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Abstract

We describe our wining solution for the KDD Cup Orange Challenge.

1. Introduction and Task Description

The KDD Cup 2009 challenge was to predict, from customer data provided by the French
Telecom company Orange, the propensity of customers to switch providers (churn), buy new
products or services (appetency), or buy upgrades or add-ons (up-selling). The competition
had two challenges: the Fast challenge and the Slow challenge. For the Fast challenge,
after the targets on the training set were released, the participants had five days to submit
predictions on the test set. For the Slow challenge, participants were given an additional
month to submit their prediction.

The data set consisted of 100000 instances, split randomly into equally sized training
and test sets. 15000 variables were made available for prediction, out of which 260 were
categorical. Most of the categorical variables, and 333 of the continuous variables had
missing values. To maintain the confidentiality of customers, all variables were scrambled.
There was no description of what each variable measured.

For the Slow challenge, a reduced version of the data set was also provided, consisting
of a subset of 230 variables, 40 of which were categorical. The small data set was scrambled
differently than the large one, and the rows and columns were shuffled. Many participants,
including ourselves, easily found the correspondence between instances in the small and
large data sets. Uncovering this correspondence, however, provided us little benefit, if any.

Submissions were scored based on the Area Under the ROC Curve (AUC) performance,
with the average AUC across the three tasks being used to rank the participants. Feedback
was provided in terms of performance on a fixed 10% of the test set. While multiple sub-
missions per team were allowed, the competition rules stated that only the last submission
from the team leader will count towards the final ranking, so the participants had to face
the burden of model selection. The slow challenge presented one additional twist in terms
of evaluation. Participants were allowed to make two sets of submissions, one on the large
and one on the small data set, and the best of the two was considered toward the final
ranking.
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Table 1: Our journey.
Classifier Type Feat. Set Chlng. Churn Appetency Up-Selling Average
Slow Challenge Submission (ES) FS3 Slow 0.7651 0.8816 0.9091 0.8519
Ensemble Selection FS3 Slow 0.7629 0.8805 0.9091 0.8509
Fast Challenge Submission (ES) FS2 Fast 0.7611 0.8830 0.9038 0.8493
Ensemble Selection FS2 Fast 0.7611 0.8793 0.9047 0.8484
Best Competitor, Slow Slow 0.7570 0.8836 0.9048 0.8484
Ensemble Selection FS1 Fast 0.7563 0.8771 0.9038 0.8457
Best Competitor, Fast Fast 0.7565 0.8724 0.9056 0.8448
Best Single Classifier FS3 Slow 0.7511 0.8794 0.9025 0.8443
Best Single Classifier FS2 Fast 0.7475 0.8779 0.9000 0.8418
Best Single Classifier FS1 Fast 0.7354 0.8779 0.9000 0.8378

As a final note, we want to emphasize that the results we present in this paper reflect
the particular choices we have made and directions we have explored under the limited time
of the competition. They are not a careful empirical study of the different methods we
have used. So, while we will make a few comparative statements throughout the paper, we
caution the reader against generalizing these results beyond the scope of this competition.

2. Our Story

Our overall strategy was to address this challenge using Ensemble Selection (Caruana and
Niculescu-Mizil, 2004). In a nutshell Ensemble Selection is an overproduce-and-select en-
semble building method that is designed to generate high performing ensembles from large,
heterogeneous libraries of classifiers. Ensemble Selection has several desirable properties
that made it a good fit for this challenge. First, it has been proven to be a robust ensemble
building technique that yields excellent performance. Second, the generated ensembles can
be optimized to any easily computable performance metric, including AUC. Third, it allows
for loose coordination of the team members, as everyone can independently train classifiers
using their preferred techniques, and add those classifiers to the library. And fourth, it is an
anytime method, in the sense that when the time to make predictions comes, an ensemble
can be generated very fast using whatever classifiers made it into the library at that time.

