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Abstract

For many applications of reinforcement learn-
ing it can be more convenient to specify both
a reward function and constraints, rather than
trying to design behavior through the reward
function. For example, systems that physically
interact with or around humans should satisfy
safety constraints. Recent advances in policy
search algorithms (Mnih et al., 2016; Schul-
man et al., 2015; Lillicrap et al., 2016; Levine
et al., 2016) have enabled new capabilities in
high-dimensional control, but do not consider
the constrained setting. We propose Constrained
Policy Optimization (CPO), the first general-
purpose policy search algorithm for constrained
reinforcement learning with guarantees for near-
constraint satisfaction at each iteration. Our
method allows us to train neural network poli-
cies for high-dimensional control while making
guarantees about policy behavior all throughout
training. Our guarantees are based on a new the-
oretical result, which is of independent interest:
we prove a bound relating the expected returns
of two policies to an average divergence between
them. We demonstrate the effectiveness of our
approach on simulated robot locomotion tasks
where the agent must satisfy constraints moti-
vated by safety.

1. Introduction
Recently, deep reinforcement learning has enabled neural
network policies to achieve state-of-the-art performance
on many high-dimensional control tasks, including Atari
games (using pixels as inputs) (Mnih et al., 2015; 2016),
robot locomotion and manipulation (Schulman et al., 2015;
Levine et al., 2016; Lillicrap et al., 2016), and even Go at
the human grandmaster level (Silver et al., 2016).
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In reinforcement learning (RL), agents learn to act by trial
and error, gradually improving their performance at the
task as learning progresses. Recent work in deep RL as-
sumes that agents are free to explore any behavior during
learning, so long as it leads to performance improvement.
In many realistic domains, however, it may be unacceptable
to give an agent complete freedom. Consider, for example,
an industrial robot arm learning to assemble a new product
in a factory. Some behaviors could cause it to damage it-
self or the plant around it—or worse, take actions that are
harmful to people working nearby. In domains like this,
safe exploration for RL agents is important (Moldovan &
Abbeel, 2012; Amodei et al., 2016). A natural way to in-
corporate safety is via constraints.

A standard and well-studied formulation for reinforcement
learning with constraints is the constrained Markov Deci-
sion Process (CMDP) framework (Altman, 1999), where
agents must satisfy constraints on expectations of auxil-
liary costs. Although optimal policies for finite CMDPs
with known models can be obtained by linear program-
ming, methods for high-dimensional control are lacking.

Currently, policy search algorithms enjoy state-of-the-
art performance on high-dimensional control tasks (Mnih
et al., 2016; Duan et al., 2016). Heuristic algorithms for
policy search in CMDPs have been proposed (Uchibe &
Doya, 2007), and approaches based on primal-dual meth-
ods can be shown to converge to constraint-satisfying poli-
cies (Chow et al., 2015), but there is currently no approach
for policy search in continuous CMDPs that guarantees ev-
ery policy during learning will satisfy constraints. In this
work, we propose the first such algorithm, allowing appli-
cations to constrained deep RL.

Driving our approach is a new theoretical result that bounds
the difference between the rewards or costs of two differ-
ent policies. This result, which is of independent interest,
tightens known bounds for policy search using trust regions
(Kakade & Langford, 2002; Pirotta et al., 2013; Schulman
et al., 2015), and provides a tighter connection between the
theory and practice of policy search for deep RL. Here,
we use this result to derive a policy improvement step that
guarantees both an increase in reward and satisfaction of
constraints on other costs. This step forms the basis for our
algorithm, Constrained Policy Optimization (CPO), which
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computes an approximation to the theoretically-justified
update.

In our experiments, we show that CPO can train neural
network policies with thousands of parameters on high-
dimensional simulated robot locomotion tasks to maximize
rewards while successfully enforcing constraints.

2. Related Work
Safety has long been a topic of interest in RL research, and
a comprehensive overview of safety in RL was given by
(Garcı́a & Fernández, 2015).

