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Abstract

We propose a novel, computationally efficient
mirror-descent based optimization framework for
subgraph detection in graph-structured data. Our
aim is to discover anomalous patterns present in
a connected subgraph of a given graph. This
problem arises in many applications such as de-
tection of network intrusions, community detec-
tion, detection of anomalous events in surveil-
lance videos or disease outbreaks. Since opti-
mization over connected subgraphs is a combina-
torial and computationally difficult problem, we
propose a convex relaxation that offers a princi-
pled approach to incorporating connectivity and
conductance constraints on candidate subgraphs.
We develop a novel efficient algorithm to solve
the relaxed problem, establish convergence guar-
antees and demonstrate its feasibility and perfor-
mance with experiments on real and very large
simulated networks.

1. Introduction
We consider the problem of connected subgraph detec-
tion, motivated by statistical anomaly detection on net-
works where the aim is to determine whether there exists
a set of connected nodes that exhibit anomalous signal val-
ues. One example of network anomaly detection is dis-
ease outbreak detection (Patil et al., 2003), where the nodes
are associated with counties that are linked by geographical
neighborhood and signal values on nodes depict the num-
ber of patients related to a disease. In the existence of a
disease outbreak that spreads geographically, higher signal
values would be present on certain counties that are neigh-
bors of each other, therefore constituting a subgraph struc-
ture. Similar problems in different research areas also exist,
such as detection of intrusions in communication or sensor
networks, community detection or video surveillance.
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The detection or estimation of arbitrary connected sub-
graphs over graph-structured signals is an example of a
structured signal recovery problem and generalizes many
useful types of structures such as intervals or paths
(Addario-Berry et al., 2010; Arias-Castro et al., 2008).
While the existence of structure in terms of connectivity
leads to better statistical complexity in detecting or recover-
ing the anomalous sets compared to arbitrary subsets, effi-
cient characterization of sets obeying the connectivity con-
straint is important for obtaining practical algorithms for
detection and estimation. In this paper we aim to charac-
terize the space of arbitrary connected subsets of nodes in
a graph via spectral relaxation and propose efficient opti-
mization algorithms that exploit this characterization.

Related work and contributions: Subgraph detection is
a difficult problem since connected subgraphs represent a
combinatorial structure and systematic approaches to char-
acterizing the space of connected subgraphs of a given
graph are relatively recent. Traditional approaches to this
problem usually consider parametric methods, which orig-
inate from the scan statistics literature (Glaz et al., 2001)
and consider scanning for specific shapes such as rectan-
gles, circles or neighborhood balls on graphs (Patil et al.,
2003; Kulldorff et al., 2006; Priebe et al., 2005). More re-
cently nonparametric approaches have been considered for
subgraphs with arbitrary shapes on general graphs such as
the simulated annealing approach of (Duczmal & Assun-
cao, 2004), however it is a heuristic method without sta-
tistical or computational guarantees. There is also a line
of work focused on statistical analysis with nonparamet-
ric shapes (Addario-Berry et al., 2010; Arias-Castro et al.,
2008; 2012) but are computationally intractable.

More recently, (Qian et al., 2014; Qian & Saligrama, 2014)
proposed linear matrix inequalities as a way to character-
ize the connectivity of subsets of nodes exactly. This ap-
proach is the similar to ours where we also consider an
SDP relaxation with LMI constraints, however we take a
different approach to formulating the problem and its re-
laxation, with the goal to obtain a convex optimization pro-
gram that is amenable to efficient iterative methods. In
contrast, the aforementioned method is only applicable to
small problem sizes. Another notable work in this area is
the spectral scan statistic approach proposed by (Sharpnack
et al., 2016), which presents a computationally tractable al-



Connected Subgraph Detection with Mirror Descent on SDPs

gorithm with consistency guarantees. However this method
aims to obtain graph partitions with small conductance and
balanced sizes, in contrast to our formulation that guar-
antees connected subgraphs. In recent work, (Wu et al.,
2016) consider nonparametric statistics for signals in addi-
tion to nonparametric shapes, obtaining a computationally
tractable algorithm by heuristically approximating the un-
derlying graph with trees.

The contribution of this paper is twofold: First, we develop
a convex relaxation of the subgraph detection problem that
results in an semidefinite optimization formulation, with
provable guarantees on the connectivity of the resulting so-
lutions related to the internal conductance of the subgraph.
Second, we propose an efficient iterative framework for op-
timizing the SDP that scales well with large problem sizes,
and show computational guarantees. One of the major dif-
ferences of our formulation to those of (Qian et al., 2014;
Qian & Saligrama, 2014) is that prior work enforce a num-
ber of constraints that scale with the problem size, whereas
ours only considers a constant number of constraints. Also,
while aforementioned work utilized generalized convex op-
timization solvers, our formulation allows us to propose
specialized and efficient iterative algorithms.