Our results are summarized in Table 1. The first column indicates the classifier type (the
best individual classifier we have trained, an ensemble generated by Ensemble Selection, or
the submission of our competitors). The second column indicates what feature set was used
(FS1 indicates the set of features provided, after some standard preprocessing summarized
in Section 2.1; FS2 indicates the use of additional features created to capture some non-
linearity in the data, as described in Section 2.2.3; FS3 indicates the use of even more
additional features described in Section 2.3.1). The next columns show the test set AUC
on the three problems, and the average AUC. Entries are ordered by average AUC.

In the following sections we will present our work in close to chronological order to
motivate our choices as we went along.

2.1 Preprocessing, Cleaning and Experimental Setup

Since the feature values were available prior to the targets, we spent our initial time on
some fairly standard preprocessing. The data set posed a number of challenges here: many
features, missing values, and categorical variables with a huge number of possible values.

Missing categorical values are typically less of a problem as they can be considered just a
separate value. Missing numeric values on the other hand are more concerning. We followed
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a standard approach of imputing missing values by the mean of the feature. We considered
that the missingness itself might predictive and added, for each of the 333 variables with
missing values, an additional indicator variable indicating missingness. Another advantage
of this approach is that some class of models (e.g. linear) can now estimate the optimal
constant to replace the missing value with, rather than relying on the means.

Most of the learning algorithms we were planning to use do not handle categorical
variables, so we needed to recode them. This was done in a standard way, by generating
indicator variables for the different values a categorical attribute could take. The only
slightly non-standard decision was to limit ourselves to encoding only the 10 most common
values of each categorical attribute, rather than all the values, in order to avoid an explosion
in the number of features from variables with a huge vocabulary.

Finally, the features were normalized by dividing by their range, and the data was
cleaned by eliminating all the features that were either constant on the training set, or were
duplicates of other features. In the end we were left with 13436 features.

To evaluate the performance of the classifiers, and build ensembles via Ensemble Selec-
tion, we adopted a 10-fold cross-validation approach. While we would have liked to perform
all the 10 iterations of the cross-validation, considering, in turn, each fold as a validation
fold, this was unrealistic in the allotted time. Ultimately we only finished two iterations for
the Fast challenge, giving us a total of 10000 validation instances, and four iterations for the
Slow challenge, for a total of 20000 validation instances. To make predictions on the test
set, given that we now had a version of a classifier for each fold (two for the Fast challenge
and four for the Slow one), we averaged the predictions of the corresponding models. This
has a bagging like effect that should lead to a performance boost.

In order to avoid overfitting the test set of the leader board, we decided not to rely on
the feedback on the 10% for anything but sanity checks and final guidance in picking an
ensemble building strategy.

2.2 The Fast Challenge

2.2.1 Many Different Classifiers

The first step in building an ensemble classifier via Ensemble Selection is to generate a
library of base classifiers. To this end, we trained classifiers using using a range of learning
methods, parameter settings and feature sets. We looked for learning algorithms that were
efficient enough to handle a data set of this size in the allotted time, while still producing
high performing models. Guided in part by the results of (Caruana et al., 2008), we gener-
ated classifier libraries using random forests (Breiman, 2001) and boosted trees (Schapire,
2001) trained using the FEST package (Caruana et al., 2008), logistic regression trained
using the BBR package (Genkin et al., 2007), SVMs trained using SVMPerf (Joachims,
2005), LibLinear (Fan et al., 2008) and LibSVM (Chang and Lin, 2001), decision trees,
TANs and Näıve Bayes trained using Weka (Witten and Frank, 2005), Sparse Network of
Winnows trained using the SNoW package (Carlson et al., 1999), and k-NN, regularized
least squares regression and co-clustering (Sindhwani et al., 2008) trained using in house
code. We also trained some of these learning algorithms on several reduced feature sets
obtained through PCA and through feature selection using filter methods based on Pearson
correlation and mutual information. For a complete description of the trained classifiers see
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Figure 1: Performance obtained by boosting decision trees of various depths.

Appendix A. To make all base models “talk the same language” we applied post training
calibration using Platt Scaling (Niculescu-Mizil and Caruana, 2005). For classifiers that
make predictions between 0 and 1 we also put the uncalibrated classifiers in the library.

