
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Learning from Clinical Judgments: Semi-Markov-Modulated Marked
Hawkes Processes for Risk Prognosis

Anonymous Authors1

Abstract
Critically ill patients in regular wards are vulner-
able to unanticipated adverse events which re-
quire prompt transfer to the intensive care unit
(ICU). To allow for accurate prognosis of deteri-
orating patients, we develop a novel continuous-
time probabilistic model for a monitored pa-
tient’s temporal sequence of physiological data.
Our model captures “informatively sampled” pa-
tient episodes: the clinicians’ decisions on when
to observe a hospitalized patient’s vital signs and
lab tests over time are represented by a marked
Hawkes process, with intensity parameters that
are modulated by the patient’s latent clinical
states, and with observable physiological data
(mark process) modeled as a switching multi-task
Gaussian process. In addition, our model cap-
tures “informatively censored” patient episodes
by representing the patient’s latent clinical states
as an absorbing semi-Markov jump process. The
model parameters are learned from offline patient
episodes in the electronic health records via an
EM-based algorithm. Experiments conducted on
a cohort of patients admitted to a major medical
center over a 3-year period show that risk prog-
nosis based on our model significantly outper-
forms the currently deployed medical risk scores
and other baseline machine learning algorithms.

1. Introduction
Hospitalized patients are vulnerable to a wide range of
adverse events, including cardiopulmonary arrests (Kause
et al., 2004; Hogan et al., 2012; Yoon et al., 2016), acute
respiratory failures (Mokart, 2013), septic shocks (Henry
et al., 2015), and post-operative complications (Clifton
et al., 2012). For a patient in a regular ward, the occur-
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rence of any such event entails an unplanned transfer to an
intensive care unit (ICU), the timing of which is a major
determinant of the eventual outcome. Indeed, recent medi-
cal studies have confirmed that delayed transfer to the ICU
is strongly correlated with morbidity and mortality (Mar-
dini L, 2012; Mokart, 2013). The problem of delayed ICU
transfer is enormous and acute: over 750,000 septic shocks
and 200,000 cardiac arrests occur in the U.S. each year with
mortality rates of 28.6% and 75% respectively (Merchant
et al., 2011; Kumar et al., 2011). Fortunately, experts be-
lieve that much of these events could be prevented with ac-
curate prognosis and early warning (Nguyen et al., 2007).

Motivated by the proliferation of electronic health records
(EHRs) (currently available in more than 75% of hospi-
tals in the U.S. (Charles et al., 2016)) we develop a data-
driven real-time risk score that can promptly assess a hos-
pitalized patient’s risk of clinical deterioration. Our risk
score hinges on a novel continuous-time semi-Markov-
modulated marked Hawkes process model for a monitored
patient’s episode, i.e. the patient’s evolving (latent) clini-
cal states and her corresponding (observed) physiological
data. With the guidance of critical care experts, we con-
ducted experiments on a dataset for a cohort of critically-
ill patients admitted to a major academic medical center.
Results show that our risk score offers significant gains in
the accuracy (and timeliness) of predicting clinical deteri-
oration; our risk score attains a 23% improvement in the
Area Under Receiver Operating Characteristic (AUROC)
as compared to the technology currently deployed in our
medical center. Since it confers a significant prognostic
value in subacute care in wards, the proposed risk score is
currently being installed in our medical center as a replace-
ment for the current technology.

The proposed probabilistic model (based on which our risk
score is computed) captures a hospitalized patient’s entire
episode as recorded in the EHR. A typical (critical care)
patient episode comprises the time of her admission to the
ward, the time of her admission to the ICU or discharge
from the ward, and a temporal sequence of irregularly sam-
pled physiological data that are collected during her stay in
the ward (Johnson, 2016; Ghassemi et al., 2015). We model
a patient’s episode as being driven by a latent clinical state
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process, which we represent as a semi-Markov jump pro-
cess (Yu, 2010), describing the evolution of the patient’s
“severity of illness” over time. All the observable physio-
logical variables are modulated by this process: the times at
which clinicians decide to observe the patient’s physiolog-
ical data are drawn from a Hawkes point process (Hawkes
& Oakes, 1974), the intensity of which is modulated by the
patient’s clinical state process, whereas the observed phys-
iological data is drawn from a switching multi-task Gaus-
sian process with hyper-parameters that depend on the pa-
tient’s clinical state. The patient episode is thus a marked
Hawkes process –with the physiological data serving as the
marks– that is modulated by the patient’s clinical states.
We provide a detailed description of the model in Section
3, and then propose an EM-based algorithm for learning its
parameters from the EHR data in Section 4.

A distinctive feature of our model is its ability to incorpo-
rate informative clinical judgments into the generative pro-
cess for the patient’s episode. The manifestation of infor-
mative clinical judgments in the EHR episodes is double-
faceted: the patients’ episodes are both “informatively sam-
pled” and “informatively censored”. Informative sampling
results from the fact that clinicians decide to observe the pa-
tient’s physiological data more intensely if they believe that
the patient is in a “bad” clinical state (Moskovitch et al.,
2015; Qin & Shelton, 2015)– a belief that is based on ei-
ther the clinician’s own assessment of the patient’s state, or
the communication between the patient and the ward staff
(Kyriacos et al., 2014). Informative censoring results from
the clinicians’ decision on when to send the patient to the
ICU or discharge her from the ward, which is indeed infor-
mative of the “ clinical deterioration” or “clinical stability”
onsets. In our model, informative censoring is taken into
account by adopting an absorbing semi-Markov chain as a
model for the patient’s latent clinical states; a patient’s risk
score at any point of time is thus defined as the probability
of eventual absorption in a “clinical deterioration” state.

Related work: Marked point processes have been recently
used in a very different context to model check-in data (Du
et al., 2016; Pan et al., 2016), but we are not aware of any
attempts for their deployment in the medical context. Most
of the previous works on risk prognosis for critical care
patients viewed informative censoring as a “surrogate la-
bel” for a patient’s clinical deterioration, and hence used
those labels to train a supervised (regression) model us-
ing the physiological data in a fixed-size time window be-
fore censoring. The supervised models used in the liter-
ature included logistic regression (Ho et al., 2012; Saria
et al., 2010), SVMs (Wiens et al., 2012), Gaussian pro-
cesses (Ghassemi et al., 2015; Yoon et al., 2016) and recur-
rent neural networks (Che et al., 2016). The main limitation
of this approach is that, in addition to the fact that it gener-
ally does not deal with informatively sampled episodes, it

does not model the entire patient’s physiological trajectory,
and hence it does not accurately capture intermediate (sub-
tle) deterioration stages that are indicative of future severe
deterioration stages, which leads to a sluggish risk assess-
ment and delayed ICU alarms.