2. Connected Subgraph Detection
In this section we define the notation and introduce the two
statistical models that we consider for the connected sub-
graph detection problem. Let G = (V,E) denote an undi-
rected unweighted connected graph with n nodes that is
provided as input to the problem. For i 2 V , we write di
for the degree of vertex i in G and let d be an upper bound
on all di. For a subset S ✓ V , the notation Vol(S) indi-
cates the volume measure of S, i.e., Vol(S) =

P
i2S di.

We also denote by GS = (S,ES) the subgraph induced by
the subset S. For an input root vertex r 2 V , we write
⇤r = {S ✓ V : r 2 S, GS is connected in G}. Indicator
vectors with notation 1S are defined as n ⇥ 1 vectors with
i-th index 1 if i 2 S and zero otherwise.

We consider observations xv 2 Rp associated with each
node v 2 V in the graph G. We are concerned with opti-
mization problems of the form

max

S2⇤r

c(S), (1)

for a cost function c(·) which depends on xS = {xv}v2S .
We remark that this is a difficult problem due to the com-
binatorial nature of the constraint, in fact variants of the
prize-collecting Steiner tree problem which is known to be
NP-hard (Johnson et al., 2000) can be reduced to the above
formulation. Below we provide two examples of the setup
that we consider, namely elevated mean detection and cor-
relation detection.

Elevated mean detection: Here, the aim is to detect the
existence of a subgraph S 2 ⇤r comprising of nodes with
an elevated mean compared to the other nodes. A simple
example is the Gaussian elevated mean model, where xv =

µ1{v 2 S} + zv for µ > 0 and zv ⇠ N (0,�2

). Another
example we consider is the Poisson variant, where xv ⇠
Poisson((1+µ1{v 2 S})�). We consider the optimization
(1) with the scan statistic

c
1

(S) =
1p
|S|

X

i2S

xi, (2)

which can be shown to correspond to the generalized likeli-
hood ratio test (GLRT) for the Gaussian detection problem,
while also encouraging graph-sparse solutions.

Correlation detection: Another example is the problem
of detecting and estimating a subgraph with correlated
signal values. The canonical statistical model that has
been investigated for this problem is where the signals
are jointly Gaussian random variables X

1

, . . . , Xn, where
cov(Xi, Xj) = 1 if i = j, ⇢ if i, j 2 S and zero otherwise
(Arias-Castro et al., 2012). Note that while related work
consider arbitrary k-sets or special shapes such as intervals
for S, we allow arbitrary connected subgraphs. One sim-
ple test for detecting or estimating a correlated subgraph
induced by set S is (1) with the scan statistic

c
2

(S) =
1

|S|
X

i,j2S

ˆ

⌃ij , (3)

where ˆ

⌃ is the estimated covariance matrix which can ei-
ther be defined by a single observation xx> when p = 1 or
multiple observations for p > 1.

Characterizing subgraph connectivity: Rather than fo-
cusing on exactly characterizing the connectedness of an
induced subgraph GS , we aim to enforce it by lower bound-
ing the conductance of cuts within GS . For a weighted
graph G = (V,E,w), the conductance of a cut S is:

�G(S) =
w(S, V \ S)

Vol(S)
,

where w(S, V \ S) is the total weight of edges connect-
ing nodes in S to nodes in V \ S. The graph con-
ductance is the lowest conductance among cuts contain-
ing at most half of the volume of the graph, i.e., �G =

minS⇢V :Vol(S)Vol(V )/2 �G(S). Conductance is a natural
graph-partitioning objective because of its intimate connec-
tion with the behavior of random walks. It is also widely
used in practice in the design of clustering and segmenta-
tion algorithms. We can use conductance to ensure sub-
graph connectivity by imposing the following constraints1

1Note that for technical reasons, the conductance �GS on the
induced graph GS still employs the definition of volume given by
the larger graph G.
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on the integral solution S:

�GS
(T ) =

w(T, S \ T )
Vol(T )

� � > 0, 8T ✓ S \ {r}. (4)

For � sufficiently small, i.e., � < 1/Vol(V ), this require-
ment is equivalent to the connectivity condition on GS . It
is useful to notice at this stage that the condition in con-
straint (4) is stronger than a lower bound on the conduc-
tance of the induced subgraph GS . Indeed, for an un-
weighted graph the constraint (4) implies

�GS
= min

U✓S:Vol(U)Vol(S)

2

|E(U, S \ U)|
Vol(U)

� �,

where E(U, S\U) is the set of edges between sets of nodes
U and S \ U . However, our constraint is stronger than
requiring the induced conductance of GS to be �, as the
bound also holds for subsets T ⇢ S comprising more than
half the volume of GS . In the appendix, we provide a brief
comparison with other measures of connectivity.