Safe policy search methods have been proposed in prior
work. Uchibe and Doya (2007) gave a policy gradient al-
gorithm that uses gradient projection to enforce active con-
straints, but this approach suffers from an inability to pre-
vent a policy from becoming unsafe in the first place. Bou
Ammar et al. (2015) propose a theoretically-motivated pol-
icy gradient method for lifelong learning with safety con-
straints, but their method involves an expensive inner loop
optimization of a semi-definite program, making it unsuited
for the deep RL setting. Their method also assumes that
safety constraints are linear in policy parameters, which is
limiting. Chow et al. (2015) propose a primal-dual sub-
gradient method for risk-constrained reinforcement learn-
ing which takes policy gradient steps on an objective that
trades off return with risk, while simultaneously learning
the trade-off coefficients (dual variables).

Some approaches specifically focus on application to the
deep RL setting. Held et al. (2017) study the problem for
robotic manipulation, but the assumptions they make re-
strict the applicability of their methods. Lipton et al. (2017)
use an ‘intrinsic fear’ heuristic, as opposed to constraints,
to motivate agents to avoid rare but catastrophic events.
Shalev-Shwartz et al. (2016) avoid the problem of enforc-
ing constraints on parametrized policies by decomposing
‘desires’ from trajectory planning; the neural network pol-
icy learns desires for behavior, while the trajectory plan-
ning algorithm (which is not learned) selects final behavior
and enforces safety constraints.

In contrast to prior work, our method is the first policy
search algorithm for CMDPs that both 1) guarantees con-
straint satisfaction throughout training, and 2) works for
arbitrary policy classes (including neural networks).

3. Preliminaries
A Markov decision process (MDP) is a tuple,
(S,A,R, P, µ), where S is the set of states, A is the
set of actions, R : S ×A× S → R is the reward function,
P : S×A×S → [0, 1] is the transition probability function
(where P (s�|s, a) is the probability of transitioning to state

s� given that the previous state was s and the agent took
action a in s), and µ : S → [0, 1] is the starting state
distribution. A stationary policy π : S → P(A) is a map
from states to probability distributions over actions, with
π(a|s) denoting the probability of selecting action a in
state s. We denote the set of all stationary policies by Π.

In reinforcement learning, we aim to select a policy π
which maximizes a performance measure, J(π), which is
typically taken to be the infinite horizon discounted to-
tal return, J(π)

.
= E

τ∼π
[
�∞

t=0 γ
tR(st, at, st+1)]. Here

γ ∈ [0, 1) is the discount factor, τ denotes a trajectory
(τ = (s0, a0, s1, ...)), and τ ∼ π is shorthand for indi-
cating that the distribution over trajectories depends on π:
s0 ∼ µ, at ∼ π(·|st), st+1 ∼ P (·|st, at).
Letting R(τ) denote the discounted return of a trajec-
tory, we express the on-policy value function as V π(s)

.
=

Eτ∼π[R(τ)|s0 = s] and the on-policy action-value func-
tion as Qπ(s, a)

.
= Eτ∼π[R(τ)|s0 = s, a0 = a]. The

advantage function is Aπ(s, a)
.
= Qπ(s, a)− V π(s).

Also of interest is the discounted future state distribution,
dπ , defined by dπ(s) = (1−γ)

�∞
t=0 γ

tP (st = s|π). It al-
lows us to compactly express the difference in performance
between two policies π�,π as

J(π�)− J(π) =
1

1− γ
E

s∼dπ�

a∼π�

[Aπ(s, a)] , (1)

where by a ∼ π�, we mean a ∼ π�(·|s), with explicit
notation dropped to reduce clutter. For proof of (1), see
(Kakade & Langford, 2002) or Section 10 in the supple-
mentary material.

4. Constrained Markov Decision Processes
A constrained Markov decision process (CMDP) is an
MDP augmented with constraints that restrict the set of al-
lowable policies for that MDP. Specifically, we augment the
MDP with a set C of auxiliary cost functions, C1, ..., Cm

(with each one a function Ci : S × A × S → R map-
ping transition tuples to costs, like the usual reward), and
limits d1, ..., dm. Let JCi(π) denote the expected dis-
counted return of policy π with respect to cost function
Ci: JCi

(π) = E
τ∼π

[
�∞

t=0 γ
tCi(st, at, st+1)]. The set of

feasible stationary policies for a CMDP is then

ΠC
.
= {π ∈ Π : ∀i, JCi(π) ≤ di} ,

and the reinforcement learning problem in a CMDP is

π∗ = arg max
π∈ΠC

J(π).