Another strand of literature has focused on building proba-
bilistic models, usually variants of Hidden Markov Models
(HMMs), for the entire patient’s physiological trajectories;
applications have ranged from disease progression model-
ing to neonatal sepsis prediction (Wang et al., 2014; Stan-
culescu et al., 2014). These models are not capable of deal-
ing with irregularly-sampled data, do not deal with infor-
matively sampled episodes, and are restricted to the Marko-
vianity assumption which entails unrealistically memory-
less clinical state transitions. In (Henry et al., 2015), a rank-
ing algorithm was used to construct a risk score for sepsis
shocks; however, the approach therein requires the clini-
cians to provide assessments that order the disease severity
at different time instances– we typically do not have such
data in the EHR for ward patients.

Various works in the medical literature have proposed
“expert-based” medical risk scores for prognosis in hos-
pital wards (Morgan et al., 1997; Parshuram et al., 2009),
some of which are currently used in practice. The medical
literature has also suggested the use of mortality risk scores
that are normally used in the ICU, such as APACHE-II and
SOFA, as risk scores for ward patients (Yu et al., 2014).
However, recent systematic reviews have demonstrated the
modest net clinical utility of all these scores (Cvach, 2012).
More recently, a data-driven medical risk score based on a
simple regression model, known as the Rothman index, has
been developed and commercialized (Finlay et al., 2014;
Rothman et al., 2013). The Rothman index is currently de-
ployed in various major hospitals in the U.S. including our
medical center; in Section 5, we show that our risk score
significantly outperforms the Rothman index in terms of
AUROC and timeliness of ICU admission alarms.

2. Structure of the EHR Data
The subacute care data in an EHR typically comprises a set
of episodes; each episode is a sequence of vital signs and
lab tests (physiological data) that have been gathered (by
clinicians) for a hospitalized patient at irregularly spaced
time instances during her stay in a ward. The episode
starts at the time of admission to the ward, and is con-
cluded by either an unplanned admission to the ICU, which
means that the patient was clinically deteriorating, or a dis-
charge from the ward, which means that the patient was
clinically stable. We denote an EHR dataset D that com-
prises the episodes for D patients as D = {Ed}Dd=1, where
Ed is the episode for the dth patient, and is defined as
Ed = ({ydm, tdm}

Md
m=1, T

d
c , l

d), with ydm being the mth Q-
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dimensional physiological variable (vital signs and lab test
outcomes) for patient d observed at time tdm, and the to-
tal number of samples observed for that patient during her
episode is Md. The duration of patient d’s stay in the ward
is denoted by T d

c , whereas her endpoint outcome (clinical
deterioration and ICU admission, or clinical stability and
discharge) is declared via a binary variable ld; the realiza-
tion ld = 1 means that patient d was admitted to the ICU,
and ld = 0 means that the patient was discharged home.
We stress that the labels ld associated with every episode
are neither noisy nor entirely subjective: we assign a label
ld = 1 for patients who actually needed a therapeutic in-
tervention in the ICU after an unplanned admission, and
assign a label ld = 0 for patients who were discharged and
not re-admitted shortly after. We excluded all post-surgical
ward patients for whom an ICU admission was preordained
since for those patients the prognosis problem is not rele-
vant. Our dataset comprises thousands of episodes for pa-
tients admitted to a large medical center over a 3-year pe-
riod; all the episodes display the structure described above.

The clinicians were right!
Clinical judgments manifest in the dth episode of D
through informative sampling (encoded in the observation
times {tdm}

Md
m=1), and informative censoring (encoded in

the episode duration T d
c and the endpoint outcome ld). Fig-

ure 1 is a depiction for both informative sampling and in-
formative censoring. In Figure 1, we estimate the phys-
iological data (time-varying) sampling rate using all the
episodes in our dataset over a time horizon of 35 hours be-
fore ICU admission for deteriorating patients (i.e. patients
with ld = 1, with t = 0 being the ICU admission time),
and we compute the same estimates for stable patients (i.e.
patients with ld = 0, with t = 0 being the discharge time).

We can see from the trends in Figure 1 that as the deterio-
rating patient approaches the ICU admission time, the clin-
icians tend to sample her physiological data more intensely,
whereas as the stable patient approaches the discharge time,
the clinicians tend to have a more relaxed schedule for ob-
serving her vital signs and lab tests. The divergence be-
tween the sampling rates for deteriorating and stable pa-
tient groups increases as the patients approach their ICU
admission and discharge onsets– that is because the clini-
cians become less uncertain about the patient’s state as time
progresses. We have tested the hypothesis that the sam-
pling rate of deteriorating patients is –on average– larger
than that for stable patients in the last 24 hours before ICU
admission or discharge via a two-sample t-test with a sig-
nificance level of 0.05, and the hypothesis was accepted.

The take-away from Figure 1 is that the clinician’s judg-
ment of the patient’s clinical state –manifesting in the vital
signs and lab tests sampling rates– is very predictive of the
endpoint outcomes. This implies that there is a room for
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Figure 1. Estimated sampling rates (with 95% confidence inter-
vals) for the physiological data over time.

“learning from the informative clinical judgments”; that is,
one can infer the patients’ latent states over time by us-
ing the clinicians’ observable sampling patterns as proxi-
mal noisy labels for those latent states.

3. The Semi-Markov-Modulated Marked
Hawkes Process Model

Now we present a probabilistic model for the episodes
{Ed}Dd=1 that captures the informative sampling and cen-
soring effects discussed in Section 2. We start by modeling
the patient’s latent clinical state process in Subsection 3.1,
before modeling the observable variables in Subsection 3.2.

3.1. Latent Clinical States

We assume that each patient’s episode is governed by an
underlying latent clinical state process X(t) that represents
the evolution of her “clinical well-being” over time. The
patient’s latent clinical state X(t) at any point of time t ∈
R+ (t = 0 corresponds to the time of admission to the
ward) belongs to a finite space X comprising N states, i.e.
X = {1, 2, . ., ., N}. We model informative censoring by
assuming that states 1 and N are absorbing states; state 1
is the state of clinically stability, at which the patient can
be safely discharged home, whereas state N is the state
of clinical deterioration, at which the patient needs to be
admitted to the ICU. Whenever the patient is in state 1 or
N , her episode is terminated by the clinicians shortly after.
All other states in X/{1, N} are transient states in which
the patient needs vigilant monitoring by the ward staff.

The clinical state process X(t) is a semi-Markov jump pro-
cess (Yu, 2010), i.e. X(t) =

∑K
n=1 Xn · 1{τn≤t<τn+1}

is a semi-Markov process for which every new state real-
ization Xn starts at a jump time τn, where τ1 = 0, and
lasts for a random sojourn time Sn = τn+1 − τn. A total
number of K states are realized in the path X(t), where
K is indeed random, and XK ∈ {1, N}, i.e. the pa-
tient’s episode is concluded by either clinical deterioration
or stability. The advantage of adopting a semi-Markovian
model for the clinical state process is that unlike Marko-
vian models, semi-Markovianity does not imply memory-
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Figure 2. Depiction of the physiological data sampling times for a clinically deteriorating and a clinically stable patient.

less transitions– the transition probability from one clinical
state to another at any time depends on the time spent in the
current state, a property that has been recently validated in
various clinical state models (Taghipour et al., 2013). We
adopt an explicit-duration model for the state sojourn times
(Johnson & Willsky, 2013): the nth state sojourn time Sn

is drawn from a Gamma distribution1 with state-specific
parameters as follows

Sn|(Xn = i) ∼ Gamma(γi), ∀i ∈ X . (1)

Since the model includes two absorbing states (1 and N )
for which the notion of sojourn time is inapplicable, we
define the variables Sn of such states as the clinicians’
“response times” for admitting patients to the ICU or dis-
charging them upon the clinical deterioration/stability on-
set. The transitions among the clinical states are governed
by a semi-Markov transition kernel matrix P = (pij)i,j ,
i.e.