3. Relaxation
We next consider a convex relaxation of the objectives of
(2) and (3) as a linear functional of positive semidefinite
matrix variable M . We remark that in the case that x �
0 (e.g. the Poisson model), maximizing the scan statistic
c
1

(S) is equivalent to maximizing its square

c2
1

(S) =
1

|S|

 
X

i2S

xi

!
2

=

1

|S|
X

i,j2S

xixj , (5)

which has the same form as the statistic c
2

(S). Defining
the indicator vector u = 1S and noting that ui = u2

i we
can write the quadratic integer program (IP) as

max

u2{0,1}n,{i:ui=1}2⇤r

P
i,j xixjuiujP

i u
2

i

. (6)

We relax this IP to a semidefinite program (SDP) by turn-
ing each element ui to a vector vi 2 Rn such that scalar
multiplication is transformed to inner product and we have
hvi, vji = 1 if i, j 2 S and zero otherwise. Moreover, we
also enforce non-negativity by requiring that hvi, vji � 0

for all i, j 2 V . We then have

max

vi2Rn,{i:|vi|>0}2⇤r

hvi,vji�0, 8i,j2V

P
i,j xixjhvi, vjiP

i |vi|2
. (7)

Using the the Gram matrix M = V >V ⌫ 0 instead of the
vectors vi’s and fixing the trace of M , I · M to 1 w.l.o.g.
(due to the homogeneity of the ratio in the objective), we
obtain the relaxation

max

M2�n,M�0

C ·M s.t. {i : |Mii| > 0} 2 ⇤r, (8)

where C = xx> and we define �n to be the spectrahedron
of unit trace PSD matrices. The relaxation follows along
exactly for c

2

(S) with C =

ˆ

⌃. This linear functional for-
mulation is very general and can be adapted to solve sub-
graph problems with other general cost functions.

Next, we propose a novel SDP formulation of the con-
nected subgraph constraint {i : |Mii| > 0} 2 ⇤r, as a
single linear matrix inequality based on a spectral relax-
ation of the integral conductance constraint of (4).

3.1. Spectral Graph Theory

We start by introducing some basic notation and concepts
from spectral graph theory. For a weighted graph H =

(VH , EH , h), we denote its adjacency by AH and its degree
matrix DH . The Laplacian of H is then defined as LH =

DH �AH . The n⇥n Laplacian matrix for the graph on V
consisting only of edge {i, j} is Lij = eii+ejj�eij�eji,
where eij is an all-zero matrix except for a one at index
(i, j). Notice that LH =

P
(i,j)2EH

hijLij . We omit the
subscripts for all graph matrices and sets when referring to
the instance graph G. For a subset S ⇢ V , we denote by
KS the complete graph on S, i.e., the graph having an edge
of weigth didj between i and j for any i, j 2 S. The spec-
tral gap �S of an induced subgraph GS of the input graph G
is defined as the minimum generalized eigenvalue of LGS

with respect to 1

Vol(S)

LKS
. Equivalently, the spectral gap

�S is the largest real � such that LGS
⌫ �

Vol(S)

LKS
. The

star graph Star

(r), rooted at a vertex r 2 V , is the graph
consisting of the n�1 edges of the form (r, i) for all i 2 V ,
each with weight di. We associate to a solution M 2 �n

of (8) two weighted graphs, G[M ] and Star

(r)
[M ], defined

by their Laplacians:

LG[M ]

=

X

(i,j)2E

MijLij and L
Star

(r)
[M ]

=

X

i2V

di MiiLri.

Cheeger’s inequality: An important result in spectral
graph theory is Cheeger’s inequality (Chung, 1997) that re-
lates the conductance of a graph with the spectrum of its
Laplacian. An equivalent statement for the subgraph con-
ductance that follows from Cheeger’s inequality and relates
the spectral gap of GS to the conductance of GS can be
written as follows.
Theorem 3.1 (Cheeger’s Inequality). For S ✓ V , �S

2


�GS


p
2�S .

