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Abstract

We design differentially private algorithms for
the problem of online linear optimization in the
full information and bandit settings with optimal
˜O(

p
T )1 regret bounds. In the full-information

setting, our results demonstrate that "-differential
privacy may be ensured for free – in particular,
the regret bounds scale as O(

p
T ) + ˜O

�
1

"

�
. For

bandit linear optimization, and as a special case,
for non-stochastic multi-armed bandits, the pro-
posed algorithm achieves a regret of ˜O

⇣
1

"

p
T
⌘

,
while the previously known best regret bound
was ˜O

⇣
1

"

T
2
3

⌘
.

1. Introduction
In the paradigm of online learning, a learning algorithm
makes a sequence of predictions given the (possibly in-
complete) knowledge of the correct answers for the past
queries. In contrast to statistical learning, online learn-
ing algorithms typically offer distribution-free guarantees.
Consequently, online learning algorithms are well suited
to dynamic and adversarial environments, where real-time
learning from changing data is essential making them ubiq-
uitous in practical applications such as servicing search ad-
vertisements. In these settings often these algorithms inter-
act with sensitive user data, making privacy a natural con-
cern for these algorithms. A natural notion of privacy in
such settings is differential privacy (Dwork et al., 2006)
which ensures that the outputs of an algorithm are indis-
tinguishable in the case when a user’s data is present as
opposed to when it is absent in a dataset.

In this paper, we design differentially private algorithms for
online linear optimization with near-optimal regret, both in
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1Here the ˜O(·) notation hides polylog(T ) factors.

the full information and partial information (bandit) set-
tings. This result improves the known best regret bounds
for a number of important online learning problems – in-
cluding prediction from expert advice and non-stochastic
multi-armed bandits.

1.1. Full-Information Setting: Privacy for Free

For the full-information setting where the algorithm gets
to see the complete loss vector every round, we design
"-differentially private algorithms with regret bounds that
scale as O

⇣p
T
⌘
+

˜O
�
1

"

�
(Theorem 3.1), partially resolv-

ing an open question to improve the previously best known
bound of O

⇣
1

"

p
T
⌘

posed in (Smith & Thakurta, 2013).
A decomposition of the bound on the regret bound of this
form implies that when " � 1p

T

, the regret incurred by
the differentially private algorithm matches the optimal re-
gret in the non-private setting, i.e. differential privacy is
free. Moreover even when "  1p

T

, our results guarantee
a sub-constant regret per round in contrast to the vacuous
constant regret per round guaranteed by existing results.

Concretely, consider the case of online linear optimization
over the cube, with unit l1-norm-bounded loss vectors. In
this setting, (Smith & Thakurta, 2013) achieves a regret
bound of O(

1

"

p
NT ), which is meaningful only if T � N

"

2 .
Our theorems imply a regret bound of ˜O(

p
NT +

N

"

). This
is an improvement on the previous bound regardless of the
value of ". Furthermore, when T is between N

"

and N

"

2 , the
previous bounds are vacuous whereas our results are still
meaningful. Note that the above arguments show an im-
provement over existing results even for moderate value of
". Indeed, when " is very small, the magnitude of improve-
ments are more pronounced.

Beyond the separation between T and ", the key point of
our analysis is that we obtain bounds for general regular-
ization based algorithms which adapt to the geometry of
the underlying problem optimally, unlike the previous algo-
rithms (Smith & Thakurta, 2013) which utilizes euclidean
regularization. This allows our results to get rid of a poly-
nomial dependence on N (in the

p
T term) in some cases.

Online linear optimization over the sphere and prediction
with expert advice are notable examples.
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We summarize our results in Table 1.1.

1.2. Bandits: Reduction to the Non-private Setting

In the partial-information (bandit) setting, the online learn-
ing algorithm only gets to observe the loss of the predic-
tion it prescribed. We outline a reduction technique that
translates a non-private bandit algorithm to a differentially
private bandit algorithm, while retaining the ˜O(

p
T ) de-

pendency of the regret bound on the number of rounds of
play (Theorem 4.5). This allows us to derive the first "-
differentially private algorithm for bandit linear optimiza-
tion achieving ˜O(

p
T ) regret, using the algorithm for the

non-private setting from (Abernethy et al., 2012). This an-
swers a question from (Smith & Thakurta, 2013) asking if
˜O(

p
T ) regret is attainable for differentially private linear

bandits .

An important case of the general bandit linear optimization
framework is the non-stochastic multi-armed bandits prob-
lem(Bubeck et al., 2012b), with applications for website
optimization, personalized medicine, advertisement place-
ment and recommendation systems. Here, we propose
an "-differentially private algorithm which enjoys a re-
gret of ˜O(

1

"

p
NT logN) (Theorem 4.1), improving on the

previously best attainable regret of ˜O(

1

"

NT
2
3
)(Smith &

Thakurta, 2013).