P(Xn+1 = j|Xn = i) = pij , (2)

where self-transitions are eliminated for all transient states
(Yu, 2010; Johnson & Willsky, 2013), i.e. pii = 0, ∀i ∈
X/{1, N}, and enforced for the two absorbing states pii =
1, ∀i ∈ {1, N}. The initial state distribution is given by
π = (πi)

N
i=1, where πi = P(X(0) = i). Every episode

Ed in an EHR dataset D is associated with a latent clini-
cal state trajectory {Xd

n, S
d
n}K

d

n=1, but we can only observe
the absorbing state realization XKd = ld in the EHR data
(informative censoring).

3.2. Observable Physiological Data

The patient’s latent clinical state process X(t) manifests in
two ways: (1) it modulates the intensity of sampling the pa-
tient’s physiological variables (informative sampling), and
(2) it modulates the distributional properties of the ob-
served physiological variables. We capture these two ef-
fects via a marked point process model for the patient’s

1We model the sojourn time via a Gamma distribution since
it encompasses memoryless exponential distributions of Markov
models as a special case (Liu et al., 2015).

episode E : the marked point process {(ym, tm)}m∈N+

comprises an observation process {tm}m∈N+ , which rep-
resents the physiological variables’ sampling times, and a
mark process {ym}m∈N+ , which represents the realized
physiological variables at these sampling times. The dis-
tributional specifications of our marked point process are
given in the following Subsections.

3.2.1. THE OBSERVATION PROCESS

We model the observation process generating the physio-
logical variables’ observation times {tm}m∈N+

as a doubly
stochastic point process whose intensity, λ(t), is a stochas-
tic process modulated by the latent clinical state process
X(t). In particular, the observation process {tm}m∈N+ is
modeled as a one-dimensional Hawkes process with a lin-
ear self-exciting intensity function λ(t,X(t)) (Lee et al.,
2016), i.e.

λ(t,X(t) = i) = λo
i + αi

∑
τ<tm<t

e−βi(t−tm), (3)

∀ i ∈ X ,, where λo
i , αi and βi are the state-dependent in-

tensity parameters, e−βi(t−tm) is an exponential trigger-
ing kernel, and τ < t is the time of the most recent jump
in X(t). In order to ensure the local stationarity of the
Hawkes process within the sojourn time of every latent
state, we assume that αi

βi
< 1, ∀i ∈ X (Roueff et al.,

2016); the expected value of the intensity function is there-
fore given by E[λ(t,X(t) = i)] =

λo
i

1−αi
βi

. For βi = ∞
or αi = 0, we recover a modulated Poisson process as a
special case (Pan et al., 2016).

In Figure 2, we depict the observation times in two patients’
episodes: patient A being a clinically deteriorating patient,
and patient B being a clinically stable patient. We can see
that patient A’s episode had its sampling rate escalating as
her condition was worsening; the sampling rate remained
intense after she was admitted to the ICU. On the other
hand, patient B’s episode exhibited a decelerating sampling
rate on her path to clinical stability. We can also notice that
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the observation times display a subtle “clustered” pattern
that point out to their temporal dependencies– indeed, the
clinicians are not memoryless, and the times at which they
observe the physiological data are dependent. In the light of
the above, the modulated Hawkes process described above
appears to be a sensible model for the observation process
{tm}m∈N+

as it captures both the time-varying intensity
and the temporal dependencies illustrated in Figure 2.

3.2.2. THE MARK PROCESS

Now we provide the distributional specification of the mark
process {ym}m∈N+ . Since the physiological data are irreg-
ularly sampled from an underlying continuous-time physi-
ological process Y (t) at the sampling times determined by
the observation process {tm}m∈N+ , a convenient model for
Y (t) is a switching Gaussian Process defined as follows:
Y (t) =

∑K
n=1 Yn(t)1{τn≤t<τn+1}, with

Yn(t)|(Xn = i) ∼ GP(mi(t), ki(t, t
′)), (4)

where mi(t) and ki(t, t
′) are the state-dependent mean

function and covariance kernel, respectively. We use a con-
stant mean function mi(t) = mi and a Matérn kernel given
by

ki(t, t
′) =

(√
2vi−1 |t−t′|

ℓi

)vi− 1
2

Kvi− 1
2

(√
2vi−1 |t−t′|

ℓi

)
2vi− 3

2 Γ(vi − 1
2 )

,

(5)
where vi ∈ N+, ℓi ∈ R+, Γ(.) is the Gamma function and
Kvi− 1

2
(.) is a modified Bessel function (Rasmussen, 2006).

Our choice for the Matérn kernel is motivated by its ability
to represent various commonly used stochastic processes;
for instance, when vi = 1, then Yn(t)|(Xn = i) is an
Ornstein-Uhlenbeck process (Rasmussen, 2006), whereas
for a general integer value of vi, Yn(t)|(Xn = i) is a
continuous-time analogue of the Auto-regressive process
AR(vi)– a process that has been widely used to model
physiological time-series data (Stanculescu et al., 2014).
By constructing Yn(t) as a continuous-time analog of the
AR model, the process Y (t) =

∑K
n=1 Yn(t)1{τn≤t≤τn+1}

becomes a continuous-time switching AR model that is
modulated by the patient’s latent clinical state process
X(t). We observe the continuous-time process Y (t) only
at the sampling times dictated by the observation process
(tm)m∈N+ , and the resulting process {ym}m∈N+ defines
the mark process. The observation process together with
the mark process, both modulated by the latent clinical state
process X(t), constitute a marked Hawkes process, which
completely describes a patient’s episode.

The mark process defined above is one-dimensional, and
hence we need to extend the definition to handle a multi-
dimensional process that represents multiple lab tests and

vital signs. In other words, we seek a continuous-time ana-
log of the switching Vector Auto-regressive (VAR) model
rather than an AR model2. This is achieved by adopt-
ing a multi-task Gaussian Process as a model for the Q-
dimensional physiological process Y (t) ∈ RQ (Durichen
et al., 2015). That is, we assume that Yn(t)|(Xn =
i) ∼ GP(mi(t),Ki(t, t

′)), where the covariance kernel
Ki(t, t

′) = {ki(r, g, t, t′)}Qr,g=1 is based on the intrinsic
correlation model (Bonilla et al., 2007), i.e. Ki(t, t

′) can
be written in the following separable form

ki(r, g, t, t
′) = Σi(r, g) · ki(t, t′), (6)

where ki(r, g, t, t′) is the covariance between the rth phys-
iological variable at time t and the gth physiological vari-
able at time t′, Σi is a Q × Q intrinsic correlation ma-
trix, and ki(t, t

′) is the Matérn kernel in (5). For ev-
ery state i, we denote the multi-task GP parameter set as
Θi = (mi(t),Ki(t, t

′)), and the Hawkes process parame-
ter set as Λi. The entire model parameters can be bundled
in the parameter set Ω as follows

Ω = {P, (πi, γi,Λi,Θi)i∈X }.

