were added to capture temporal pub-
lication metrics. Not all publications are equally impactful, so we added features to count
publications in top journals separately. The top 3, 5, and 10 journals were identified based
on hb-index in Google Scholar for the fields of Genetics and Health and Medical Science.



2.4 Algorithm Comparison and Selection

We evaluated five different machine-learning algorithms to predict if a person is an ex-
pert, and compared them to a baseline measure using logistic regression on the number of
publications the author has for the disease (Feature 1 in Table 2):

1. Logistic regression (LogR): used logistic function to predict the score of each person
expertise (Freedman, 2009).

2. Supported vector machine (SVM): used the SVR package from sci-kit learn (Varo-
quaux et al., 2015; Smola et al., 2004), version 0.18.1.

3. Nave Bayes (NB): implemented using sci-kit learn, version 0.18.1, with an assumption
of independence between features (Zhang, 2004).

4. Random Forest (Forest): a random forest with 100 trees, implemented with the Ran-
domForestClassifier package from sci-kit learn (Breiman, 2001), version 0.18.1.

5. Neural Network (NNet): implemented as a single fully connected hidden layer with
300 hidden units using Tensorflow (Abadi, 2016).

For all these methods, we used 5-fold cross-validation over all positive examples and a
random subset of the unknown examples as negatives. Because there is a large number of
unknown author-disease associations, it is better to balance the positive data and negative
data in both training set and test set.

Table 2: The list of features annotated for each disease-author association.

Feature Feature

Category
. 1) # of Publications of an Author on the OMIM ID
i) Author
.. 2) Normalized Feature 1
Publications

3) # of OMIM ID the Author Published on

4) # of Authors Published on the OMIM ID

ii) Disease

.. 5) Total Number of Publications on the OMIM ID
Publications

iii) Publication | 7) # of Publications on the OMIM ID as First Author

Contribution 8) # of Publications on the OMIM ID as Last Author

. 9) # of Publications on the OMIM ID in 3 years
iv) Year of

Publication # of Publications on the OMIM ID in 5 years

)
)
)
)
)
6) Feature 1/Feature 5
)
)
) #
10
11

)
) # of Publications on the OMIM ID in 10 years
12) # of Publications in the Top 3 Health and Medical Science Venues

13) # of Publications in the Top 5 Health and Medical Science Venues

v) Publication 14) # of Publications in the Top 10 Health and Medical Science Venues

Vi
enue # of Publications in the Top 5 Genetic Venues

3)
4)
15) # of Publications in the Top 3 Genetic Venues
16)
7

17) # of Publications in the Top 10 Genetic Venues

18) # of Publications in Nature or Science




3. Results

The performance of the 5 machine learning methods and the baseline measure are shown
in Figure 1. The Random Forest, Logistic Regression, and Neural Network models all
performed similarly, with the Random Forest having the best performance with a ROC
AUC of 0.88, with the baseline measure of logistic regression on the number of disease
publications having a ROC AUC of 0.69. With a cutoff score of 0.5, the Random Forest
method achieved an accuracy of 79.5%, with 80% precision and 78% recall.

Comparison on model performance after 5-fold CV
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Figure 1: ROC curve comparing the performance of each machine learning model on held
out data during 5-fold cross validation.

Using the Random Forest method, we compared the importance of each feature across
the folds of cross-validation, with the results shown in Figure 2. Author Publication and
Disease Publication features were weighted the most highly, with publication year and venue
being the least important features. We also measured the distribution of scores (posterior
probabilities) from the Random Forest model for the positive and negative test datasets,
shown in Figure 3.
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Figure 2: The relative importance (scored on the y axis) of each feature (along the x axis)
as evaluated by the sci-kit learn Random Forest model, with the mean and 95%
confidence intervals shown in error bars.
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Figure 3: Posterior probabilities for the Random Forest model on the held-out examples
during cross-validation.



We then used the Random Forest model, to score the full set of 206,950 unlabeled disease-
author associations after training on the full set of positive associations and a random set
of unlabeled associations. Table 3 shows the top predictions for a random set of OMIM
IDs. The highest predicted score is 100%, the fourth quartile is from 44% to 100%, and the
third quartile is 20%-44%. The median is at 20%.

In the unknown data set, the classifier predicted 41,129 disease-expert association as

positive out of 206,950 unlabeled associations (~20%) with 0.5 cut-off score.

Table 3: Statistics and the top-scoring experts for five random OMIM diseases using the
trained Random Forest model.

OMIM ID | Disease Name Number of | Number | Number | Top 5 ranked
publications | of of authors
unique ”experts”
authors classified
146920 ADENOSINE 21 121 34 Rice, G. 1.
DEAMINASE, Weier, H.-U. G.
RNA-SPECIFIC; Tomita, Y.
ADAR Livingston, J. H.
Kondo, T.
201750 ANTLEY-BIXLER 10 72 32 Jabs, E. W.
SYNDROME WITH Miller, W. L.
GENITAL Pandey, A. V.
ANOMALIES AND Fluck, C. E.
DISORDERED Arlt, W.
STEROIDOGENESIS;
ABS1
203800 ALSTROM 31 150 25 Nishina, P. M.
SYNDROME; ALMS Naggert, J. K.
Collin, G. B.
Wilson, D. L.
Martin, M.
609310 COLORECTAL 18 164 25 Lindblom, A.
CANCER, Thibodeau, S. N.
HEREDITARY NON- Nordenskjold, M.
POLYPOSIS, TYPE Gallinger, S.
2; HNPCC2 Peltomaki, P.
600275 NOTCH, 21 134 56 Oakey, R. J.
DROSOPHILA, Gridley, T.
HOMOLOG OF, 2; Kaplan, P.
NOTCH2 Robertson, S. P.
Majewski, J.




4. Discussion

In this experiment, we compared five different learning algorithms in their ability to predict
expertise in a particular rare disease based on their publication history. We find that
many methods perform well, achieving an ROC AUC of above 85% discriminating verifiable
experts (GeneReviews authors) from other researchers that have published on the same
disease. When we compared the relative importance of the various features, both author-
specific and disease-specific features were highly important, suggesting that an author’s
publication history is most informative when interpreted in the the context of the literature
for each particular disease. Interestingly, features related to the recency of publications or
the publication venue were not as important in predicting expertise.

As the set of real experts is much larger that just the GeneReviews authors, we expect
many of the false positives to represent real expertise. This absence of true negative exam-
ples is a limitation of the performance evaluation. To obtain a more accurate measure of
performance, domain experts should manually evaluate the appropriateness of the predicted
experts. Another limitation of this work is the potential for ambiguous author names to
affect the results. While the designed features enable classifiers to avoid ambiguous author
names, this prevents the model from identifying real experts with common names. How-
ever, common names also present challenges for patients and specialists. Without affiliation
information, unambiguous names are the most useful to recommend.

These results provides a proof-of-concept for predicting disease expertise from publi-
cation history, and demonstrate the feasibility of helping patients find relevant specialists
without needing to manually review the medical literature.
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