We summarize our results in Table 1.2.

1.3. Related Work

The problem of differentially private online learning was
first considered in (Dwork et al., 2010), albeit guarantee-
ing privacy in a weaker setting – ensuring the privacy of
the individual entries of the loss vectors. (Dwork et al.,
2010) also introduced the tree-based aggregation scheme
for releasing the cumulative sums of vectors in a differen-
tially private manner, while ensuring that the total amount
of noise added for each cumulative sum is only poly-
logarithmically dependent on the number of vectors. The
stronger notion of privacy protecting entire loss vectors was
first studied in (Jain et al., 2012), where gradient-based al-
gorithms were proposed that achieve (", �)-differntial pri-
vacy and regret bounds of ˜O

⇣
1

"

p
T log

1

�

⌘
. (Smith &

Thakurta, 2013) proposed a modification of Follow-the-
Approximate-Leader template to achieve ˜O

�
1

"

log

2.5 T
�

regret for strongly convex loss functions, implying a regret
bound of ˜O

⇣
1

"

p
T
⌘

for general convex functions. In addi-
tion, they also demonstrated that under bandit feedback, it
is possible to obtain regret bounds that scale as ˜O

⇣
1

"

T
2
3

⌘
.

(Dwork et al., 2014a; Jain & Thakurta, 2014) proved that
in the special case of prediction with expert advice setting,
it is possible to achieve a regret of O

�
1

"

p
T logN

�
. While

most algorithms for differentially private online learning
are based on the regularization template, (Dwork et al.,
2014b) used a perturbation-based algorithm to guarantee
(", �)-differential privacy for the problem of online PCA.
(Tossou & Dimitrakakis, 2016) showed that it is possible
to design "-differentially private algorithms for the stochas-
tic multi-armed bandit problem with a separation of ", T
for the regret bound. Recently, an independent work due
to (Tossou & Dimitrakakis, 2017), which we were made
aware of after the first manuscript, also demonstrated a
˜O
⇣

1

"

p
T
⌘

regret bound in the non-stochastic multi-armed
bandits setting. We match their results (Theorem 4.1), as
well as provide a generalization to arbitrary convex sets
(Theorem 4.5).

1.4. Overview of Our Techniques

Full Information Setting: We consider the two
well known paradigms for online learning, Folllow-the-
Regularized-Leader (FTRL) and Folllow-the-Perturbed-
Leader (FTPL). In both cases, we ensure differential pri-
vacy by restricting the mode of access to the inputs (the
loss vectors). In particular, the algorithm can only retrieve
estimates of the loss vectors released by a tree based ag-
gregation protocol (Algorithm 2) which is a slight modifi-
cation of the protocol used in (Jain et al., 2012; Smith &
Thakurta, 2013). We outline a tighter analysis of the regret
minimization framework by crucially observing that in case
of linear losses, the expected regret of an algorithm that
injects identically (though not necessarily independently)
distributed noise per step is the same as one that injects a
single copy of the noise at the very start of the algorithm.

The regret analysis of Follow-the-Leader based algorithm
involves two components, a bias term due to the regular-
ization and a stability term which bounds the change in the
output of the algorithm per step. In the analysis due to
(Smith & Thakurta, 2013), the stability term is affected by
the variance of the noise as it changes from step to step.
However in our analysis, since we treat the noise to have
been sampled just once, the stability analysis does not fac-
tor in the variance and the magnitude of the noise essen-
tially appears as an additive term in the bias.

Bandit Feedback: In the bandit feedback setting, we show
a general reduction that takes a non-private algorithm and
outputs a private algorithm (Algorithm 4). Our key ob-
servation here (presented as Lemma 4.3) is that on linear
functions, in expectation the regret of an algorithm on a
noisy sequence of loss vectors is the same as its regret on
the original loss sequence as long as noise is zero mean.
We now bound the regret on the noisy sequence by condi-
tioning out the case when the noise can be large and us-
ing exploration techniques from (Bubeck et al., 2012a) and
(Abernethy et al., 2008).
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FUNCTION CLASS (N DIMENSIONS) PREVIOUS BEST
KNOWN REGRET

OUR REGRET BOUND BEST NON-
PRIVATE
REGRET

PREDICTION WITH EXPERT ADVICE ˜O
⇣p

T logN
"

⌘
O
⇣p

T logN +

N logN log

2 T
"

⌘
O(

p
T logN)

ONLINE LINEAR OPTIMIZATION OVER
THE SPHERE

˜O
⇣p

NT
"

⌘
O
⇣p

T +

N log

2 T
"

⌘
O(

p
T )

ONLINE LINEAR OPTIMIZATION OVER
THE CUBE

˜O
⇣p

NT
"

⌘
O
⇣p

NT +

N log

2 T
"

⌘
O(

p
NT )

ONLINE LINEAR OPTIMIZATION ˜O
⇣p

T
"

⌘
O
⇣p

T +

log

2 T
"

⌘
O(

p
T )

Table 1. Summary of our results in the full-information setting. In the last row we suppress the constants depending upon X ,Y .