Given a parameter set Ω, we can easily generate sample
patient episodes from our model by first sampling a state
sequence {X1, . . ., XK} using the semi-Markov transition
kernel, then sampling a corresponding sequence of sojourn
times {S1, . . ., SK} from the state-dependent Gamma dis-
tributions, then sampling a set of multi-task Gaussian pro-
cess {Y1(t), . . ., YK(t)}, and finally sampling a sequence
of observation times {tm}Mm=1 using Ogata’s modified thin-
ning algorithm (Ogata, 1981). Figure 3 depicts one patient
episode sampled from our model. (An algorithm for sam-
pling episodes from our model is provided in Appendix B
in the supplementary material.)

4. Learning and Inference
In this Section, we develop an offline learning algorithm
that learns the model parameter Ω using the offline training
episodes in D, and a real-time risk scoring algorithm that
computes a hospitalized patient’s risk over time. The learn-
ing algorithm operates by first detecting change-points in
the physiological data and the observation process; using
the detected change-points, the algorithm segments each
episode into a sequence of states, and uses an EM algo-
rithm to estimate the model parameters. The real-time risk
scoring algorithm operates by inferring the patient’s current
state via forward-filtering, and then computing the proba-
bility of eventual absorption in the deteriorating state.

2In Appendix A of the supplementary material, we establish
the connection between the switching multi-task Gaussian Pro-
cess model described herein and the conventional VAR model,
showing that the former is the continuous-time analog of the lat-
ter.
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Figure 3. An episode sampled from the proposed model.

4.1. The Offline Learning Algorithm

Estimating the model parameters Ω from the dataset D =
{Ed}Dd=1 is a daunting task due to the hiddenness of the
patients’ clinical state trajectories {Xd

n, S
d
n}Dd=1; an appli-

cation of MCMC-based inference methods, such as the
method in (Qin & Shelton, 2015), will incur an exces-
sive computational cost for a complex model like ours.
We therefore developed an efficient three-step learning al-
gorithm that capitalizes on the structure of the patients’
episodes in order to find a point estimate Ω̂ for Ω. The three
steps of the our learning algorithm are listed hereunder3.

Step 1: Change-point detection
We first estimate the jump times {τd1 , . . ., τdKd} for ev-
ery episode Ed in D. This is achieved by using the
E-divisive change-point detection algorithm (Matteson &
James, 2014). Since the E-divisive algorithm is nonpara-
metric, we are able to estimate the onsets of all clinical
states, i.e. the jump times of Xd(t), prior to finding the
estimate Ω̂. We let the E-divisive algorithm jointly de-
tect changes in the distributions of the observable variables
{ydm}

Md
m=1 and the observation process {tdm}

Md
m=1 by cre-

ating an augmented vector of observables that comprises
both the physiological observations and a “differential” ob-
servation process, i.e.

{τ̂d1 , . . ., τ̂dKd} = E-divisive((yd1 ,∆td1), . . ., (y
d
Md ,∆tdMd)),

where ∆tdm = tdm − tdm−1, with ∆td1 = 0. By the end of
this step, we obtain an estimate for the start and end times
of all clinical state realizations for every episode Ed.

Step 2: Maximum Likelihood Estimation (MLE) of the
absorbing states’ parameters
By virtue of informative censoring, we know the identities
of all the absorbing states, i.e. Xd

Kd = ld, ∀d. Now that
we have estimates for the onsets of the absorbing states,
obtained from step 1, then we can estimate the response

3The details for all the algorithms in this Section are provided
in Appendix C in the supplementary material.

times as Ŝd
Kd = T d

c − τ̂dKd , ∀1 ≤ d ≤ D. Define the (fully
observable) sub-dataset Di as follows

Di =
{
(ym, tm){tm≥τ̂d

Kd}
, Ŝd

Kd : ld = i, Ed ∈ D
}
,

∀i ∈ {0, 1}. Given such a fully fledged specification of the
absorbing states’ onsets, identities, and the corresponding
physiological variables, we can directly apply MLE to es-
timate the parameters Θ1,ΘN , γ1, γN ,Λ1 and ΛN . Using
the datasetDi, the parameter Θi is estimated using the gra-
dient method for Gaussian processes as in (Bonilla et al.,
2007), γi is estimated using the standard MLE estimating
equations, and Λi is estimated by maximizing the recursive
likelihood formula in (Ogata, 1981) using the Nelder-Mead
simplex method (Nelder & Mead, 1965).

Step 3: Estimation of the transient states’ parameters us-
ing the EM algorithm
While the absorbing states are observable, the transient
states are all hidden. In order to estimate the parameters
P, {Θi}N−1

i=2 , {γi}N−1
i=2 , and {Λi}N−1

i=2 , we use the jump
times’ estimates {τ̂d1 , . . ., τ̂dKd−1} (obtained from step 1)
in order to segment every episode d into a set of finite tran-
sition, and hence we obtain a discrete-time HMM-like pro-
cess. We truncate all the episodes by removing the data
belonging to the absorbing state, and run the EM algorithm
in order to estimate the transient state parameters. The EM
algorithm takes advantage of informative censoring in the
forward-backward message passing stage by computing the
backward messages conditioned on the identity of the end-
point absorbing state ld for every episode d.

4.2. The Real-time Risk Scoring Algorithm

Having learned the model parameters Ω̂ from an offline
dataset D, we now explain how risk scoring is conducted
in real-time for a newly hospitalized patient. The patient
risk score at time t is denoted by R(t), and is defined as
R(t) = P(X(∞) = N | {ym, tm}, tm ≤ t, Ω̂). That is,
the risk score R(t) is the probability of being eventually
absorbed in the deteriorating state N given the observable
physiological data up to time t. Using Bayes’ rule, the risk
score R(t) is given by∑
i∈X

P(X(t) = i | {ym, tm})︸ ︷︷ ︸
Current state

· P(X(∞) = N |X(t) = i)︸ ︷︷ ︸
Future transition

,

where the “current state” term is computed in real-time us-
ing the efficient (dynamic programming) forward-filtering
algorithm, whereas the “future transition” term is computed
offline using the estimated model parameters.

5. Experiments
In order to evaluate the prognostic utility of our model, we
conducted experiments on a datasetD comprising informa-
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tion on patient admissions to a major medical center over
a 3-year period, and compared the proposed risk score de-
fined in Subsection 4.2 with other competing baselines. We
briefly describe our dataset in the next Subsection, and then
present the experimental results. A very detailed descrip-
tion for our dataset and the implementation of the baselines
is provided in Appendix D in the supplementary material.