The right-hand side of this inequality is proved by rounding
the generalized eigenvector of LGS

associated with �S to a
low-conductance cut by using the following lemma.
Lemma 3.1. Let y � 0 and yr = 0. Assume that
yTLGS

y < �
P

i2S diy2i . Then, there exists ⌧ > 0 such
that the sweep cut L⌧ = {i 2 S : yi � ⌧} of vector y has
�GS

(L⌧ ) <
p
2�.
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3.2. Relaxing the Conductance Requirement

Our proposed relaxation of the integral conductance con-
straint (4) with parameter � is the following:

LG[M ]

⌫ �2

2

L
Star

(r)
[M ]

(9)

To see how this relaxes the integral constraint, take MS =

1

|S| 1S1
>
S to be an integral solution corresponding to a sub-

set S ✓ V . We have:

LG[MS ]

=

1

|S| LGS
and L

Star

(r)
[MS ]

=

1

|S| LStar

(r)
S

.

Then, our proposed constraint becomes LGS
⌫

�2

2

L
Star

(r)
S

. We now show that this constitutes a relaxation
of constraint (4). This can be seen as a variant of Cheeger’s
inequality for our relaxed notion of conductance in (9). The
proof of the following theorem appears in the appendix.
Theorem 3.2. For S ✓ V , if, for all T ✓ S, r /2 T and
�GS

(T ) � �, then LGS
⌫ �2

2

L
Star

(r)
S

.

Moreover, for a candidate integral solution MS , in the same
way as the integral constraint lower bounds the conduc-
tance of the induced subgraph GS , our relaxation can be
shown to lower bound the spectral gap of GS . This result
is a simple consequence of Schur’s complementation.
Lemma 3.2. For S ⇢ V with r 2 S, let y =

(Vol(S) � dr) er �
P

j2S,j 6=r djej . Then, L
Star

(r)
S

=

1

Vol(S)

⇥
LKS

+ yy>
⇤
.

Applying this lemma to (9), we observe that our constraint,
applied to an integral solution MS , implies a lower bound
of �2

2

on the induced spectral gap �S through the inequality

LGS
⌫ �2

2

L
Star

(r)
S

⌫ �2

2Vol(S)
LKS

.

Finally, we prove that if any feasible candidate M that sat-
isfies (9) is rounded to a subset S in a certain way, then the
connectivity of subgraph GS is ensured. This result shows
that the inequality constraint (9) is sufficent to ensure con-
nectivity in our framework.
Theorem 3.3. For any � > 0 and M ⌫ 0 that satisfies (9),
the subgraph G

ˆS for induced subset ˆS = {i 2 V : Mii >
0} is connected.

Proof of Theorem 3.3 is in the appendix. It follows from an
alternative formulation of constraint (9) based on effective
resistance in electrical networks.

3.3. Primal and Dual Formulations

In this subsection, we study the dual form of our relax-
ation, which will be important in designing an efficient it-
erative algorithm. We start by introducing some shorthand

notation for its constraints. Let Q�(M) ⌫ 0 be our re-
laxed connectedness constraint, i.e., Q�(M) = LG[M ]

�
�2

2

L
Star

(r)
[M ]

. Then our relaxation is given by

max

M2�n,M�0,
Q�(M)⌫0

C ·M. (10)

We now write the SDP dual of our relaxation. We con-
sider a scalar ↵ as the Lagrange multiplier corresponding
to constraint I · M = 1, and matrices Y, Z 2 Rn⇥n cor-
responding to Q�(M) ⌫ 0 and M � 0 respectively. Let
P�(Y ) =

P
(i,j)2E(Lij · Y )eij � �

P
i2V di(Lri · Y )eii

be the transpose of the constraint Q� , i.e., P�(Y ) · M =

Q�(M) · Y . The dual can then be written as:

min ↵

C + P�(Y ) + Z � ↵I

↵ � 0, Y ⌫ 0, Z � 0

An intuitive interpretation for this dual follows from con-
sidering P�(Y ) as a matrix of gains to be added to the ob-
jective C as to force the primal solution M towards feasi-
bility. In particular, P�(Y ) establishes a gain of Lij · Y for
including edge {i, j} in the primal solution and a cost of
Lri · Y for including vertex i in the primal solution. Natu-
rally, vertices are more expensive the further they are from
the root r in the dual solution and edges are more beneficial
if they bridge longer distances in the dual.