FUNCTION CLASS (N DIMENSIONS) PREVIOUS BEST
KNOWN REGRET

OUR REGRET BOUND BEST NON-
PRIVATE
REGRET

BANDIT LINEAR OPTIMIZATION ˜O

✓
T

2
3

"

◆
˜O
⇣p

T
"

⌘
O(

p
T )

NON-STOCHASTIC MULT-ARMED
BANDITS

˜O

✓
NT

2
3

"

◆
˜O
⇣p

TN logN
"

⌘
O(

p
NT )

Table 2. Summary of our results in the bandit setting. In the first row we suppress the specific constants depending upon X ,Y .

2. Model and Preliminaries
This section introduces the model of online (linear) learn-
ing, the distinction between full and partial feedback sce-
narios, and the notion of differential privacy in this model.

Full-Information Setting: Online linear optimization
(Hazan et al., 2016; Shalev-Shwartz, 2011) involves re-
peated decision making over T rounds of play. At the be-
ginning of every round (say round t), the algorithm chooses
a point in x

t

2 X , where X ✓ RN is a (compact) convex
set. Subsequently, it observes the loss l

t

2 Y ✓ RN and
suffers a loss of hl

t

, x
t

i. The success of such an algorithm,
across T rounds of play, is measured though regret, which
is defined as

Regret = E


TX

t=1

hl
t

, x
t

i �min

x2K

TX

t=1

hl
t

, xi
�

where the expectation is over the randomness of the algo-
rithm. In particular, achieving a sub-linear regret (o(T ))
corresponds to doing almost as good (averaging across T
rounds) as the fixed decision with the least loss in hind-
sight. In the non-private setting, a number of algorithms
have been devised to achieve O(

p
T ) regret, with addi-

tional dependencies on other parameters dependent on the
properties of the specific decision set X and loss set Y .
(See (Hazan et al., 2016) for a survey of results.)

Following are three important instantiations of the above

framework.

• Prediction with Expert Advice: Here the underlying
decision set is the simplex X = �

N

= {x 2 Rn

:

x
i

� 0,
P

n

i=1

x
i

= 1} and the loss vectors are con-
strained to the unit cube Y = {l

t

2 RN

: kl
t

k1  1}.

• OLO over the Sphere: Here the underlying decision is
the euclidean ball X = {x 2 Rn

: kxk
2

 1} and the
loss vectors are constrained to the unit euclidean ball
Y = {l

t

2 RN

: kl
t

k
2

 1}.

• OLO over the Cube: The decision is the unit cube
X = {x 2 Rn

: kxk1  1}, while the loss vectors
are constrained to the set Y = {l

t

2 RN

: kl
t

k
1

 1}.

Partial-Information Setting: In the setting of bandit feed-
back, the critical difference is that the algorithm only gets
to observe the value hl

t

, x
t

i, in contrast to the complete
loss vector l

t

2 RN as in the full information scenario.
Therefore, the only feedback the algorithm receives is the
value of the loss it incurs for the decision it takes. This
makes designing algorithms for this feedback model chal-
lenging. Nevertheless for the general problem of bandit
linear optimization, (Abernethy et al., 2008) introduced a
computationally efficient algorithm that achieves an opti-
mal dependence of the incurred regret of O(

p
T ) on the

number of rounds of play. The non-stochastic multi-armed
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bandit (Auer et al., 2002) problem is the bandit version of
the prediction with expert advice framework.

Differential Privacy: Differential Privacy (Dwork et al.,
2006) is a rigorous framework for establishing guarantees
on privacy loss, that admits a number of desirable prop-
erties such as graceful degradation of guarantees under
composition and robustness to linkage acts (Dwork et al.,
2014a).

Definition 2.1 ((", �)-Differential Privacy). A randomized
online learning algorithm A on the action set X and the
loss set Y is (", �)-differentially private if for any two se-
quence of loss vectors L = (l

1

, . . . l
T

) ✓ YT and L0
=

(l0
1

, . . . l0
T

) ✓ YT differing in at most one vector – that is to
say 9t

0

2 [T ], 8t 2 [T ] � {t
0

}, l
t

= l0
t

– for all S ✓ X T ,
it holds that

P(A(L) 2 S)  e"P(A(L0
) 2 S) + �

Remark 2.2. The above definition of Differential Privacy
is specific to the online learning scenario in the sense that
it assumes the change of a complete loss vector. This has
been the standard notion considered earlier in (Jain et al.,
2012; Smith & Thakurta, 2013). Note that the definition
entails that the entire sequence of predictions produced by
the algorithm is differentially private.