The choice of optimizing only over stationary policies is
justified: it has been shown that the set of all optimal poli-
cies for a CMDP includes stationary policies, under mild
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technical conditions. For a thorough review of CMDPs and
CMDP theory, we refer the reader to (Altman, 1999).

We refer to JCi
as a constraint return, or Ci-return for

short. Lastly, we define on-policy value functions, action-
value functions, and advantage functions for the auxiliary
costs in analogy to V π , Qπ , and Aπ , with Ci replacing R:
respectively, we denote these by V π

Ci
, Qπ

Ci
, and Aπ

Ci
.

5. Constrained Policy Optimization
For large or continuous MDPs, solving for the exact opti-
mal policy is intractable due to the curse of dimensionality
(Sutton & Barto, 1998). Policy search algorithms approach
this problem by searching for the optimal policy within a
set Πθ ⊆ Π of parametrized policies with parameters θ
(for example, neural networks of a fixed architecture). In
local policy search (Peters & Schaal, 2008), the policy is
iteratively updated by maximizing J(π) over a local neigh-
borhood of the most recent iterate πk:

πk+1 = arg max
π∈Πθ

J(π)

s.t. D(π,πk) ≤ δ,
(2)

where D is some distance measure, and δ > 0 is a step
size. When the objective is estimated by linearizing around
πk as J(πk) + gT (θ − θk), g is the policy gradient, and
the standard policy gradient update is obtained by choosing
D(π,πk) = �θ − θk�2 (Schulman et al., 2015).

In local policy search for CMDPs, we additionally require
policy iterates to be feasible for the CMDP, so instead of
optimizing over Πθ, we optimize over Πθ ∩ΠC :

πk+1 = arg max
π∈Πθ

J(π)

s.t. JCi(π) ≤ di i = 1, ...,m

D(π,πk) ≤ δ.

(3)

This update is difficult to implement in practice because
it requires evaluation of the constraint functions to deter-
mine whether a proposed point π is feasible. When using
sampling to compute policy updates, as is typically done in
high-dimensional control (Duan et al., 2016), this requires
off-policy evaluation, which is known to be challenging
(Jiang & Li, 2015). In this work, we take a different ap-
proach, motivated by recent methods for trust region opti-
mization (Schulman et al., 2015).

We develop a principled approximation to (3) with a par-
ticular choice of D, where we replace the objective and
constraints with surrogate functions. The surrogates we
choose are easy to estimate from samples collected on πk,
and are good local approximations for the objective and
constraints. Our theoretical analysis shows that for our
choices of surrogates, we can bound our update’s worst-

case performance and worst-case constraint violation with
values that depend on a hyperparameter of the algorithm.

To prove the performance guarantees associated with our
surrogates, we first prove new bounds on the difference
in returns (or constraint returns) between two arbitrary
stochastic policies in terms of an average divergence be-
tween them. We then show how our bounds permit a new
analysis of trust region methods in general: specifically,
we prove a worst-case performance degradation at each up-
date. We conclude by motivating, presenting, and proving
gurantees on our algorithm, Constrained Policy Optimiza-
tion (CPO), a trust region method for CMDPs.

5.1. Policy Performance Bounds

In this section, we present the theoretical foundation for
our approach—a new bound on the difference in returns
between two arbitrary policies. This result, which is of in-
dependent interest, extends the works of (Kakade & Lang-
ford, 2002), (Pirotta et al., 2013), and (Schulman et al.,
2015), providing tighter bounds. As we show later, it also
relates the theoretical bounds for trust region policy im-
provement with the actual trust region algorithms that have
been demonstrated to be successful in practice (Duan et al.,
2016). In the context of constrained policy search, we later
use our results to propose policy updates that both improve
the expected return and satisfy constraints.

The following theorem connects the difference in returns
(or constraint returns) between two arbitrary policies to an
average divergence between them.