Distinctive Properties of Our Relaxation We wish to
highlight two important (and rare) structural properties of
our relaxation. The first property relates to the form of
the dual. We have C � 0, by definition for the ele-
vated mean problem with nonnegative signal values and
with high probability for correlation detection. Then the
term C + P�(Y ) in the dual constraint is the sum of a
nonnegative matrix plus a diagonal matrix. By the Perron-
Frobenius Theorem, the top eigenvector of this matrix has
nonnegative components, allowing us to assume that Z = 0

wlog. We will use the same reasoning in the next section
to show that we do not need to explicitly enforce the n2

element-wise non-negativity constraints corresponding to
M � 0, as our dual formulation will automatically yield
such solutions. This is a great advantage of our relaxation
as enforcing the M � 0 constraints is known to be a com-
putational roadblock to the efficient solution of SDP relax-
ations of {0, 1}-integral problems.

The second property has a similar flavor, but it concerns
the primal optimal solution. It is captured by the following
theorem, which is proved in the appendix.
Theorem 3.4. When C � 0, the relaxation 10 always has
an optimal solution of rank-1. Moreover, any higher rank
solution M can be turned into a rank-1 solution mm> such
that Mii = m2

i .
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The fact that a rank-1 solution is a remarkable property for
a SDP relaxation, making the fractional solution easier to
visualize and hopefully easier to round to integral.

Future work: In this work, we did not perform a theoret-
ically study of the approximation guarantees achievable in
rounding our relaxation to an integral solution in the worst-
case. The rank-1 property of the optimal solution should
be useful in this pursuit. At the same time, we believe that
additional constraints may be required to obtain meaning-
ful approximation guarantees in the worst-case. This is an
interesting direction for future work.

Statistical Bounds: We omit developing statistical analy-
sis of the proposed approach for subgraph detectability in
this paper for lack of space (see (Aksoylar, 2017) for anal-
ysis for simple graphs). We can derive statistical guaran-
tees for grid graphs similar to (Qian & Saligrama, 2014)
based on analyzing primal and dual values. In particular
the primal provides a bound on the value of the positive
hypothesis (anomaly), while a feasible solution to the dual
provides an upper-bound of the value for null hypothesis.
Detectability bounds for elevated mean follows by compar-
ing the primal value with the dual.

4. Mirror Descent on SDPs
We first consider a modification of our original SDP by
adding the slack variable s � 0. For some fixed margin
value � � 0 we write

max

M2�n,s
C ·M �s s.t. Q�(M)+s · � ·D ⌫ 0. (11)

Recalling that D is the degree matrix of G, the last term
provides a measure of how violated the SDP constraint is.
For now, we fix � as a parameter of our algorithm. We
discuss choices of � at the end of this section.

Introducing the Lagrange multiplier Y ⌫ 0 corresponding
to the constraint 1

� ·Q�(M) + sD ⌫ 0, we then obtain the
saddle point problem

max

M2�n,s
min

Y⌫0

C ·M � s+ Y · (1
�
·Q�(M) + sD),

from which we obtain the dual

min

Y 2�

D
n

f(Y ), where f(Y ) = max

M2�n,
M�0

✓
C +

1

�
· P�(Y )

◆
·M,

and we defined �

D
n to be the D-spectrahedron {X ⌫ 0 :

D · X = 1}. For this dual optimization over Y we uti-
lize the mirror descent method, which is the optimal opti-
mization algorithm for non-smooth functions in the black-
box model. We refer the reader to Section 5.2 of (Ben-Tal
& Nemirovski, 2015) for more details on mirror descent

and its application in the spectahedron setup. For the pur-
poses of this section, we simply state the following theo-
rem, which is a simple consequence of Theorem 5.2.1 in
(Ben-Tal & Nemirovski, 2015).

Theorem 4.1. Let f be a convex function over the spec-
trahedron �

D
n such that kD�1/2rY f(Y )D�1/2k  L for

all Y 2 �

D
n . For a parameter ⌘ =

✏
L2

, the mirror descent
update takes the following form at iteration t:

Y (t)
=

exp

⇣
�⌘ ·D�1/2

hPt�1

j=0

rY f(Y (j)
)

i
D�1/2

⌘

D · exp
⇣
�⌘ ·D�1/2

hPt�1

j=0

rY f(Y (j)
)

i
D�1/2

⌘

With this update, the algorithm achieves the following per-
formance guarantee, where f⇤ is the minimum of f :

f(Y T
)� f⇤  L ·

r
log n

T
.