Notation: We define kYk
p

= max{kl
t

k
p

: l
t

2
Y}, kXk

p

= max{kxk
p

: x 2 X}, and M =

max

l2Y,x2X |hl, xi|, where k · k
p

is the l
p

norm. By
Holder’s inequality, it is easy to see that M  kYk

p

kXk
q

for all p, q � 1 with 1

p

+

1

q

= 1. We define the distri-
bution LapN (�) to be the distribution over RN such that
each coordinate is drawn independently from the Laplace
distribution with parameter �.

3. Full-Information Setting: Privacy for Free
In this section, we describe an algorithmic template (Algo-
rithm 1) for differentially private online linear optimiza-
tion, based on Follow-the-Regularized-Leader scheme.
Subsequently, we outline the noise injection scheme (Al-
gorithm 2), based on the Tree-based Aggregation Protocol
(Dwork et al., 2010), used as a subroutine by Algorithm 1
to ensure input differential privacy. The following is our
main theorem in this setting.

Theorem 3.1. Algorithm 1 when run with D = LapN (�)

where � =

kYk1 log T

"

, regularization R(x), decision set
X and loss vectors l

1

, . . . l
t

, the regret of Algorithm 1 is
bounded by

Regret 

vuutD
R

TX

t=1

max

x2X
(kl

t

k⇤r2
R(x)

)

2

+D
Lap

where

D
Lap

= E
Z⇠D0


max

x2X

hZ, xi �min

x2X

hZ, xi
�

D
R

= max

x2X

R(x)�min

x2X

R(x)

and D0 is the distribution induced by the sum of dlog T e
independent samples from D, k · k⇤r2

R(x)

represents the
dual of the norm with respect to the hessian of R. Moreover,
the algorithm is "-differentially private, i.e. the sequence
of predictions produced (x

t

: t 2 [T ]) is "-differentially
private.

Algorithm 1 FTRL Template for OLO
input Noise distribution D, Regularization R(x)

1: Initialize an empty binary tree B to compute differen-
tially private estimates of

P
t

s=1

l
s

.
2: Sample n1

0

, . . . n
dlog Te
0

independently from D.
3: ˜L

0

 
Pdlog Te

i=1

ni

0

.
4: for t = 1 to T do
5: Choose x

t

= argmin
x2X

⇣
⌘hx, ˜L

t�1

i+R(x)
⌘

.
6: Observe l

t

2 Y , and suffer a loss of hl
t

, x
t

i.
7: (

˜L
t

, B) TreeBasedAgg(l
t

, B, t,D, T ).
8: end for

The above theorem leads to following corollary where we
show the bounds obtained in specific instantiations of on-
line linear optimization.

Corollary 3.2. Substituting the choices of �, R(x) listed
below, we specify the regret bounds in each case.

1. Prediction with Expert Advice: Choosing � =

N log T

"

and R(x) =
P

N

i=1

x
i

log(x
i

),

Regret  O

 
p

T logN +

N log

2 T logN

"

!

2. OLO over the Sphere Choosing � =

p
N log T

"

and
R(x) = kxk2

2

Regret  O

 
p
T +

N log

2 T

"

!

3. OLO over the Cube With � =

log T

"

and R(x) = kxk2
2

Regret  O

 
p
NT +

N log

2 T

"

!
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Algorithm 2 TreeBasedAgg(l
t

, B, t,D, T )

input Loss vector l
t

, Binary tree B, Round t, Noise distri-
bution D, Time horizon T

1: (

˜L0
t

, B)  PrivateSum(l
t

, B, t,D, T ) – Algo-
rithm 5 ((Jain et al., 2012)) with the noise added at
each node – be it internal or leaf – sampled indepen-
dently from the distribution D.

2: s
t

 the binary representation of t as a string.
3: Find the minimum set S of already populated nodes in

B that can compute
P

t

s=1

l
s

.
4: Define Q = |S|  dlog T e. Define r

t

= dlog T e �Q.
5: Sample n1

t

, . . . nrt
t

independently from D.
6: ˜L

t

 ˜L0
t

+

P
rt

i=1

ni

t

.
output (

˜L
t

, B).

3.1. Proof of Theorem 3.1

We first prove the privacy guarantee, and then prove the
claimed bound on the regret. For the analysis, we define
the random variable Z

t

to be the net amount of noise in-
jected by the TreeBasedAggregation (Algorithm 2) on the
true partial sums. Formally, Z

t

is the difference between
cumulative sum of loss vectors and its differentially private
estimate used as input to the arg-min oracle.

Z
t

=

˜L
t

�
tX

i=1

l
i

Further, let D0 be the distribution induced by summing of
dlog T e independent samples from D.