Little or no attempt was made to optimize the performance of the individual models; all
models, no matter their performance, were added to the model library. The expectation is
that some of the models will yield good performance, either in isolation or in combination
with other models. In total, the classifier libraries were composed of 500-1000 individual
models for each of the three problems problem.

Judging from the two folds of internal cross-validation we performed up to this point,
the best individual classifiers on churn were boosted trees followed by regularized logistic
regression, and random forests. On appetency, the best single method was random forests,
followed by boosted trees and logistic regression, while on up-selling, boosted trees were
best, followed by random forests and logistic regression. At this point, using the best single
classifiers, as deemed by the internal cross-validation, yielded a test set AUC of 0.7354 for
churn, 0.8779 for appetency, and 0.9000 on up-selling, for an average AUC of 0.8378 (last
line in Table 1). This was lower than the AUC obtained by many of the competing teams.

Interestingly, on all three problems, boosting clearly overfit with more rounds of boosting
(see Figure 1), yielding peak performance after only about 10-20 rounds and decreasing
significantly after that (except for boosted stumps on the up-selling problem). Also boosting
shallow trees performed better than boosting deeper trees. One trend, that we actually did
not notice during the competition, is that boosting deeper trees (more than 10 levels) has
a dip in performance during early stages of boosting, but recovers later. It is conceivable
that higher performance could have been obtained by boosting deeper trees for longer.

For the linear models, we tried optimizing four different loss functions: hinge loss and
AUC, with L2 regularized SVMs, squared error with L2 regularized least squares, and
cross-entropy (log-loss, log-likelihood), with logistic regression using both L1 and L2 regu-
larization. As expected, optimizing hinge loss yielded significantly lower AUC scores than
directly optimizing AUC. What was less expected was that optimizing cross-entropy with
L2 regularization did as well as, or even slightly better than directly optimizing AUC. Using
L1 regularization with logistic regression further improved the AUC performance and using
feature selection on top provided yet another slight performance boost.

One worry one might have would be that training all these base level models would be
very resource demanding. Training all the base level models for all three problems took
little more than one day per cross-validation fold on a cluster of nine dual Opteron nodes
(2 GHz) with 3Gb memory. So, while training all these models is by no means cheap, the
computational load can be easily handled with fairly modest resources.
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2.2.2 Ensemble Selection

Once a classifier library is generated, Ensemble Selection builds an ensemble by selecting
from the library the subset of classifiers that yield the best performance on the target
optimization metric (AUC in our case). Models are selected for inclusion in the ensemble
using greedy forward stepwise classifier selection. The performance of adding a potential
model to the ensemble is estimated using a hillclimbing set containing data not used to train
the base classifiers. At each step ensemble selection adds to the ensemble the classifier in
the library that maximizes the performance of the ensemble on this held-aside hillclimbing
data. Classifiers can be added to the ensemble multiple times, allowing for a crude weighting
of the different classifiers in the ensemble.

When there are a large number of base classifiers to select from, the chances of overfitting
increase dramatically. Caruana and Niculescu-Mizil (2004) describe two methods to combat
overfitting. The first is to initialize the ensemble with a set of N classifiers that have the best
uni-model performance on the hillclimbing set. The second performs classifier bagging—
multiple ensembles are built from random subsets of classifiers, and then averaged together.
The aim of the classifier bagging is to increase performance by reducing the variance of the
forward stepwise selection process.

We built an AUC optimized ensemble classifier for each of the three problems using
Ensemble Selection. Following (Caruana et al., 2006), we combined the two validation folds
from our internal cross-validation and used them as the Ensemble Selection hillclimbing set.
Both overfitting prevention techniques described above were used. The test set performance
of the ensemble models was 0.7563 on churn, 0.8771 on appetency and 0.9038 on up-selling,
for an average AUC of 0.8457. This performance was already better than that of the
other competitors on the Fast challenge. It is notable that this performance was obtained
through fairly standard techniques without much need for human expertise or intervention,
or tailoring to the particular problems addressed in this competition. One can easily imagine
all these techniques being incorporated in a general purpose push-button application.