Theorem 1. For any function f : S → R and any policies
π� and π, define δf (s, a, s�)

.
= R(s, a, s�)+ γf(s�)− f(s),

�π
�

f
.
= max

s
|Ea∼π�,s�∼P [δf (s, a, s

�)]| ,

Lπ,f (π
�)

.
= E

s∼dπ

a∼π
s�∼P

��
π�(a|s)
π(a|s) − 1

�
δf (s, a, s

�)

�
, and

D±
π,f (π

�)
.
=

Lπ,f (π
�)

1− γ
±

2γ�π
�

f

(1− γ)2
E

s∼dπ
[DTV (π

�||π)[s]] ,

where DTV (π
�||π)[s] = (1/2)

�
a |π�(a|s)− π(a|s)| is

the total variational divergence between action distribu-
tions at s. The following bounds hold:

D+
π,f (π

�) ≥ J(π�)− J(π) ≥ D−
π,f (π

�). (4)

Furthermore, the bounds are tight (when π� = π, all three
expressions are identically zero).

Before proceeding, we connect this result to prior work.
By bounding the expectation Es∼dπ [DTV (π

�||π)[s]] with
maxs DTV (π

�||π)[s], picking f = V π , and bounding �π
�

V π
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to get a second factor of maxs DTV (π
�||π)[s], we recover

(up to assumption-dependent factors) the bounds given by
Pirotta et al. (2013) as Corollary 3.6, and by Schulman
et al. (2015) as Theorem 1a.

The choice of f = V π allows a useful form of the lower
bound, so we give it as a corollary.
Corollary 1. For any policies π�,π, with �π

� .
=

maxs |Ea∼π� [Aπ(s, a)]|, the following bound holds:

J(π�)− J(π)

≥ 1

1− γ
E

s∼dπ

a∼π�

�
Aπ(s, a)− 2γ�π

�

1− γ
DTV (π

�||π)[s]
�
.

(5)

The bound (5) should be compared with equation (1). The
term (1 − γ)−1Es∼dπ,a∼π� [Aπ(s, a)] in (5) is an approxi-
mation to J(π�)− J(π), using the state distribution dπ in-
stead of dπ

�
, which is known to equal J(π�)− J(π) to first

order in the parameters of π� on a neighborhood around π
(Kakade & Langford, 2002). The bound can therefore be
viewed as describing the worst-case approximation error,
and it justifies using the approximation as a surrogate for
J(π�)− J(π).

Equivalent expressions for the auxiliary costs, based on the
upper bound, also follow immediately; we will later use
them to make guarantees for the safety of CPO.
Corollary 2. For any policies π�,π, and any cost func-
tion Ci, with �π

�
Ci

.
= maxs |Ea∼π� [Aπ

Ci
(s, a)]|, the follow-

ing bound holds:

JCi
(π�)− JCi

(π)

≤ 1

1− γ
E

s∼dπ

a∼π�

�
Aπ

Ci
(s, a) +

2γ�π
�

Ci

1− γ
DTV (π

�||π)[s]
�
.

(6)

The bounds we have given so far are in terms of the
TV-divergence between policies, but trust region methods
constrain the KL-divergence between policies, so bounds
that connect performance to the KL-divergence are de-
sirable. We make the connection through Pinsker’s in-
equality (Csiszar & Körner, 1981): for arbitrary distribu-
tions p, q, the TV-divergence and KL-divergence are related
by DTV (p||q) ≤

�
DKL(p||q)/2. Combining this with

Jensen’s inequality, we obtain

E
s∼dπ

[DTV (π
�||π)[s]] ≤ E

s∼dπ

��
1

2
DKL(π�||π)[s]

�

≤
�

1

2
E

s∼dπ
[DKL(π�||π)[s]] (7)

From (7) we immediately obtain the following.

Corollary 3. In bounds (4), (5), and (6), make the substi-
tution

E
s∼dπ

[DTV (π
�||π)[s]] →

�
1

2
E

s∼dπ
[DKL(π�||π)[s]].

The resulting bounds hold.

5.2. Trust Region Methods

Trust region algorithms for reinforcement learning (Schul-
man et al., 2015; 2016) have policy updates of the form

πk+1 = arg max
π∈Πθ

E
s∼dπk

a∼π

[Aπk(s, a)]

s.t. D̄KL(π||πk) ≤ δ,

(8)

where D̄KL(π||πk) = Es∼πk
[DKL(π||πk)[s]], and δ > 0

is the step size. The set {πθ ∈ Πθ : D̄KL(π||πk) ≤ δ} is
called the trust region.