Privacy : To make formal claims about the quality of
privacy, we ensure input differential privacy for the algo-
rithm – that is, we ensure that the entire sequence of par-
tial sums of the loss vectors (

P
t

s=1

l
s

: t 2 [T ]) is "-
differentially private. Since the outputs of Algorithm 1 are
strictly determined by the prefix sum estimates produced
by TreeBasedAgg, by the post-processing theorem, this
certifies that the entire sequence of choices made by the
algorithm (across all T rounds of play) (x

t

: t 2 [T ]) is "-
differentially private. We modify the standard Tree-based
Aggregation protocol to make sure that the noise on each
output (partial sum) is distributed identically (though not
necessarily independently) across time. While this modifi-
cation is not essential for ensuring privacy, it simplifies the
regret analysis.
Lemma 3.3 (Privacy Guarantees with Laplacian Noise).
Choose any � � kYk1 log T

"

. When Algorithm 2 A(D, T )
is run with D = LapN (�), the following claims hold true:

• Privacy: The sequence (

˜L
t

: t 2 [T ]) is "-
differentially private.

• Distribution: 8t 2 [T ], Z
t

⇠
Pdlog Te

i=1

n
i

, where

each n
i

is independently sampled from LapN (�).

Proof. By Theorem 9 ((Jain et al., 2012)), we have that the
sequence ( ˜L0

t

: t 2 [T ]) is "-differentially private. Now the
sequence (

˜L
t

: t 2 [T ]) is "-differentially private because
differential privacy is immune to post-processing(Dwork
et al., 2014a).

Note that the PrivateSum algorithm adds exactly |S| in-
dependent draws from the distribution D to

P
t

s=1

l
s

, where
S is the minimum set of already populated nodes in the tree
that can compute the required prefix sum. Due to Line 6 in
Algorithm 2, it is made certain that every prefix sum re-
leased is a sum of the true prefix sum and dlog T e indepen-
dent draws from D.

Regret Analysis: In this section, we show that for lin-
ear loss functions any instantiation of the Follow-the-
Regularized-Leader algorithm can be made differentially
private with an additive loss in regret.
Theorem 3.4. For any noise distribution D, regularization
R(x), decision set X and loss vectors l

1

, . . . l
t

, the regret
of Algorithm 1 is bounded by

Regret 

vuutD
R

TX

t=1

max

x2X
(kl

t

k⇤r2
R(x)

)

2

+DD0

where DD0
= E

Z⇠D0
[max

x2X hZ, xi �min

x2X hZ, xi],
D

R

= max

x2X R(x) � min

x2X R(x), and k · k⇤r2
R(x)

represents the dual of the norm with respect to the hessian
of R.

Proof. To analyze the regret suffered by Algorithm 1, we
consider an alternative algorithm that performs a one-shot
noise injection – this alternate algorithm may not be dif-
ferentially private. The observation here is that the alter-
nate algorithm and Algorithm 1 suffer the same loss in ex-
pectation and therefore the same expected regret which we
bound in the analysis below.

Consider the following alternate algorithm which instead
of sampling noise Z

t

at each step instead samples noise at
the beginning of the algorithm and plays with respect to
that. Formally consider the sequence of iterates x̂

t

defined
as follows. Let Z ⇠ D.

x̂
1

, x
1

, x̂
t

, argmin
x2X ⌘hx, Z +

X

i

l
i

i+R(x)

We have that

E
Z1...ZT⇠D

"
TX

t=1

hl
t

, x
t

i
#
= E

Z⇠D

"
TX

t=1

hl
t

, x̂
t

i
#

(1)

To see the above equation note that E
Zt⇠D

[hl
t

, x̂
t

i] =

E
Z⇠D

[hl
t

, x
t

i] since x, x̂
t

have the same distribution.
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Therefore it is sufficient to bound the regret of the sequence
x̂
1

. . . x̂
t

. The key idea now is to notice that the addition
of one shot noise does not affect the stability term of the
FTRL analysis and therefore the effect of the noise need
not be paid at every time step. Our proof will follow the
standard template of using the FTL-BTL (Kalai & Vem-
pala, 2005) lemma and then bounding the stability term in
the standard way. Formally define the augmented series of
loss functions by defining

l
0

(x) =
1

⌘
R(x) + hZ, xi

where Z ⇠ D is a sample. Now invoking the Follow the
Leader, Be the Leader Lemma (Lemma 5.3, (Hazan et al.,
2016)) we get that for any fixed u 2 X

TX

t=0

l
t

(u) �
TX

t=0

l
t

(x̂
t+1

)

Therefore we can conclude that
TX

t=1

[l
t

(x̂
t

)� l
t

(u)] (2)


TX

t=1

[l
t

(x̂
t

)� l
t

(x̂
t+1

)] + l
0

(u)� l
0

(x̂
1

)