To apply mirror descent as described in the previous theo-
rem, we need access to the gradient of f at Y (t). By Dan-
skin’s Theorem (Bertsekas et al., 2003), this is given by:

rY f(Y
(t)
) =

1

�
·Q�(M

(t)
),

M (t)
= argmaxM2�n,M�0

(C +

1

�
· P�(Y

(t)
)) ·M.

Hence, computation of the gradient requires finding M (t),
which plays the role of the primal update at time t. How-
ever, this is just the rank-1 matrix given by the projection
over the top eigenvector of C+

1

� ·P�(Y (t)
), where M � 0

is once again ensured by Perron-Frobenius. The following
lemma provides us with a bound on the Lipschitz parame-
ter L of our objective f . Its straightforward proof appears
in the appendix.

Lemma 4.1. For all Y 2 �

D
n , we have:

kD�1/2rY f(Y )D�1/2k  2

� .

With this setting of L, Theorem 4.1 yields the following
convergence bound for our mirror descent algorithm.

Theorem 4.2. Algorithm 1 converges to an ✏-additive ap-
proximation of optimal in T = O

⇣
logn
�2✏2

⌘
steps.

Moreover, each iteration consists of computing the top
eigenvector of a non-negative matrix and the matrix expo-
nential of a the sum of a Laplacian and a rank-1 term (cf.
Lemma 3.2). Thanks to recent breakthrough theoretical re-
sults, both of these objects can be approximated sufficiently
closely in almost-linear-time (Orecchia et al., 2012; Cohen
et al., 2016). In practice, existing iterative solvers, com-
bined with the use of the Johnson-Lindenstrauss Lemma to
keep a low-dimensional sketch of the matrix exponential,
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Algorithm 1 Mirror Descent Algorithm
Input: C, �, r, �, ✏
Output: ˆM
L 2

� , ⌘  ✏
L2

Y (0)  1

Tr(D)

In, G(0)  0

for t = 1, . . . , T do
v  eig

�
C + P�(Y (t�1)

)

�

M (t)  vv>

G(t)  G(t�1)

+

1

� ·Q�(M (t)
)

Y (t)  exp

�
�⌘D�1/2G(t)D�1/2

�

Y (t)  1

D·Y (t)Y
(t)

end for
ˆM  1

T

PT
t=1

M (t)

already provide a very efficient computational approach to
this problem, as we demonstrate in our experiments.

We formally present the resulting algorithm in Algorithm 1
for our function f , where eig(·) operator returns the eigen-
vector corresponding to the largest eigenvalue.

Choosing the margin �: If s � �2

� , it is possible to prove
that the SDP constraint is trivially satisfied for any M in
�n at a cost of s in the objective (which follows from the
fact that L

Star

(r) � 2D). To avoid such trivial solutions,
we wish to set the margin � to be sufficiently small. In
particular, we should have �  �2

4✏ . However, from a worst-
case point of view, this setting of � may be insufficient to
obtain a solution that can be rounded to a connected sub-
graph. The choice of � in this case depends on the round-
ing procedure used and its sensitivity. As a formal study
of the rounding of our relaxation is beyond of the scope of
this paper, we cannot provide a definitive setting of �. Our
preliminary calculations show that, from a theoretical point
of view, a setting of � = O

⇣
�2

K

⌘
should be sufficient for

rounding, where K is the size of the optimal set. In prac-
tice, we have found that setting � to be order O(�2

) suffices
for most of the examples we considered. This corresponds
to a number of iterations that is O

⇣
logn
�4✏2

⌘
.

5. Experiments
We present experiments on two datasets: a real world geo-
graphical network of disease outbreaks and elevated mean
detection on very large random geometric graphs. In the
former we compare the statistical detection performance of
our mirror descent (MD) algorithm with subgraph detec-
tion methods from related work. For the latter we demon-
strate the scalability of our method on large graphs.

5.1. Disease Outbreak Detection

We consider a geographical map and its corresponding net-
work that are illustrated in Figures 1b and 1a respectively,

with 129 nodes representing counties in the northeastern
United States and average degree 4.7. The ground truth
cluster of 16 nodes for the anomalous case and the cho-
sen anchor node are also illustrated. Following (Patil et al.,
2003) and (Qian et al., 2014; Qian & Saligrama, 2014), we
consider an elevated mean Poisson formulation for model-
ing the diseased population, where the number of disease
cases yi for a county i is given by yi ⇠ Poisson(Ni�0

)

where Ni is the population of the county, whereas for
anomalous counties we have yi ⇠ Poisson(Ni�1

). We
consider �

0

= 5 ⇥ 10

�5 for the base disease rate and dif-
ferent �

1

�
0

ratios {1.1, 1.3, 1.5} corresponding to different
SNR values. As our test statistic we consider the disease
rate per person xi =

yi

Ni
. One sample realization for the

anomaly case with high SNR �
1

�
0

= 4 appears in Fig. 1c.