The primary motivation for this update is that it is an ap-
proximation to optimizing the lower bound on policy per-
formance given in (5), which would guarantee monotonic
performance improvements. This is important for opti-
mizing neural network policies, which are known to suffer
from performance collapse after bad updates (Duan et al.,
2016). Despite the approximation, trust region steps usu-
ally give monotonic improvements (Schulman et al., 2015;
Duan et al., 2016) and have shown state-of-the-art perfor-
mance in the deep RL setting (Duan et al., 2016; Gu et al.,
2017), making the approach appealing for developing pol-
icy search methods for CMDPs.

Until now, the particular choice of trust region for (8) was
heuristically motivated; with (5) and Corollary 3, we are
able to show that it is principled and comes with a worst-
case performance degradation guarantee that depends on δ.
Proposition 1 (Trust Region Update Performance). Sup-
pose πk, πk+1 are related by (8), and that πk ∈ Πθ. A
lower bound on the policy performance difference between
πk and πk+1 is

J(πk+1)− J(πk) ≥
−
√
2δγ�πk+1

(1− γ)2
, (9)

where �πk+1 = maxs
��Ea∼πk+1

[Aπk(s, a)]
��.

Proof. πk is a feasible point of (8) with objective value 0,
so Es∼dπk ,a∼πk+1

[Aπk(s, a)] ≥ 0. The rest follows by (5)
and Corollary 3, noting that (8) bounds the average KL-
divergence by δ.

This result is useful for two reasons: 1) it is of independent
interest, as it helps tighten the connection between theory
and practice for deep RL, and 2) the choice to develop CPO
as a trust region method means that CPO inherits this per-
formance guarantee.
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5.3. Trust Region Optimization for Constrained MDPs

Constrained policy optimization (CPO), which we present
and justify in this section, is a policy search algorithm for
CMDPs with updates that approximately solve (3) with a
particular choice of D. First, we describe a policy search
update for CMDPs that alleviates the issue of off-policy
evaluation, and comes with guarantees of monotonic per-
formance improvement and constraint satisfaction. Then,
because the theoretically guaranteed update will take too-
small steps in practice, we propose CPO as a practical ap-
proximation based on trust region methods.

By corollaries 1, 2, and 3, for appropriate coefficients αk,
βi
k the update

πk+1 = arg max
π∈Πθ

E
s∼dπk

a∼π

[Aπk(s, a)]− αk

�
D̄KL(π||πk)

s.t. JCi
(πk) + E

s∼dπk

a∼π

�
Aπk

Ci
(s, a)

1− γ

�
+ βi

k

�
D̄KL(π||πk) ≤ di

is guaranteed to produce policies with monotonically non-
decreasing returns that satisfy the original constraints. (Ob-
serve that the constraint here is on an upper bound for
JCi(π) by (6).) The off-policy evaluation issue is allevi-
ated, because both the objective and constraints involve ex-
pectations over state distributions dπk , which we presume
to have samples from. Because the bounds are tight, the
problem is always feasible (as long as π0 is feasible). How-
ever, the penalties on policy divergence are quite steep for
discount factors close to 1, so steps taken with this update
might be small.

Inspired by trust region methods, we propose CPO, which
uses a trust region instead of penalties on policy divergence
to enable larger step sizes:

πk+1 =arg max
π∈Πθ

E
s∼dπk

a∼π

[Aπk(s, a)]

s.t. JCi
(πk) +

1

1− γ
E

s∼dπk

a∼π

�
Aπk

Ci
(s, a)

�
≤ di ∀i

D̄KL(π||πk) ≤ δ.
(10)

Because this is a trust region method, it inherits the perfor-
mance guarantee of Proposition 1. Furthermore, by corol-
laries 2 and 3, we have a performance guarantee for ap-
proximate satisfaction of constraints:
Proposition 2 (CPO Update Worst-Case Constraint Viola-
tion). Suppose πk,πk+1 are related by (10), and that Πθ in
(10) is any set of policies with πk ∈ Πθ. An upper bound
on the Ci-return of πk+1 is

JCi(πk+1) ≤ di +

√
2δγ�

πk+1

Ci

(1− γ)2
,

where �
πk+1

Ci
= maxs

��Ea∼πk+1

�
Aπk

Ci
(s, a)

���.

