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Appendix
Comparison between constraint (4) and other
measures of connectivity

To form a better understanding of how conductance arises
in this context, consider a (dual) flow formulation of con-
nectedness: S 2 ⇤r if, for any i 2 S, there exists a way to
route one unit of flow from the root r to i with finite con-
gestion. This can be strengthened by requiring that 1 unit of
flow be routed from r to i with congestion 1

k , yielding the
notion of k-edge connectivity. Finally, we can strengthen
the flow requirement further, by demanding that (1) di units
of flow be routed from r to i, and (2) the flows from r to
all vertices i 2 S be routed concurrently with congestion
1

� . The maxflow-mincut theorem shows that such a flow
routing exists if and only if the condition of (4) holds.

While the notions of connectivity and conductance con-
verge to connectedness in the limit as � goes to 0, they
display different behaviors for larger �. In particular, con-
ductance appears to be a more meaningful in the context of
anomaly detection scenarios, where the anomalous set may
be constructed by an unspecified diffusion process, such as
the epidemic in the example of disease outbreak detection,
which is unlikely to cross low-conductance cuts. Moreover,
for noisy input graphs, conductance is a more robust notion
than edge connectivity.

Proof of Theorem 3.2

Proof. We prove the contrapositive. Given a vector x such
that
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so, consider the embedding y 2 Rn given by yi = |xi�xr|.
Then, it is easy to check that:
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By Lemma 3.1, a sweep cut of y yields a cut T such that
�GS

(T ) < �. Moreover, because yr = 0, r does not be-
long to T .

Proof of Theorem 3.3 and an alternative formulation
using effective resistance

In this section we offer an alternative approach to obtain the
inequality constraint (9) through electrical networks and
the concept of effective resistance. Using this formulation,
we then prove Theorem 3.3 that shows that the inequality
constraint enforces connected through a simple rounding of
M .

We shortly introduce the concept of effective resistance in
the electrical network interpretation of graphs. In contrast
to s-t flow that interprets edge weights on a graph as flow
capacities, electrical flow considers edge weights wij as
the conductance (inverse resistance) 1

rij
between two nodes

i, j.

Define the pseudoinverse of a Laplacian L+

=Pn
i=2

1

�i
viv>i where L =

Pn
i=2

�iviv>i is its eigende-
composition, and we note that the minimum eigenvalue �

1

corresponding to all 1 eigenvector is zero. Also note that
LG[M ]

denotes the Laplacian of the subgraph with adja-
cency matrix A�M (� is the elementwise/Hadamard ma-
trix product)2 and let L+

G[M ]

denote its pseudoinverse.

Defining a vector of directional current flows into/out of
nodes with f (e.g. where positive elements are currents
into the node and vice versa), the relationship between the
vector of voltages v and f in an electrical circuit graph
with resistances rij are given by the relation v = L+f .
This fact follows from Kirchoff’s current and voltage laws
(Vishnoi, 2012). The effective resistance Rab between any
two nodes a, b is then defined by the voltage difference
va�vb = v>(ea�eb) when unit current is flowing between
two nodes such that f = ea � eb (or equivalently, inverse
of the current flow with unit voltage difference between a
and b). We then have the identity Rab = (ea � eb)>v =

(ea � eb)>L+

(ea � eb).

Given a root/anchor node r 2 V that is assumed to be con-
tained in the subgraph S, consider the case where a cur-
rent flow of diMii is present between r and i 2 V on
the induced graph with Laplacian LG[M ]

. Letting mi =

diMii(er � ei), the voltage vector vi corresponding to
these inputs is given by vi = L+

G[M ]

mi. We then ob-
tain the resistance between nodes r and i for input current
diMii with the identity vir � vii = (er � ei)L

+

G[M ]

mi =

1

diMii
m>

i L
+
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mi, which we intend to be finite for i 2 S
(and thus Mii > 0) if GS is connected. For a conductance
threshold ⌧ , we would thus like to impose the constraint
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⌧
, (12)

for all i 2 V , where the scaling with Mii serves to restrict
the constraint to only the nodes i 2 S. We also remark that
the constraint (12) is independent of uniform multiplicative
scaling of M , thus constraining M to unit trace does not
affect the choice of ⌧ .

We next unify the n different resistance constraints to a sin-
gle PSD constraint. Define the 2n⇥ 2n matrix AM as
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2Corresponding to the original graph with edge weights scaled
by Mij .



Connected Subgraph Detection with Mirror Descent on SDPs

for which we define our connectivity constraint to be
AM ⌫ 0. For i 6= r consider the submatrix Ai formed by
the top-left n⇥n submatrix (i.e. LG[M ]

) and the (n+ i)-th
row and column, which results in

Ai =

✓
LG[M ]
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⌧

◆
.

Since AM ⌫ 0 it implies that any such submatrix satisfies
Ai ⌫ 0 and through the Schur complement condition that
is equivalent to condition (12). We have thus shown that
the condition AM ⌫ 0 encapsulates the pairwise effective
resistance constraints of the form (12). We note that we
obtain a similar condition for the root node, where with
currents mr , P

j 6=r mj applied to the nodes and a convex
combination of voltage differences, m>

r L
+

G[M ]

mr is being

compared to
P

j 6=r Mjj

⌧ .

Finally, we can again utilize the Schur complement con-
dition for positive semidefiniteness and simplify the PSD
condition AM ⌫ 0 on the 2n⇥ 2n matrix to a PSD condi-
tion on an n⇥ n matrix, which directly leads to inequality
(9) when we replace ⌧ with �2

2

.

Now we prove Theorem 3.3 using the above reformulation
of (9). Assume there exists i 2 ˆS such that there exists
no path between r and i, i.e., the subgraph G

ˆS is discon-
nected. Since Q�(M) ⌫ 0, it follows that AM ⌫ 0 and
thus Ai ⌫ 0 for ⌧ =

�2

2

. Through the Schur comple-
ment lemma and (12) we have that vir � vii  1

⌧ , i.e., that
the voltage difference between nodes r and i is finite when
a current flow of diMii is applied that is non-zero (since
Mii > 0). This voltage difference is computed for the
graph G with edge weights given by Mij . It is easy to
see that if this voltage difference is finite, the voltage dif-
ference in the original graph G is also finite since Mij are
bounded. However a contradiction arises because there ex-
ists no path between i and r in G and thus the effective
resistance Rri = (er � ei)>L+

(er � ei) is infinite.

Proof of Theorem 3.4

Proof. Consider an optimal solution M of arbitrary rank.
Construct a tentative rank-1 solution m by taking mi =p
Mii. Notice that, because M ⌫ 0, we must have Mij p
MiiMjj = mimj . Then: C ·mm>

=

P
i,j Cijmimj �

C ·M, by the non-negativity of C. Moreover, Q�(mm>
) ⌫

Q�(M) as the weights of G[mm>
] are larger than the

weights of G[M ]. The theorem follows as mmT is a fea-
sible rank-1 solution of value at least as large as the opti-
mal.

Proof of Lemma 4.1

Proof. Notice that: � · rY f(Y (t)
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