To compare the performance with MD as proposed in Al-
gorithm 1, we consider several other methods in the re-
lated literature, including the LMI-test (LMIT) method
of (Qian & Saligrama, 2014), simulated annealing (SA)
of (Duczmal & Assuncao, 2004) and the nearest-ball test
(NB), which is a parametric method that scans over nearest-
neighbor balls of different sizes for all nodes. For the MD
method we consider the optimization value xx> ·M as the
scan statistic, with T = 100 iterations, ⌘ = 5 and different
� values to quantify the size and conductance of the anoma-
lous graph. For LMIT we use the same anchor node as MD,
anomaly size |S| = 16 corresponding to the ground truth
and consider scan statistic x>

diag(M). We search over a
range of values for parameter �. For SA and NB we con-
sider the test statistic

P
i2S xip
|S|

. We initialize SA with the

result from NB and run for 40 restarts. To quantify detec-
tion performance, we threshold the scan statistics given by
the algorithms with various threshold values and compute
missed detection and false positive rates over a number of
samples (50 for MD and LMIT, 25 for SA and NB) gener-
ated from both H

0

and H
1

. We then compute the area under
the curve (AUC) generated by the pairs of missed detection
and false positive rates corresponding to threshold values.

Sensitivity of MD to the choice of �: We first investigate
the sensitivity of detection performance of MD to �, which
serves the purpose of parameterizing the internal conduc-
tance of candidate subgraphs. We note that unlike (Qian
et al., 2014; Qian & Saligrama, 2014), we do not explic-
itly specify or search over different cluster sizes, but size
information is also implicitly incorporated in �. We run
MD on the range of values 0.01 to 5 in 10 logarithmic in-
tervals. We illustrate the obtained AUC values for different
SNR’s in Figure 2. We observe that while optimal � values
differ slightly with different SNR levels, the 0.3–0.7 value
range is mostly optimal in all cases. This is in accordance
with our expectations, since the size and conductance of the
ground truth anomalies do not change.
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(a) Graph representation of the county
graph.

Normal

Anomalous
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(b) Ground truth anomalous cluster and
anchor node.
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(c) Sample realization of disease rates for
the anomalous case.

Figure 1. Disease outbreak detection in northeastern United States counties.
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Figure 2. Performance of MD algorithm for different � values.

Comparison to related methods: We also compare AUC
performance of MD to aforementioned methods and tabu-
late the results in Table 1. For MD we use a � value of
0.7 and for LMIT we use a � value of 0.3 which we ob-
served to perform best empirically. We see that MD per-
forms relatively similar to LMIT, with better performance
at some SNR levels. This is expected since the LMI con-
nectivity constraints in both methods are very similar, even
though the relaxation to the space of matrices M differ.
On the other hand SA and NB perform worse, with SA
not significantly improving upon the results of NB. It is
also notable that the performance of these three methods
seem low when compared to their performance in (Qian &
Saligrama, 2014), which can be partially explained by the
different scan statistics used: the Poisson likelihood test in
contrast to the simpler linear form we specified above to
be better in line with the scan statistic of MD. It is also
possible that the performance of SA can be improved with
a larger number of restarts. We also provide the average
runtime for the recovery methods for a single set of mea-
surements in Table 1, where the experiments were run on
MATLAB on a computer with an Intel i5 4590 processor.

5.2. Random Geometric Graphs

We also conducted experiments on simulated geometric
graphs to demonstrate the scalability of our method. For
this, we generated n points uniformly on the hypercube

AUC �
1

/�
0 Runtime1.1 1.3 1.5

MD 0.74 0.79 0.92 0.8s
LMIT 0.65 0.81 0.86 3s

SA 0.57 0.67 0.72 ⇠3m
NB 0.57 0.67 0.68 5s

Table 1. AUC performance of algorithms with different SNRs.

[�1, 1]D and created approximate k-NN graphs using the
ANN library (Arya et al., 1998). We generated anomalous
clusters by determining points that fall in hyperellipsoids
centered at the origin of the space. We consider different
hyperellipsoid axes lengths that correspond to different in-
ternal subgraph conductance.