5.1. Data Description

Each patient record in D is an episode that is formatted
as described in Section 2. The patients’ cohort in D is
very heterogeneous; diagnoses included sepsis, hyperten-
sion, renal failure, leukemia, septicemia and pneumonia.
Each patient’s episode inD comprises 21 vital signs and lab
tests that are collected for the patient over time, along with
the time instances at which they where collected. The vital
signs include diastolic and systolic blood pressure, Glas-
gow coma scale score, heart rate, eye opening, respiratory
rate, temperature, O2 saturation and device assistance, best
motor and verbal responses. The lab tests included mea-
surements of chloride, glucose, urea nitrogen, white blood
cell count, creatinine, hemoglobin, platelet count, potas-
sium, sodium and CO2. In all the experiments conducted
in this Section, we split D into a training set consisting of
admissions over a 2.5-year period (5,000 episodes) and a
testing set consisting of admissions over a 6-month period
(1,094 episodes).

5.2. Results

We ran the offline learning algorithm in Subsection 4.1
(with 1000 EM iterations) on the 5,000 training episodes
in D, and obtained an estimate Ω̂ for the semi-Markov-
modulated marked Hawkes process that describes the pa-
tient cohort. Using the Bayesian information criterion, we
selected an instantiation of our model with 4 clinical states,
where state 1 is the clinical stability (absorbing) state, and
state 4 is the clinical deterioration (absorbing) state. The
learned Hawkes process intensity functions for these two
states are given by

λ(t, 1) = 0.55︸︷︷︸
Baseline intensity ↓

+ 0.2
∑
tm

e−8.46(t−tm)

︸ ︷︷ ︸
Temporal dependencies ↓

,

λ(t, 4) = 0.82︸︷︷︸
Baseline intensity ↑

+ 0.16
∑
tm

e−1.36(t−tm)

︸ ︷︷ ︸
Temporal dependencies ↑

,

where λ(t,X(t)) is measured in samples per hour. We
note that the estimated Hawkes process parameters accu-
rately describe the clinicians’ judgments; when the patient
is in the deteriorating state (state 4), the clinicians tend to
observe her physiological measurements more frequently.
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Figure 4. An episode for a hospitalized cardiac patient.

This manifests in the baseline intensity of λ(t, 4) being
50% higher than that of λ(t, 1). Moreover, we note that
when the patient is clinically stable (state 1), the temporal
dependencies between the observation times almost disap-
pear as the exponential triggering kernel plays little role
in determining the observation times, i.e. λ(t, 1) ≈ 0.55,
which renders the observation process closer to a Pois-
son process. Contrarily, when the patient is deteriorating,
strong temporal dependencies are displayed in the observa-
tion times– this is intuitive since for a deteriorating patient,
the follow-up times decided by the clinicians strongly de-
pend on what have been observed in the past. These dis-
tinguishing state-specific features of the clinical judgments
are the essence of informative sampling, which allows us
to integrate physiological data together with clinical expe-
rience while learning the patient’s physiological model.

We illustrate the value of informative sampling in Figure 4
through an episode for a cardiac patient who was admitted
in the ward for 1 week before being sent to the ICU upon a
cardiac arrest. When running the offline learning algorithm
in Section 4.1 while assuming that the observation process
{tdm}m is uninformative (i.e. λ(t, i) = λ(t, j), ∀i, j ∈ X ),
the detected clinical deterioration onset is only 10 hours
ahead of the cardiac arrest event (onset (2) in Figure 4):
this is because the states are estimated solely based on
the physiological data, and hence the clinical deterioration
state is detected only when the patient’s heart rate fell be-
low 60 beats per minute (BPM). When running the learn-
ing again but with informative sampling taken into account,
the detected clinical deterioration onset is 40 hours ahead
of the cardiac arrest event (onset (1) in Figure 4); this is
the time instance at which the clinicians decided to moni-
tor the patient more vigilantly (i.e. more intense sampling
rate) even though the evidence for an upcoming cardiac
arrest in her heart rate trajectory was rather subtle. The
clinicians’ decision to intensely observe the patient’s phys-
iological trajectory is based either on their experience, or
on apparent symptoms or complains from the patient that
were not recorded in the EHR. By integrating the clini-
cians’ judgments into our model, we are able to capture the
subtleties in the patients’ temporal physiological parame-
ters, and hence learn more accurate representations for the
clinical states.
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Method AUROC

Proposed Score 0.481

Medical Scores

Rothman Index 0.255
MEWS 0.182

APACHE-II 0.130
SOFA 0.127

ML Algorithms

SW-RF 0.366
HMMs 0.321
SW-GP 0.305
SW-LR 0.267

Table 1. Comparison between various risk scoring methods (p <
0.01). (SW: Sliding-window, GP: Gaussian process regression,
LR: Logistic Regression, RF: Random Forests)

We then computed the real-time risk score (as described
in Subsection 4.2) for the testing episodes, and compared
its sensitivity-precision AUCROC with that of the baseline
risk scoring methods listed hereunder.

Medical Risk Scores: we considered the two most
commonly used medical risk scores in regular wards– the
MEWS score (Morgan et al., 1997) and the Rothman in-
dex4 (Rothman et al., 2013). We implemented the MEWS
score and the Rothman index as described in (Kyriacos
et al., 2014) and (Rothman et al., 2013), respectively. We
also included the APACHE-II and SOFA scores in our
comparisons.

Machine Learning Algorithms: we considered the
traditional approach for real-time risk scoring, which treats
informative censoring as a surrogate label based on which
a supervised regression model is learned offline, and then
risk scoring is applied in real-time using the temporal data
within a sliding window– we call these methods “sliding-
window methods”. We implemented sliding-window
methods based on logistic regression (Ho et al., 2012;
Saria et al., 2010), random forests, and Gaussian process
regression (Ghassemi et al., 2015; Yoon et al., 2016).
In addition, we compared our risk score with a standard
Hidden Markov Model with Gaussian emissions. The
relevant physiological measurements for every baseline
were selected through the correlated feature selection
method (Yu & Liu, 2003). The hyper-parameters of all
the baselines, including the size of the sliding window
for the supervised learning methods, were optimized via
cross-validation. To handle the irregularly sampled data,
we discretized the time horizon into 1-hour steps and fed
the baselines with interpolated, discrete-time episodes.

In Table 1, we compare the performance of our risk score

4At the time of conducting these experiments, the Rothman
index was deployed in more than 60 major hospitals in the US.

with the baselines in terms of the sensitivity-precision AU-
ROC. As we can see, the proposed risk score offers a 23%
AUROC improvement as compared to the best perform-
ing medical risk score –the Rothman index– which was the
score deployed in our medical center at the time of conduct-
ing this experiment. Moreover, our risk score also provides
significant gains over discriminative sliding-window re-
gression models; the proposed risk score achieves a 11.5%
AUROC improvement as compared to the best perform-
ing ML algorithm (random forest). In addition, the pro-
posed risk score achieves a 16% AUROC improvement as
compared to a standard HMM with Gaussian emission vari-
ables5. On average, our risk score prompts ICU alarms 8
hours before the censoring time at a sensitivity of 50% and
precision of 35%.