6. Practical Implementation
In this section, we show how to implement an approxima-
tion to the update (10) that can be efficiently computed,
even when optimizing policies with thousands of parame-
ters. To address the issue of approximation and sampling
errors that arise in practice, as well as the potential viola-
tions described by Proposition 2, we also propose to tighten
the constraints by constraining upper bounds of the auxil-
liary costs, instead of the auxilliary costs themselves.

6.1. Approximately Solving the CPO Update

For policies with high-dimensional parameter spaces like
neural networks, (10) can be impractical to solve di-
rectly because of the computational cost. However, for
small step sizes δ, the objective and cost constraints are
well-approximated by linearizing around πk, and the KL-
divergence constraint is well-approximated by second or-
der expansion (at πk = π, the KL-divergence and its gra-
dient are both zero). Denoting the gradient of the objective
as g, the gradient of constraint i as bi, the Hessian of the
KL-divergence as H , and defining ci

.
= JCi(πk) − di, the

approximation to (10) is:

θk+1 = argmax
θ

gT (θ − θk)

s.t. ci + bTi (θ − θk) ≤ 0 i = 1, ...,m

1

2
(θ − θk)

TH(θ − θk) ≤ δ.

(11)
Because the Fisher information matrix (FIM) H is al-
ways positive semi-definite (and we will assume it to be
positive-definite in what follows), this optimization prob-
lem is convex and, when feasible, can be solved efficiently
using duality. (We reserve the case where it is not feasi-
ble for the next subsection.) With B

.
= [b1, ..., bm] and

c
.
= [c1, ..., cm]T , a dual to (11) can be expressed as

max
λ≥0
ν�0

−1

2λ

�
gTH−1g − 2rT ν + νTSν

�
+ νT c− λδ

2
,

(12)
where r

.
= gTH−1B, S .

= BTH−1B. This is a convex
program in m+1 variables; when the number of constraints
is small by comparison to the dimension of θ, this is much
easier to solve than (11). If λ∗, ν∗ are a solution to the dual,
the solution to the primal is

θ∗ = θk +
1

λ∗H
−1 (g −Bν∗) . (13)

Our algorithm solves the dual for λ∗, ν∗ and uses it to pro-
pose the policy update (13). For the special case where
there is only one constraint, we give an analytical solution
in the supplementary material (Theorem 2) which removes
the need for an inner-loop optimization. Our experiments
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Algorithm 1 Constrained Policy Optimization

Input: Initial policy π0 ∈ Πθ tolerance α
for k = 0, 1, 2, ... do

Sample a set of trajectories D = {τ} ∼ πk = π(θk)

Form sample estimates ĝ, b̂, Ĥ, ĉ with D
if approximate CPO is feasible then

Solve dual problem (12) for λ∗
k, ν

∗
k

Compute policy proposal θ∗ with (13)
else

Compute recovery policy proposal θ∗ with (14)
end if
Obtain θk+1 by backtracking linesearch to enforce sat-
isfaction of sample estimates of constraints in (10)

end for

have only a single constraint, and make use of the analyti-
cal solution.

Because of approximation error, the proposed update may
not satisfy the constraints in (10); a backtracking line
search is used to ensure surrogate constraint satisfaction.
Also, for high-dimensional policies, it is impractically ex-
pensive to invert the FIM. This poses a challenge for com-
puting H−1g and H−1bi, which appear in the dual. Like
(Schulman et al., 2015), we approximately compute them
using the conjugate gradient method.