TX

t=1

[l
t

(x̂
t

)� l
t

(x̂
t+1

)] +

1

⌘
D

R

+D
Z

(3)

where D
Z

, max

x2X

(hZ, xi) � min

x2X

(hZ, xi) There-
fore we now need to bound the stability term l

t

(x̂
t

) �
l
t

(x̂
t+1

). Now, the regret bound follows from the standard
analysis for the stability term in the FTRL scheme (see for
instance (Hazan et al., 2016)). Notice that the bound only
depends on the change in the cumulative loss per step i.e.
⌘ (
P

t

l
t

+ Z), for which the change is the loss vector ⌘l
t+1

across time steps. Therefore we get that

l
t

(x̂
t

)� l
t

(x̂
t+1

)  max

x2X

k⌘l
t

k2
⌘r�2

R(x)

(4)

Combining Equations (1), (3), (4) we get the regret bound
in Theorem 3.4.

3.2. Regret Bounds for FTPL

In this section, we outline algorithms based on the Follow-
the-Perturbed-Leader template(Kalai & Vempala, 2005).
FTPL-based algorithms ensure low-regret by perturbing the
cumulative sum of loss vectors with noise from a suit-
ably chosen distribution. We show that the noise added in
the process of FTPL is sufficient to ensure differential pri-
vacy. More concretely, using the regret guarantees due to

(Abernethy et al., 2014), for the full-information setting,
we establish that the regret guarantees obtained scale as
O(

p
T )+ ˜O(

1

"

log

1

�

). While Theorem 3.5 is valid for all in-
stances of online linear optimization and achieves O(

p
T )

regret, it yields sub-optimal dependence on the dimension
of the problem. The advantage of FTPL-based approaches
over FTRL is that FTPL performs linear optimization over
the decision set every round, which is possibly computa-
tionally less expensive than solving a convex program ev-
ery round, as FTRL requires.

Algorithm 3 FTPL Template for OLO – A(D, T ) on the
action set X , the loss set Y .

1: Initialize an empty binary tree B to compute differen-
tially private estimates of

P
t

s=1

l
s

.
2: Sample n1

0

, . . . n
dlog Te
0

independently from D.
3: ˜L

0

 
Pdlog Te

i=1

ni

0

.
4: for t = 1 to T do
5: Choose x

t

= argmin
x2X hx, ˜Lt�1

i.
6: Observe the loss vector l

t

2 Y , and suffer hl
t

, x
t

i.
7: (

˜L
t

, B) TreeBasedAgg(l
t

, B, t,D, T ).
8: end for

Theorem 3.5 (FTPL: Online Linear Optimization). Let
kXk

2

= sup

x2X kxk2 and kYk
2

= sup

lt2Y kltk2. Choos-

ing � = max{kYk
2

q
Tp

N log T

,
p
N

"

log T log

log T

�

} and

D = N (0,�2I
N

), we have that RegretA(D,T )

(T ) is

O

 
N

1
4 kXk

2

kYk
2

p
T +

NkXk
2

"
log

1.5 T log

log T

�

!

Moreover the algorithm is "-differentially private.

The proof of the theorem is deferred to the appendix.

4. Differentially Private Multi-Armed Bandits
In this section, we state our main results regarding bandit
linear optimization, the algorithms that achieve it and prove
the associated regret bounds. The following is our main
theorem concerning non-stochastic multi-armed bandits.
Theorem 4.1 (Differentially Private Multi-Armed Ban-
dits). Fix loss vectors (l

1

. . . l
T

) such that kl
t

k1  1.
When Algorithm 4 is run with parameters D = LapN (�)
where � =

1

"

and algorithm A = Algorithm 5 with

the following parameters: ⌘ =

q
logN

2NT (1+2�

2
logNT )

,

� = ⌘N
p

1 + 2�2

logNT and the exploration distribu-
tion µ(i) = 1

N

. The regret of the Algorithm 4 is

O

✓p
NT log T logN

"

◆

Moreover, Algorithm 4 is "-differentially private
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Bandit Feedback: Reduction to the Non-private Setting

We begin by describing an algorithmic reduction that takes
as input a non-private bandit algorithm and translates it into
an "-differentially private bandit algorithm. The reduction
works in a straight-forward manner by adding the requisite
magnitude of Laplace noise to ensure differential privacy.
For the rest of this section, for ease of exposition we will
assume that both T and N are sufficiently large.

Algorithm 4 A0
(A,D) – Reduction to the Non-private Set-

ting for Bandit Feedback
Input: Online Algorithm A, Noise Distribution D.