6. Discussion: Chicken-and-egg
We stress that while computing our risk score for the test-
ing episodes, we did not use the information conveyed in
the observation process {tdm}m to infer the patients’ clini-
cal states. This is because in practice, the value of the real-
time risk score R(t) itself influences the clinician’s behav-
ior and hence impacts the observation process, creating a
chicken-and-egg dilemma in which one cannot clearly con-
ceptualize the causal relation between the risk score and the
clinicians’ judgments. A very interesting research direction
is to consider an observation process that is modulated by
both the patient’s state and the real-time risk score through
an intensity function λ(t,X(t), R(t)), where the algorithm
learns the clinical state representation online by “sharing
experience” with the clinicians. That is, the algorithm uses
the clinician’s judgments to refine its clinical state model,
which leads to a refined risk score R(t) that would in turn
allow the clinician to exhibit more accurate judgments; an
online learning process that would ideally converge to a
state of “shared knowledge” between the clinician and the
system.

The significant prognostic value offered by our risk score
promises a great improvement in the quality of subacute
care in wards. By utilizing the proposed score instead of
the current technology, clinicians in a crowded ward can
better focus their attention on patients at real risk of deterio-
ration, and can also plan for timely ICU admissions and ef-
fective therapeutic interventions. With the high in-hospital
mortality rates in wards, deploying our risk score may help
save thousands of lives annually– we are currently working
towards installing the proposed risk score in our medical
center.

5The adoption of a semi-Markovian model for the clinical state
process protects our model from the overtly rapid state switching
behavior that is introduced by memoryless HMMs (Matteson &
James, 2014).
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Supplementary Material
Appendix A: Multitask Gaussian Processes as Vector
Autoregressive Models

In order to show the equivalence between a multitask GP
with a Matérn kernel and the continuous-time VAR pro-
cess, we first start by writing down the classical discrete-
time VAR process y(t) in its difference equation form as
follows

y(t) = e(t)+A1 · y(t−1)+ . . .+Ap · y(t−p), (A1)

where e(t) ∈ RQ×1 is a white noise vector and Am =
[am,ij ]ij ∈ RQ×Q is the matrix associated with the mth

lag of the process y(t). Here we assume, as usual, that the
noise process e(t) is zero mean with a Dirac-delta auto-
correlation function, i.e. E[e(t)] = 0 and E[e(t) · e(t −
l)] = 0, ∀ l ∈ N+. Note that when e(t) is assumed to be
Gaussian, then y(t) is an order-p Gauss-Markov process.
The continuous-time version of the VAR process y(t) is
one that is defined using a stochastic differential equation
(SDE) that is equivalent to the difference equation in (A1),
i.e.

y(t) = e(t) +A1 ·
∂y(t)

∂t
+ . . .+Ap ·

∂py(t)

∂tp
, (A2)

where ∂y(t)
∂t is the component-wise derivative of the

vector-valued process y(t) with respect to t. Now we
want to find the power spectrum Sy(ω) for the (station-
ary) process corresponding to the SDE in (A2). This is
achieved by conceptualizing (A2) as an LTI system with
a white noise process as the input and the VAR process
y(t) as the output, and thus computing the power spectrum
as Sy(ω) = |H(jω)|2, where H(jω) is the LTI system’s
transfer function assuming that the noise process e(t) has
a normalized (unity) power spectrum. In order to proceed
with our analysis, we start by taking the Fourier transform
for (A2) as follows

Y(jω) = E(jω) +

p∑
n=1

(jω)n An Y(jω), (A3)

which can be further reduced as follows

Y(jω) = (I−
p∑

n=1

(jω)n An)
−1E(jω). (A4)

Based on (A4), we can easily compute the (matrix-valued)
transfer function H(jω) = [hmn(jω)]mn as follows

H(jω) = (I−
p∑

n=1

(jω)n An)
−1. (A5)

Since we assumed (without loss of generality) that
E(jω) = 1, then the power spectrum of any compo-
nent of y(t) can thus be found by examining the struc-
ture of Sm

y (ω) = |
∑

n hmn(jω)|2 = (
∑

n hmn(jω)) ·
(
∑

n hmn(−jω)).

Let us take the case when An = diag(an,11, . . ., an,QQ) is
a diagonal matrix for every n. In this case, we have that

hmn(jω) = (

p∑
n=0

(jω)n an,mm)−1, (A6)

and hence we have that

Sm
y (jω) =

1

(
∑p

n=0(jω)
n an,mm) · (

∑p
n=0(−jω)n an,mm)

.

From Section (B.2.1) in (Rasmussen, 2006), we know that
for a particular selection of the coefficients [an,mm], the
power spectrum can be put in the form

Sm
y (jω) =

1

(4π2 ω2 + α2)p
. (A8)

By taking the inverse Fourier transform of (A8), one
can see that the corresponding covariance function is of
the form

∑p
n=0 βn |t|n e−α |t|, which is a special case

of the Matérn kernel in (5). For a general setting of
An, one can easily reach to the form

∑p
n=0 βn |t|n e−α |t|

as an approximate form for the covariance function by
using the fact that (I −

∑p
n=1(jω)

n An)
−1 = I −

1
1+trace((∑p

n=1(jω)n An)−1)
(
∑p

n=1(jω)
n An).

Appendix B: Sampling Episodes from a Semi-Markov
Modulated Marked Hawkes Process

In order to generate a sample for a patient’s episode
given a parameter set Ω, we first sample a state sequence
{X1, . . ., XK} using the semi-Markov transition kernel,
then sample a corresponding sequence of sojourn times
{S1, . . ., SK} from the state-dependent Gamma distribu-
tions, then sample a set of multi-task Gaussian process
{Y1(t), . . ., YK(t)}, and finally sampling a sequence of ob-
servation times {tm}Mm=1 using Ogata’s modified thinning
algorithm (Ogata, 1981). Algorithm 1 generates samples
from a semi-Markov modulated Hawkes Process, whereas
algorithm 2 is a thinning algorithm used as a sub-module in
algorithm 1 in order to sample a Hawkes process by thin-
ning an inhomogeneous Poisson process.

Appendix C: Pseudo-codes for the Learning and
Inference Algorithms

In this Subsection, we provide the detailed implementation
of the learning and inference algorithms presented in Sec-
tions 4.2 and 4.1. We start first by presenting the real-time
risk scoring algorithm in the following Subsection.