6.2. Feasibility

Due to approximation errors, CPO may take a bad step and
produce an infeasible iterate πk. Sometimes (11) will still
be feasible and CPO can automatically recover from its bad
step, but for the infeasible case, a recovery method is nec-
essary. In our experiments, where we only have one con-
straint, we recover by proposing an update to purely de-
crease the constraint value:

θ∗ = θk −
�

2δ

bTH−1b
H−1b. (14)

As before, this is followed by a line search. This approach
is principled in that it uses the limiting search direction as
the intersection of the trust region and the constraint region
shrinks to zero. We give the pseudocode for our algorithm
(for the single-constraint case) as Algorithm 1, and have
made our code implementation available online.1

6.3. Tightening Constraints via Cost Shaping

Because of the various approximations between (3) and our
practical algorithm, it is important to build a factor of safety
into the algorithm to minimize the chance of constraint vi-
olations. To this end, we choose to constrain upper bounds

1https://github.com/jachiam/cpo

on the original constraints, C+
i , instead of the original con-

straints themselves. We do this by cost shaping:

C+
i (s, a, s�) = Ci(s, a, s

�) +Δi(s, a, s
�), (15)

where Δi : S × A × S → R+ correlates in some useful
way with Ci.

In our experiments, where we have only one constraint, we
partition states into safe states and unsafe states, and the
agent suffers a safety cost of 1 for being in an unsafe state.
We choose Δ to be the probability of entering an unsafe
state within a fixed time horizon, according to a learned
model that is updated at each iteration. This choice confers
the additional benefit of smoothing out sparse constraints.

7. Connections to Prior Work
Our method has similar policy updates to primal-dual
methods like those proposed by Chow et al. (2015), but
crucially, we differ in computing the dual variables (the
Lagrange multipliers for the constraints). In primal-dual
optimization (PDO), dual variables are stateful and learned
concurrently with the primal variables (Boyd et al., 2003).
In a PDO algorithm for solving (3), dual variables would
be updated according to

νk+1 = (νk + αk (JC(πk)− d))+ , (16)

where αk is a learning rate. In this approach, intermedi-
ary policies are not guaranteed to satisfy constraints—only
the policy at convergence is. By contrast, CPO computes
new dual variables from scratch at each update to exactly
enforce constraints.

8. Experiments
In our experiments, we aim to answer the following:

• Does CPO succeed at enforcing behavioral constraints
when training neural network policies with thousands
of parameters?

• How does CPO compare with a baseline that uses
primal-dual optimization? Does CPO behave better
with respect to constraints?

• How much does it help to constrain a cost upper bound
(15), instead of directly constraining the cost?

• What benefits are conferred by using constraints in-
stead of fixed penalties?

We designed experiments that are easy to interpret and mo-
tivated by safety. We consider two tasks, and train multiple
different agents (robots) for each task:
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Returns:

Constraint values: (closer to the limit is better)

(a) Point-Circle (b) Ant-Circle (c) Humanoid-Circle (d) Point-Gather (e) Ant-Gather

Figure 1. Average performance for CPO, PDO, and TRPO over several seeds (5 in the Point environments, 10 in all others); the x-axis is
training iteration. CPO drives the constraint function almost directly to the limit in all experiments, while PDO frequently suffers from
over- or under-correction. TRPO is included to verify that optimal unconstrained behaviors are infeasible for the constrained problem.

• Circle: The agent is rewarded for running in a wide
circle, but is constrained to stay within a safe region
smaller than the radius of the target circle.

• Gather: The agent is rewarded for collecting green
apples, and constrained to avoid red bombs.

For the Circle task, the exact geometry is illustrated in Fig-
ure 5 in the supplementary material. Note that there are
no physical walls: the agent only interacts with boundaries
through the constraint costs. The reward and constraint cost
functions are described in supplementary material (Section
10.3.1). In each of these tasks, we have only one constraint;
we refer to it as C and its upper bound from (15) as C+.

We experiment with three different agents: a point-mass
(S ⊆ R9, A ⊆ R2), a quadruped robot (called an ‘ant’)
(S ⊆ R32, A ⊆ R8), and a simple humanoid (S ⊆
R102, A ⊆ R10). We train all agent-task combinations ex-
cept for Humanoid-Gather.

For all experiments, we use neural network policies with
two hidden layers of size (64, 32). Our experiments are
implemented in rllab (Duan et al., 2016).

8.1. Evaluating CPO and Comparison Analysis

Learning curves for CPO and PDO are compiled in Figure
1. Note that our constraint value graphs show C+ return,
instead of the C return (except for in Point-Gather, where
we did not use cost shaping due to that environment’s short
time horizon), because this is what the algorithm actually
constrains in these experiments.