At the time of the competition, however, we did not know that we had the best perfor-
mance. In fact, on the 10% of the test set that was used for feedback our performance was
below that of other participants.

2.2.3 More Features

We had one more day to push forward. This was when we realised that there were notable
discrepancies between measuring the quality of individual variables via mutual information
with the targets, and via rank correlation with the targets. Some of the features with
the highest mutual information (calculated by binning numeric variables into 20 bins) had
quite a poor rank correlation. This was most likely due to some form of non-monotonic
dependence, so, while these features were very predictive, linear models could not take
advantage of them. Our solution was to construct new features to allow expressing non-
linear relationships in a linear model. To this extent we explored two approaches:

• Binning: As explained earlier, we observe higher predictive performances in terms of
mutual information when binning was used. So the obvious solution was to include,
for each such feature, 20 additional binary features corresponding to the 20 bins.
However, it is unlikely that the equal size binning is optimal.
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• Decision Tree: The second approach was to use a decision tree to identify the
optimal splitting points. We recode each feature by training a decision tree of limited
depth (2,3 or 4) using that feature alone, and let the tree directly predict the target.
The probabilistic predictions of this decision tree were used as an additional feature,
that now was linearly (or at least monotonically) correlated with the target.

The addition of these new features had a significant impact on the performance of linear
models, with L1 regularized logistic regression becoming the best model on churn and
improving the test set performance of the best base level churn model by 0.0121 to 0.7475.
It also had a positive impact on the performance of the ensembles build by Ensemble
Selection for all three problems, resulting in a test set performance of 0.7611 on churn,
0.8793 on appetency, and 0.9047 on up-selling.(See entries using FS2 in Table 1.)

2.2.4 Submission for the Fast Challenge

Before the final submission for the Fast challenge, we analysed in more detail the ensembles
built by Ensemble Selection. We realized that on appetency, after the initialization phase
(where models with high uni-model performance were added to the ensemble), the first
model Ensemble Selection was adding was some poor performing decision tree. We were
worried that this indicates that Ensemble Selection was actually overfitting the hillclimb
set. So, for appetency, we decided to use the ensemble model generated right after the
initialization phase, containing only the six best models (as measured on the hillclimb set),
and not continue with the forward stepwise classifier selection. The results on the 10% of
the test set were also in accord with this hypothesis. In hindsight, it turned out to be the
right decision, as it significantly improved our performance on the test set.1

We have also investigated whether classifier bagging was necessary, by running Ensemble
Selection with this option turned off. We noted that, on the 10% of the test set we received
feedback on, classifier bagging provided no benefit on churn and up-selling, and was only
increasing performance on appetency (which was consistent with our hypothesis that En-
semble Selection overfit on this problem). Being also guided by the results in (Caruana
et al., 2006), which stated that, once the hillclimbing set is large enough, classifier bagging
is unnecessary, we decided to use ensembles built without classifier bagging as our final
submissions for churn and up-selling. In hindsight, this was not a good decision, as the test
set performance on up-selling was slightly worse than if we were to use classifier bagging.

2.3 Slow Challenge

For the slow challenge, we first increased the hillclimbing/validation set to 20000 instances
by training on two extra folds, bringing us to four corss-validation folds.

Encouraged by the improvements we obtained in the last day of the Fast challenge,
the main thrust of our efforts was towards creating new and better features. The addition
of these features, described below, in combination with the move from two to four folds,
yielded an increase in test set performance for the best individual models to 0.7511 on churn,
0.8794 on appetency and 0.9025 on up-selling (0.8443 average across the three problems).

1. This was not the case for the other two problems, churn and up-selling, where the forward stepwise
classifier selection improved the performance significantly.
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The performance of the Ensemble Selection built ensembles rose to 0.7629 for churn, 0.8805
for appetency, and 0.9091 for up-selling (0.8509 average).