THE REAL-TIME RISK SCORING ALGORITHM

We assume that we know the model parameters Ω̂ (in prac-
tice, this will be learned from the offline dataset D). As
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Algorithm 1 Sampling an episode from a semi-Markov
modulated Hawkes Process

Input: parameter set Ω
Output: an episode E = {(ym, tm)Mm=1, (Xn, Sn)

K
n=1}

X1 = j ∼ πj , τ1
S1 | (X1 = j) ∼ Gamma(γj)
Y1(t) | (X1 = j) ∼ GP(Θj)
T1 ← Thin(Λj , τn, τn + Sn)
n← 2
repeat

Xn+1 = j|Xn = i ∼ pij .
Sn | (Xn = j) ∼ Gamma(γj), τn = τn−1 + Sn

Yn(t) | (Xn = j) ∼ GP(Θj)
Tn ← Thin(Λj , τn, τn + Sn)
n← n+ 1

until Xn ∈ {1, N}
Y (t) =

∑
n Yn(t) · 1{τn≤t≤τn+1}

{tm}Mm=1 ←
∪

n Tn, {ym}Mm=1 ← {Y (tm)}Mm=1

explained earlier in Sections 4.2, the patient risk score at
time t is denoted by R(t), and is defined as follows

R(t) = P(X(∞) = N | {ym, tm}, tm ≤ t,Ω). (C9)

In other words, the risk score R(t) is the probability of the
patient’s eventual absorption in the deteriorating state N
given the observable physiological data up to time t. The
expression in (C9) can be decomposed using Bayes’ rule as
follows

R(t) =
∑
i∈X

P(X(t) = i|{ym, tm})P(X(∞) = N |X(t) = i).

(C10)
Given the model parameters Ω, one can easily compute

the transition probabilities P(X(t + ∆t) = j|X(t) = i)
for any ∆t, i and j using the parameter the semi-Markov
transition kernel and the sojourn time distributions. (For
a semi-Markov chain, the transition probabilities are the
solutions of a Volterra integral equation, which parallels
the Chapman-Kolomogrov equations in ordinary Markov
chains.) Now we focus on the term P(X(t) = i|{ym, tm}):
the posterior distribution of the current state given the ob-
servations up to the current time. We compute this term
using forward-filtering. Define the forward message as

α(tm, i) = P(X(t) = i, {ym, tm}). (C11)

The forward messages in (C11) are computed efficiently
using dynamic programming as in (Yu, 2010). The risk
score is thus computed as follows

R(t) =
∑
i∈X

α(tm, i)∑
j α(tm, j)

· P(X(∞) = N |X(t) = i).

(C12)

Algorithm 2 Sampling a Hawkes process by Ortega’s mod-
ified thinning algorithm Thin(Λ, τo, τ1)

Input: Hawkes process parameters Λ, interval [τo, τ1]
Output: a point process {tm} on the interval [τo, τ1]
T = ∅, s = 0, n = 0, T = τ1 − τo
while s < T do

λ̄ = λ(S+) = λo + α
∑

τ∈T e−β (s−τ)

u ∼ uniform(0, 1)
w ← − log(u)/λ̄
s← s+ w
D ∼ uniform(0, 1)
if D λ̄ ≤ λ(s) = λo + α

∑
τ∈T e−β (s−τ) then

n← n+ 1, tn ← s, T = T
∪
{tn}

end if
end while
if tn ≤ T then

return {τo + tk}k=1,2,. . .,n

else
return {τo + tk}k=1,2,. . .,n−1

end if

THE OFFLINE LEARNING ALGORITHM

Now we describe the offline learning algorithm by going
through steps 1, 2 and 3 discussed in Section 4.1 in detail.

Step 1:
We estimate the jump times {τ1, . . ., τK} for an episode
E by using the E-divisive nonparametric mutli-variate
change-point detection algorithm (Matteson & James,
2014). We jointly detect the changes in the distributions
of the observable variables {ydm}

Md
m=1 and the observation

process {tdm}
Md
m=1 by creating an augmented vector of

observables that comprises both the physiological ob-
servations and a “differential” observation process as
follows:


y1(1)
y1(2)

...
y1(Q)
∆t1

 , . . .,


ym(1)
ym(2)

...
ym(Q)
∆tm

 , . . .,


yM (1)
yM (2)

...
yM (Q)
∆tM




where ∆tm = tm − tm−1, with ∆t1 = 0. We run the
E-divisive algorithm with a significance level of 0.05 for
the permutation test and a parameter setting α = 1 for the
moment distance. The output of this step is a set of jump
time estimates {τ̂1, . . ., τ̂K}.

Step 2:
Now that we have estimates for the onsets of the absorbing
state τ̂K , obtained from step 1, then we can estimate the
response times as ŜK = Tc − τ̂K . Let us assume that we
have a set of D episodes absorbed in state 1 for whom
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the estimated response times are {Ŝd
K}Dd=1 with labels

{ld = 0}Dd=1, and let the Gamma distribution parameters
be γ1 = {k1, β1}. Then the MLE of γ1 and β1 as follows

v = log

(
1

D

D∑
i=1

Ŝi
K

)
− 1

D

D∑
i=1

log(Ŝi
K)

k̂1 =
3− v +

√
(v − 3)2 + 24 v

12 v

β̂1 =
1

k̂1 D

D∑
i=1

Ŝi
K ,

and the same estimates are found for γN = {kN , βN}.

Now let {ym, tm} be the sampling times and observed vari-
ables within the response time interval [ŜK , Tc]. For an
episode with absorbed in state i ∈ {1, N}, we estimate the
multi-task GP parameter Θi using the gradient method as
in (Bonilla et al., 2007). The Hawkes process parameters
Λi are estimated by maximizing the recursive likelihood
formula in (Ogata, 1981):

log(P({tm}Mm=1|Λi)) = −λo
i tm +H(m,Λi),

H(m,Λi) =

M∑
m=1

(
αi

βi
(e−βi(tn−tm) − 1) +

M∑
m=1

log(λo
i + αi A(m))

)
,

where A(m) =
∑

tj<tm
e−βi(tm−tj). The maximization is

conducted using the Nelder-Mead simplex method (Nelder
& Mead, 1965), implementation is done through the nlm
function in R.

Step 3:
After segmenting the episodes using the estimated jump
times {τ1, . . ., τK} in step 1, we view the segment episode
as a discrete-time HMM with no self-transition and with
transition probabilities [pij ]ij and initial state probabilities
[πi]i. The observations associated with every segment is
a set of observation times {tm}, the observations {ym}
and the segment duration τ̂n − τ̂n−1. The transition states’
parameters are then estimated straightforwardly using the
Baum-Welch algorithm.

Appendix D: Data Description and Implementation of
Baseline Algorithms

DATA DESCRIPTION

We conducted our experiments on a very heterogeneous co-
hort of episodes for patients hospitalized in a major med-
ical center over the last 3 years. The cohort involved all
the hospital’s major units, namely, the cardiac observation
floor, the cardiothoracic floor, the hematology and stem cell

ICD-9 codes Diagnosis % Freq.
(786.05) Shortness of Breath 7%
(401.9) Hypertension 6%
(38.9) Septicemia 5%

(995.91) Sepsis 5%
(780.6) Fever 5%
(486) Pneumonia 5%

(584.9) Renal failure 5%
(599) Urethra and urinary attack 5%

(780.97) Altered mental status 4%
(285.9) Anemia 4%
(786.5) Chest pain 4%
(585) Chronic renal failure 4%

(780.79) Malaise and fatigue 3%
(578) Gastrointestinal hemorrhage 3%
(428) Heart failure 3%

(427.31) Atrial fibrillation 3%
(787.01) Nausea 3%

— Other 22.5%

transplant floor, the liver transplant service and the critical
care pediatrics unit. The cohort involved patients who were
undergoing narcotic drugs or chemotherapy, and hence are
very are vulnerable to adverse outcomes that require an im-
pending ICU transfer. The patients’ cohort displays vast
heterogeneity in terms of a wide variety of diagnoses and
ICD-9 codes including leukemia, hypertension, septicemia,
sepsis, pneumonia, and renal failure. The distribution of the
most frequent ICD-9 codes in the patient cohort (together
with the corresponding diagnoses) is provided in Table 6.