For our comparison, we implement PDO with (16) as the

(a) Humanoid-Circle (b) Point-Gather

Figure 2. The Humanoid-Circle and Point-Gather environments.
In Humanoid-Circle, the safe area is between the blue panels.

update rule for the dual variables, using a constant learning
rate α; details are available in supplementary material (Sec-
tion 10.3.3). We emphasize that in order for the compari-
son to be fair, we give PDO every advantage that is given to
CPO, including equivalent trust region policy updates. To
benchmark the environments, we also include TRPO (trust
region policy optimization) (Schulman et al., 2015), a state-
of-the-art unconstrained reinforcement learning algorithm.
The TRPO experiments show that optimal unconstrained
behaviors for these environments are constraint-violating.

We find that CPO is successful at approximately enforc-
ing constraints in all environments. In the simpler envi-
ronments (Point-Circle and Point-Gather), CPO tracks the
constraint return almost exactly to the limit value.

By contrast, although PDO usually converges to constraint-
satisfying policies in the end, it is not consistently
constraint-satisfying throughout training (as expected). For
example, see the spike in constraint value that it experi-
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ences in Ant-Circle. Additionally, PDO is sensitive to the
initialization of the dual variable. By default, we initial-
ize ν0 = 0, which exploits no prior knowledge about the
environment and makes sense when the initial policies are
feasible. However, it may seem appealing to set ν0 high,
which would make PDO more conservative with respect
to the constraint; PDO could then decrease ν as necessary
after the fact. In the Point environments, we experiment
with ν0 = 1000 and show that although this does assure
constraint satisfaction, it also can substantially harm per-
formance with respect to return. Furthermore, we argue
that this is not adequate in general: after the dual variable
decreases, the agent could learn a new behavior that in-
creases the correct dual variable more quickly than PDO
can attain it (as happens in Ant-Circle for PDO; observe
that performance is approximately constraint-satisfying un-
til the agent learns how to run at around iteration 350).

We find that CPO generally outperforms PDO on enforc-
ing constraints, without compromising performance with
respect to return. CPO quickly stabilizes the constraint re-
turn around to the limit value, while PDO is not consis-
tently able to enforce constraints all throughout training.

8.2. Ablation on Cost Shaping

In Figure 3, we compare performance of CPO with and
without cost shaping in the constraint. Our metric for com-
parison is the C return, the ‘true’ constraint. The cost shap-
ing does help, almost completely accounting for CPO’s
inherent approximation errors. However, CPO is nearly
constraint-satisfying even without cost shaping.

8.3. Constraint vs. Fixed Penalty

In Figure 4, we compare CPO to a fixed penalty method,
where policies are learned using TRPO with rewards
R(s, a, s�)− νC+(s, a, s�) for ν ∈ {1, 5, 50}.

We find that fixed penalty methods can be highly sensitive
to the choice of penalty coefficient: in Ant-Circle, a penalty
coefficient of 1 results in reward-maximizing policies that
accumulate massive constraint costs, while a coefficient of
5 (less than an order of magnitude difference) results in
cost-minimizing policies that never learn how to acquire
any rewards. In contrast, CPO automatically picks penalty
coefficients to attain the desired trade-off between reward
and constraint cost.

9. Discussion
In this article, we showed that a particular optimization
problem results in policy updates that are guaranteed to
both improve return and satisfy constraints. This enabled
the development of CPO, our policy search algorithm for
CMDPs, which approximates the theoretically-guaranteed

(a) Ant-Circle Return (b) Ant-Gather Return

(c) Ant-Circle C Return (d) Ant-Gather C Return

Figure 3. Using cost shaping (CS) in the constraint while optimiz-
ing generally improves the agent’s adherence to the true constraint
on C return.

(a) Ant-Circle Return (b) Ant-Circle C+-Return

Figure 4. Comparison between CPO and FPO (fixed penalty opti-
mization) for various values of fixed penalty.

algorithm in a principled way. We demonstrated that CPO
can train neural network policies with thousands of param-
eters on high-dimensional constrained control tasks, simul-
taneously maximizing reward and approximately satisfying
constraints. Our work represents a step towards applying
reinforcement learning in the real world, where constraints
on agent behavior are sometimes necessary for the sake of
safety.
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