2.3.1 Even More Features

Explicit Feature Construction: For a number of features with typical characteristics,
we were able to isolate the signal directly: The positive rate of churn for all rows with 0
value was up to twice the positive rate for all other numeric values. This happened for a
number of numeric features that overall seemed to be close to normally distributed, but,
under close inspection, showed certain regularities, such as frequency spikes for certain val-
ues. The effect is not overly strong; typically only a few thousand examples have a zero
value and a zero indicator for a single such numeric feature only has an AUC of up to 0.515.
However, counting the number of times an example had a zero within one of these numeric
features had an validation AUC of 0.62.

Features From Tree Induction: We extended the decision tree based recoding approach
to pairs of attributes in order to get two way non-additive interactions between pairs of vari-
ables. To this end, for each pair of attributes, we trained a decision tree of limited depth
(3,4) to predict the target from only the two attributes. We then used the predictions of
the tree as an extra feature. We only used the constructed features that outperformed, by
a significant margin, both individual attributes.

Co-clustering: We have also tried a new feature generation approach. When looking at
missing values, we noticed that they were missing for groups of features at once. That is,
for every instance, the values for all the features in the group were either all missing or all
present. Inspired by this observation, we extend the idea to other categorical/numerical
values. For example, suppose that features f1, f2, and f3 take values a, b, and c respectively
across instances i1, i2, i3, and i4. We can then generate a feature, that takes 1 on i1, i2, i3, and
i4 and 0 on all other instances. The problem of identifying subsets of features/instances with
this property, is known as the constant bi-clusters problem in the bio-informatics domain.
We ran a fast probabilistic bi-clustering algorithm (Xiao et al., 2008) to identify promising
bi-clusters which we then used to generate new indicator features.

2.3.2 Small Data Set

We quickly trained all our models on the small data set, but the internal cross-validation
results suggested that the performance obtained from the small data set was significantly
worse than what we obtained from the large one. So we decided not to pursue the small
data set any more, and focused our attention on the large data set. Nevertheless, we did
unscramble the small data set for two main reasons: to get feedback on about 20% of
the test data instead of only 10%, and to be able to make two distinct submissions using
models trained on the better performing large data set (per competition rules, the best of
the two submissions would count towards the Slow challenge ranking). In the end, however,
it turned out that unscrambling the small set did not give us any significant advantage as
the feedback on the 20% of the data was barely used, and the two submissions we ended
up making were very similar to each other.
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2.3.3 Submission for Slow Challenge

Finally, we again analyzed the ensembles produced by Ensemble Selection in more detail,
and noticed some strange behaviour with the ensemble initialization phase. Because the
model libraries contained a large number of high performing, but very similar logistic regres-
sion classifiers, in the initialization phase, Ensemble Selection was adding all these classifiers
to the ensemble, essentially overemphasizing the logistic regression models. Given that we
also had a larger hillclimb set, overfitting was less of a concern, so we decided to turn off the
ensemble initialization. With the initialization turned off, we gained, on average, another
0.001 in test set AUC, for a final performance of 0.7651 on churn, 0.8816 on appetency, and
0.9091 on up-selling (0.8519 average AUC).

3. Conclusions

Our winning solution for the 2009 KDD Cup Orange Challenge was to use Ensemble Se-
lection to generate and ensemble model from a large library of 500-1000 base classifiers
for each problem. While it is hard to give a definite answer, we believe that our success
was mainly due to three factors. The first factor was the exploration of a large variety of
learning methods. As the results show, different learning methods were best for different
problems. The second factor was the use of an ensemble building technique that is able to
take advantage of the large variety of base classifiers without overfitting. The third factor
was the creation of additional features capturing non-linearities and other helpful signals in
the data.
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Appendix A. Base Level Models and Other Things We Tried

Random Forests: We trained random forests using the FEST package (Caruana et al.,
2008). We varied the number of features considered at each split from 0.5 · √#features
to 64 · √#features by factors of 2. For the smaller numbers we trained random forests of
500 trees, and went down to 300 trees as training became more computationally expensive
at higher numbers of considered features. Since the code supported example weighting, we
used a weight of 0.1 for the negative class on all problems, to account for class imbalance.
We did not try to vary this parameter, or to run without example weighting. Random
forests worked well, especially on appetency, where they had the best performance.