1: for t = 0 to T do
2: Receive x̃

t

2 X from A and output x̃
t

.
3: Receive a loss value hl

t

, x̃
t

i from the adversary.
4: Sample Z

t

⇠ D.
5: Forward hl

t

x̃
t

i+ hZ
t

, x̃
t

i as input to A.
6: end for

Algorithm 5 EXP2 with exploration µ

Input: learning rate ⌘; mixing coefficient �; distribution µ
1: q

1

=

�
1

N

. . . 1

N

�
2 RN .

2: for t = 1,2 . . . T do
3: Let p

t

= (1� �)q
t

+ �µ and play i
t

⇠ p
t

4: Estimate loss vector l
t

by ˜l
t

= P+

t

e
ite

T

it
l
t

, with
P
t

= E
i⇠pt

⇥
e
i

eT
i

⇤

5: Update the exponential weights,

q
t+1

(i) =
e�⌘hei,˜ltiq

t

(i)
P

i

0 e�⌘hei0 ,˜ltiq
t

(i0)

6: end for

The following Lemma characterizes the conditions under
which Algorithm 4 is " differentially private
Lemma 4.2 (Privacy Guarantees). Assume that each
loss vector l

t

is in the set Y ✓ RN , such that
max

t,l2Y | hl,x̃ti
kx̃tk1

|  B. For D = LapN (�) where � =

B

"

,
the sequence of outputs (x̃

t

: t 2 [T ]) produced by the
Algorithm A0

(A,D) is "-differentially private.

The following lemma charaterizes the regret of Algorithm
4. In particular we show that the regret of Algorithm 4
is, in expectation, same as that of the regret of the input
algorithm A on a perturbed version of loss vectors.
Lemma 4.3 (Noisy Online Optimization). Consider a loss
sequence (l

1

. . . l
T

) and a convex set X . Define a perturbed
version of the sequence as random vectors (

˜l
t

: t 2 [T ])
as ˜l

t

= l
t

+ Z
t

where Z
t

is a random vector such that
{Z

1

, . . . Z
t

} are independent and E[Z
t

] = 0 for all t 2 [T ].

Let A be a full information (or bandit) online algorithm
which outputs a sequence (x̃

t

2 X : t 2 [T ]) and takes as

input ˜l
t

(respectively h˜l
t

, x̃
t

i) at time t. Let x⇤ 2 K be a
fixed point in the convex set. Then we have that

E{Zt}

"
EA

"
TX

t=1

(hl
t

, x̃
t

i � hl
t

, x⇤i)
##

= E{Zt}

"
EA

"
TX

t=1

⇣
h˜l
t

.x̃
t

i � h˜l
t

, x⇤i
⌘##

We provide the proof of Lemma 4.2 and defer the proof of
Lemma 4.3 to the Appendix Section B.

Proof of Lemma 4.2. Consider a pair of sequence of loss
vectors that differ at exactly one time step – say L =

(l
1

, . . . l
t0 . . . , lT ) and L0

= (l
1

, . . . , l0
t0
, . . . l

T

). Since
the prediction of produced by the algorithm at time step
any time t can only depend on the loss vectors in the past
(l
1

, . . . l
t�1

), it is clear that the distribution of the output
of the algorithm for the first t

0

rounds (x̃
1

, . . . x̃
t0) is unal-

tered. We claim that 8I ✓ R, it holds that

P(hl
t0 + Z

t0 , x̃t0i 2 I)  e"P(hl0
t0
+ Z

t0 , x̃t0i 2 I)

Before we justify the claim, let us see how this implies that
desired statement. To see this, note that conditioned on the
value fed to the inner algorithm A at time t

0

, the distri-
bution of all outputs produced by the algorithm are com-
pletely determined since the feedback to the algorithm at
other time steps (discounting t

0

) stays the same (in distri-
bution). By the above discussion, it is sufficient to demon-
strate "-differential privacy for each input fed (as feedback)
to the algorithm A.

For the sake of analysis, define lFict

t

as follows. If x̃
t

= 0,
define lFict

t

= 0 2 RN . Else, define lFict

t

2 RN to be such
that (lFict

t

)

i

=

hlt,x̃ti
x̃i

if and only if i = argmax
i2[d]

|x̃
i

|
and 0 otherwise, where argmax breaks ties arbitrarily. De-
fine ˜lFict

t

= lFict

t

+ Z
t

. Now note that h˜lFict

t

, x̃
t

i =

hl
t

x̃
t

i+ hZ
t

, x̃
t

i.

It suffices to establish that each ˜lFict

t

is "-differentially
private. To argue for this, note that Laplace mechanism
(Dwork et al., 2014a) ensures the same, since the l

1

norm
of ˜lFict

t

is bounded by B.

4.1. Proof of Theorem 4.1

Privacy: Note that since max

t,l2Y | hl,x̃ti
kx̃tk1

|  kYk1  1

as x̃
t

2 {e
i

: i 2 [N ]}. Therefore by Lemma 4.2, setting
� =

1

"

is sufficient to ensure "-differential privacy.