Memory and run-time scalability: For very large graphs
with n nodes, storing on memory and operating on non-
sparse n ⇥ n matrices present major problems for compu-
tational feasibility. While for primal variable M we work
directly with vectors v in Alg. 1, we also consider a lower-
rank approximation scheme for representing dual variable
Y and an approximate computation for the matrix exponen-
tial. We define an n ⇥ k matrix Yk such that we have the
update Y (t)

k / exp

�
�⌘Q�(M (t)

�
W (t), where W (t) is an

n⇥ k matrix with IID elements N (0, 1

k ). With this defini-
tion we have the approximation Y (t) ⇡ Y (t)

k Y (t)>
k exploit-

ing the Johnson-Lindenstrauss lemma, for Y (t)
k normalized

appropriately. We then utilize the Leja method (Caliari
et al., 2016) to directly compute the action of the matrix
exponential on vectors. We again consider elevated mean
detection with yi ⇠ Poisson(�

0

) for non-anomalous nodes
and yi ⇠ Poisson(�

1

) otherwise. We specifically consider
10-NN graphs with parameters n = 10

4 and D = 3. We
consider two types of anomalous clusters: “thick” cluster
as a sphere with radius r and “thin” cluster as an ellipsoid
with radii (8r, r, r), where r is chosen such that on average
the clusters would contain K = 40 nodes.

Performance for different conductance anomalies and
comparison: We investigate the AUC performance of MD
and compare to the NB scan statistic over 40 sample real-
izations of measurements, for different SNR ratios �

1

/�
0

in Table 2 where we fix �
0

= 100. Due to the memory and
run-time scaling of SA and LMIT it was not feasible to ap-
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ply these methods to the large graphs. For MD, we chose
�2

2

= 10

�3 for the thick cluster and 5 ⇥ 10

�4 for the thin
one. We chose a random node in the cluster as the anchor,
k = 10 vectors for approximating Y and ran the algorithm
for T = 300 iterations. From the results we observe that
MD and NB perform similarly on thick clusters. This is ex-
pected since a spherical cluster is the optimal scenario for
NB, whereas MD still considers different shaped and sized
clusters for the given gamma. However for the thin cluster
we observe that MD improves upon NB significantly as ex-
pected, especially for higher SNR values. We also note that
each iteration of MD takes about 1s and empirically scales
linearly with n (as we demonstrate in the next set of exper-
iments), where we applied the method for graphs with up
to 10

5 nodes.

AUC �
1

/�
0

1.1 1.3 1.5

Thick MD 0.71 0.93 0.99
NB 0.70 0.92 0.96

Thin MD 0.70 0.92 0.99
NB 0.68 0.90 0.92

Table 2. AUC performance of MD and NB with different SNR
values and cluster shapes.

Performance for graph sizes and iterations: We also in-
vestigate the effect of graph size n in conjunction with the
number of iterations T on the accuracy as quantified by
the detection AUC. We again consider random geometric
graphs generated with parameters in the previous experi-
ments for �

1

�
0

= 1.3, vary graph size n from 4000 to 10000
in 2000 increments and consider ellipsoidal anomalies of
radii (4r, r, r) encapsulating approximately K = 40 nodes
with �2

2

= 10

�3. We plot the AUC performance vs. num-
ber of iterations for different graph sizes in Figure 3. First,
we observe that detection accuracy deteriorates for larger
graph sizes as expected. Moreover, the rate of increase
in the accuracy with the increasing number of iterations
T does not seem to change too much for different sizes
n, which lends empirical support to Theorem 4.1 regarding
the sublinear relationship between accuracy and n. We also
plot the average run-time per iteration vs. graph size with
standard deviation error bars in Fig. 4, which illustrates
the approximately linear scaling of run-time per iteration
as discussed in Sec. 4.

Performance vs. Anomaly size: We investigate detection
performance for different anomalous cluster sizes K = |S|
in Figure 5. We again consider a fixed SNR �

1

�
0

= 1.3
for n = 10000 and ellipsoidal anomalies of radii (4r, r, r),
with varying r such that K varies between 20 and 80. We
performed T = 300 iterations and used the same value of
�2

2

= 10

�3 for all K, as different values did not result in
a significant accuracy improvement in our cross-validation
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Figure 3. AUC performance for different graph sizes n for differ-
ing number of total iterations T .
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Figure 4. Run-time per iteration vs. graph size n.

experiments. This in turn confirms the robustness of the
choice of � which we also observed for the county graph
dataset. As seen the detection accuracy increases rapidly
with K for a fixed per-node SNR. This is in line with the
theoretical scaling behavior in (Qian & Saligrama, 2014).
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Figure 5. AUC performance for different anomaly sizes K.
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