Boosted Decision Trees: The FEST package was also used to train boosted decision
trees. We boosted decision trees 1, 2, 3, 4, 5, 7, 10 and 20 levels deep. We varied the
number of rounds of boosting between 1 and 128. As with random forests, we used a
weight of 0.1 on the negative examples. Boosted decision trees had the best performance
on the up-selling problem, and good performance on the other problems as well. Boosting,
however, clearly overfit on all three problems, with the best performance being obtained
after less than 20 rounds. Also, boosting shallower trees performed better than boosting
deeper trees, although there is a chance that if we had boosted even deeper trees for longer
we would have obtained better performance. (See Figure 1).

Regularized Logistic Regression: For logistic regression we used the BBR package
(Genkin et al., 2007). We used both L1 and L2 regularization, varying the regularization
parameter from 10−3 to 100 by factors of 10. We also used the feature selection capability
implemented in the BBR package and selected subsets of 100, 200, 500, 1000, 2000 and
5000 features using Pearson’s Correlation. L1 regularization worked better than L2 on all
problems. Feature selection provided another slight improvement in performance, made the
results less sensitive to the regularization parameter, and reduced the gap between L1 and
L2 regularization. Logistic regression also was a well performing technique, providing the
top performance on the churn problem after the addition of the extra features meant to
capture non-linearities in the data.

SVM: We trained linear SVMs using the SVMPerf (Joachims, 2005), LibLinear (Fan et al.,
2008) and LibSVM (Chang and Lin, 2001) packages.2 The regularization parameter was
varied from 10−5 to 100 by factors of 10. Besides training regular SVMs that optimize hinge
loss, we also directly optimized AUC with SVMPerf. Directly optimizing AUC did indeed
yield significantly better AUC performance than optimizing hinge loss. It is interesting,
however, that optimizing to cross-entropy (log-likelihood, log-loss) via logistic regression
not only outperformed optimizing to hinge loss, but also slightly outperformed optimizing
AUC directly.

We also tried training kernel SVMs using the LaSVM package (Bordes et al., 2005) but
we were unable to get them to perform well so we abandoned them early on.

Regularized Least Squares: We trained linear Regularized Least Squares Classifiers
(RLSC) that often perform competitively with linear Support Vector Machines and other
regularized risk minimization methods on classification tasks (see e.g., (Rifkin, 2002)). The

2. SVMs proved to be a popular method in our team, with multiple team members training them using
different packages.
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training was done with efficient sparse matrix computations in Matlab using the conjugate
gradient algorithm (with a tolerance of 1e-4 and 500 maximum iterations). To handle
class imbalance, our loss terms measured squared error over positive and negative examples
separately. We then conducted feature selection using mutual information between the
features and the class variable. Mutual information (MI) was computed by discretizing
continuous features into 20 bins. Our MI implementation was adapted from the Spider
machine learning toolbox (Weston et al., 2005). We generated models with 1000 to 2000
features that showed improved performance.

Naive Bayes: We used a Näıve Bayes classifier with kernel density estimation for contin-
uous variables (John and Langley, 1995). In our pilot experiments we found that kernel
density estimation worked better than alternative supervised and unsupervised approaches
to deal with the continuous variables in the data. We used an online implementation of
the Näıve Bayes classifier, which makes it highly scalable. Only one pass over the data is
required, and the classifier can be quickly updated one instance at a time. This makes it
possible to process the full data set with minimal memory usage.

Tree Augmented Naive Bayes: We used the WEKA package (Witten and Frank, 2005)
to train Tree Augmented Naive Bayes (TAN) models using the 50, 100 and 200 attributes
with the highest information gain. The TAN models were learned using an entropy score to
measure network quality, and applying a Markov blanket correction to the learnt structure.
Additional improvement was obtained through bagging. Using the top 100 or 200 attributes,
did not result in any improvement over those learned using just the top 50 attributes.