Regret Analysis: For the purpose of analysis we define the
following pseudo loss vectors.

˜l
t

= l
t

+ Z
t
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where by definition Z
t

⇠ LapN (�). The following follows
from Fact C.1 proved in the appendix.

P(kZ
t

k21 � 10�2

log

2 NT )  1

T 2

Taking a union bound, we have

P(9t kZ
t

k21 � 10�2

log

2 NT )  1

T
(5)

To bound the norm of the loss we define the event F ,
{9t : kZ

t

k21 � 10�2

log

2 NT}. We have from (5) that
P(F )  1

T

. We now have that

E[Regret]  E[Regret| ¯F ] + P(F )E[Regret|F ]

Since the regret is always bounded by T we get that the
second term above is at most 1. Therefore we will concern
ourselves with bounding the first term above. Note that
Z
t

remains independent and symmetric even when condi-
tioned on the event ¯F . Moreover the following statements
also hold.

8t E[Z
t

| ¯F ] = 0 (6)

8t E[kZ
t

k21| ¯F ]  10�2

log

2 NT (7)

Equation (6) follows by noting that Z
t

remains symmet-
ric around the origin even after conditioning. It can now
be seen that Lemma 4.3 still applies even when the noise
is sampled from LapN (�) conditioned under the event ¯F
(due to Equation 6). Therefore we have that

E[Regret| ¯F ] = E{Zt}

"
EA

"
TX

t=1

⇣
h˜l
t

, x̃
t

i � h˜l
t

, x⇤i
⌘#���� ¯F

#

(8)

To bound the above quantity we make use of the following
lemma which is a specialization of Theorem 1 in (Bubeck
et al., 2012a) to the case of multi-armed bandits.
Lemma 4.4 (Regret Guarantee for Algorithm 5). If ⌘ is
such that ⌘|he

i

, ˜l
t

i|  1, we have that the regret of Algo-
rithm 5 is bounded by

Regret  2�T +

logN

⌘
+ ⌘E

X

t

X

i

p
t

(i)he
i

, ˜l
t

i2
�

Now note that due to the conditioning kZ
t

k21 
10�2

log

2 NT and therefore we have that

max
t,x2�N |hZ

t

, xi|  4� logNT.

It can be seen that the condition ⌘|he
i

, ˜l
t

i|  1 in Theorem
4.4 is satisfied for exploration µ(i) =

1

N

and under the
condition ¯F as long as

⌘N(1 + 4� logNT )  �

which holds by the choice of these parameters. Finally

E[Regret| ¯F ]

= E{Zt}

"
EA

"
TX

t=1

⇣
h˜l
t

, x̃
t

i � h˜l
t

, x⇤i
⌘#���� ¯F

#

 E{Zt}

"
logN

⌘
+ ⌘

TX

t=1

Nk˜l
t

k21 + 2T�

���� ¯F
#

 E{Zt}

"
logN

⌘
+ 2⌘

TX

t=1

N(kl
t

k21 + kZ
t

k21) + 2T�

���� ¯F
#

 logN

⌘
+ 2⌘TN(1 + �2

log

2 NT ) + 2T�

 O

✓q
TN logN(1 + �2

log

2 NT )

◆

 O

✓p
NT log T logN

"

◆

4.2. Differentially Private Bandit Linear Optimization

In this section we prove a general result about bandit linear
optimization over general convex sets, the proof of which
is deferred to the appendix.

Theorem 4.5 (Bandit Linear Optimization). Let X ✓ RN

be a convex set. Fix loss vectors (l
1

, . . . l
T

) such that
max

t,x2X |hl
t

, xi|  M . We have that Algorithm 4 when
run with parameters D = LapN (�) (with � =

kYk1

"

)
and algorithm A = SCRiBLe(Abernethy et al., 2012)
with step parameter ⌘ =

q
⌫ log T

2N

2
T (M

2
+�

2
NkXk2

2)
we have

the following guarantees that the regret of the algorithm is
bounded by

O

 
p

T log T

s

N2⌫

✓
M2

+

NkXk2
2

kYk2
1

"2

◆!

where ⌫ is the self-concordance parameter of the convex
body X . Moreover the algorithm is "-differentially private.

5. Conclusion
In this work, we demonstrate that ensuring differential pri-
vacy leads to only a constant additive increase in the in-
curred regret for online linear optimization in the full feed-
back setting. We also show nearly optimal bounds (in terms
of T) in the bandit feedback setting. Multiple avenues for
future research arise, including extending our bandit re-
sults to other challenging partial-information models such
as semi-bandit, combinatorial bandit and contextual ban-
dits. Another important unresolved question is whether it
is possible to achieve an additive separation in ", T in the
adversarial bandit setting.
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