Sparse Network of Winnows: We used the Sparse Network of Winnows (SNoW) learning
architecture introduced in (Roth, 1998). SNoW builds a sparse network of linear functions,
and is specifically designed for domains with a large number of features that may be un-
known a priori. It has been applied successfully to a variety of large-scale natural language
and visual processing tasks. The key strength of SNoW comes from exploiting the fact that
using the Winnow update rule the number of examples needed to learn a linear function
grows linearly with the number of relevant features and only logarithmically with the total
number of features (Littlestone, 1991; Kivinen and Warmuth, 1995). Winnow is known to
learn any linear threshold function efficiently and is resilient to various kinds of noise. We
trained SNoW with 50 learning iterations of Perceptron and Winnow, and combined the
output of the two.

k-NN: With respect to k-NN we wrote C++ code optimized for fast working with sparse
representations. To compute distances we used weighted Euclidian distance for continuous
variables, and Hamming distance for categoricals. For the slow challenge we replaced the
Hamming distance by the inverse of the second power of the frequency of the value of
the feature. In the version used for the fast challenge we weighted the features by their
mutual information with labels (3 different weight sets, one for each problem). For the slow
challenge we used instead the AUC score obtained by using k-NN with only this column
as an input. Those weights turned out to be better than mutual information, especially in
case of churn. The final prediction was a distance-weighted median of the neighbors. The
optimal number of neighbors turned out to be rather low, between 100 and 500.

Co-Clustering: We trained models using the graph-based co-clustering technique in (Sind-
hwani et al., 2008). The motivation behind trying this technique is two fold: 1) since the
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features are extremely high dimensional, co-clustering methods could benefit from implicit
dimensionality reduction, and 2) because these techniques naturally make use of un-labeled
data in the clustering process, they could potentially take advantage of the test data that
are available during training.

We performed column-wise shifting and rescaling of the data to ensure all feature values
are non-negative (a requirement of bi-partite graph based co-clustering methods), and raw-
normalization so that each row adds up to one. These two preprocessing steps proved
critical to ensure a decent outcome from the graph-based co-clustering methods. We also
experimented with column normalization, which did not seem to help in this case.

Since the original method described in (Sindhwani et al., 2008) is not scalable to the size
of the data, we experimented with two scalable versions of the algorithm. We first used a
transductive version of the algorithm which had been previously applied to document-word
co-regularization (equation 6 in (Sindhwani and Melville, 2008)). We varied the parame-
ters µ (weight of the graph-based co-clustering regularizer) and p (order of the Laplacian
operator). We found that, for these problems, the results were not very sensitive to µ in
the range of 0.01 to 100, and p in the range of 1 to 10.

The transductive version, however, produced inferior results to a well tuned supervised
classifier. We thus decided to try another variation of the original algorithm which combines
transductive learning with a linear model (equation 8 in (Sindhwani and Melville, 2008),
with the last term dropped since there are no feature labels). While this lead to much
more competitive results, the graph-based co-clustering techniques still failed to produce
the benefits we had hoped for.
Missing Value Imputation: We have also tried imputing the missing values in the hope
it will provide an additional benefit. For each of the numerical features with missing values,
we trained a model to predict the respective feature from the rest of the attributes. To this
end we used two learning techniques: least squares and k-NN. For k-NN we used k=500
and calculated distances between instances using only the top 1000 features ranked by their
respective linear SVM weights. Both sets of imputed values seemed to yield only small
improvements in performance, if any. In the end neither of them was extensively used.
PCA: Given the large dimension of the feature space, we explore reducing the dimension
using principle component anlaysis (PCA). We use the package SVDpack (Berry, 1992) to
reduce the dimension to 500 and run logistic regression, SVM and k-NN classifiers. The
performance of these models, however, was mediocre at best.
Multi-Task Learning: We also explore the idea of multi-task learning, in which we assume
the three tasks are not independent (which seems true for this particular application). One
easy way to make use of the dependencies between tasks is to use the labels (or predicted
labels) from other tasks as additional features and train another layer of classifiers. We
explore this idea and find that using the true labels from other tasks are able to improve
the performance by 3-5%, but there is no improvement when using the predicted labels.
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