Every patient’s episode in the cohort is associated with a
set of 21 (temporal) physiological streams comprising a
set of vital signs and lab tests that are listed as follows.

Vital signs

• Diastolic blood pressure

• Systolic blood pressure

• Glasgow coma scale score

• Heart rate

• Eye opening

• Respiratory rate

• Temperature

• O2 saturation and device assistance

• Best motor and verbal responses.
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Lab tests

• Chloride

• Glucose

• Urea nitrogen

• White blood cell count

• Creatinine

• Hemoglobin

• Platelet count

• Potassium

• Sodium

• CO2

In all the experiments, we split the patient cohort into a
training set, covering episodes for a 2.5 year period, and
a testing set, covering episodes recorded over a 6 month
period. The training set comprises 5,000 episodes, whereas
the testing set comprises 1,094 episodes. All the patient
episodes in the cohort were informatively censored. That
is, for every patient in the cohort, we know the following
information: the censoring time Tc, i.e. the length of stay
of each patient in the ward. The average hospitalization
time (or censoring time) in the ward was 150 hours and
24 minutes. The patient episodes’ censoring times ranged
from 4 hours to more than 2,500 hours. We also know the
absorbing clinical state (l) for every patient.

IMPLEMENTATION OF THE BASELINES

In this Section, we present the details of our implemen-
tation for all the baseline algorithms involved in the
comparisons in Section 5. We first start by explaining how
the state-of-the-art clinical risk scores were implemented.

Implementation of the Clinical Risk Scores

(1) Rothman Index: we implement the stepwise logistic
regression scheme adopted by the Rothman index as
described in (Rothman et al., 2013). The Rothman risk
score was computed as in equation (1) and (2) in (Roth-
man et al., 2013), i.e.

Rothman Index =

[
RIno lab

(
Time since lab

48

)]
+

Smoothing function
[

RIlab

(
1− Time since lab

48

)]
,

where the “RI” for every lab test (or vital sign) are ob-
tained from Figure A1 in (Rothman et al., 2013) for

the entire 21 vital signs and lab tests available in the
EHR, and the smoothing function is obtained from Ap-
pendix B in (Rothman et al., 2013). The “Time since
lab” variable is the last time (in hours) in which the cor-
responding lab test (or vital sign) was gathered, and its
maximum value is 48 hours. At the time of conducting
these experiments, the Rothman index was deployed in
the medical center from which we obtained the data.

(2) Modified Early Warning System (MEWS): we im-
plemented MEWS as specified in (Morgan et al.,
1997). The MEWS score typically ranges from 0 to
3 and is computed over time based on the instanta-
neous values of the following cardinal vital signs: sys-
tolic blood pressure, respiratory rate, SaO2, tempera-
ture, and heart rate. Table 2 provides the MEWS risk
scoring function in terms of those vital signs.

(3) Sequential Organ Failure Assessment (SOFA): a
risk score (ranging from 1 to 4) that is used to deter-
mine the extent of a hospitalized patient’s respiratory,
cardiovascular, hepatic, coagulation, renal and neuro-
logical organ function in the ICU.

(4) Acute Physiology and Chronic Health Evaluation
(APACHE-II): a risk scoring system (an integer score
from 0 to 71) for predicting mortality of patients in the
ICU. The score is based on 12 physiological measure-
ments, including creatinine, white blood cell count,
and Glasgow coma scale.

We note that while the SOFA and APACHE II scores were
originally constructed for deployed for patients in the
ICU, both scores have been recently shown to provide a
prognostic utility for predicting clinical deterioration for
patients in regular wards (Yu et al., 2014), and hence we
consider both scores in our comparisons. Our implementa-
tion for APACHE-II and SOFA followed that in (Yu et al.,
2014).

Implementation of the machine learning baselines

We have not used any of the patients’ static features
(e.g. age, gender, diagnoses, etc) in the baselines to ensure
a fair comparison with the medical risk scores, which
ignore those features. For all the baseline (including our
algorithm), the relevant physiological time series for every
baseline were selected through the correlated feature se-
lection method (Yu & Liu, 2003). The hyper-parameters of
all the baselines, including the size of the sliding window
for the supervised learning methods, were optimized via
cross-validation. In order to handle the irregularly sampled
data, we discretized the time horizon into 1-hour steps and
fed the baselines with spline-interpolated, discrete-time
episodes.
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Table 2. Computation of the MEWS score

Score 3 2 1 0 1 2 3
Heart rate (bpm) > 129 110− 129 100− 109 50− 99 40− 49 30− 39 < 30
Temperature (C) −−− > 38.9 38− 38.9 36− 37.9 35− 35.9 34− 34.9 < 34

Systolic BP (mmHg) −−− > 199 −−− 100− 199 80− 99 70− 79 < 70
SpO2 (%) < 85 85− 89 90− 92 > 92 −−− −−− −−−

Respiratory rate (breaths/min) > 35 31− 35 21− 30 9− 20 −−− −−− < 7

In the following, we provide the implementation details for
the different machine learning baselines.

(1) Hidden Markov Model with Gaussian Emissions:
informative censoring information was incorporated by
including two absorbing HMM states for clinical sta-
bility (l = 0) and deterioration (l = 1). We used
the Baum-Welch algorithm for learning the HMM, and
informed the forward-backward algorithm with the la-
beled states l at the end of every episode. We initial-
ized the Baum-Welch algorithm with seed parameter
estimates that are obtained using a K-means clustering
of the patients’ episodes followed by change-point de-
tection (using E-divisive) and then MLE for a labeled
HMM. The complete data log likelihood after 200 EM
iterations was -5.35× 106. Using the Bayesian infor-
mation criterion, we selected an HMM with 5 states
(2 of which are absorbing). In the testing phase, a pa-
tient’s risk score at every point of time is computed by
first applying forward filtering to obtain the posterior
probability of the patient’s states, and then averaging
over the distribution of the absorbing states.

(2) Sliding Window Methods: in order to ensure that
the censoring information is utilized by all the sliding-
window predictors, we trained every predictor by con-
structing a training dataset that comprises the physi-
ological data gathered within a temporal window be-
fore the censoring event (ICU admission or patient dis-
charge), and using the censoring information (i.e. the
variable l) as the labels. The size of this window is
a hyper-parameter that is tuned separately for every
predictor. For the testing data, the predictors are ap-
plied sequentially to a sliding window of every pa-
tient’s episode, and the predictor’s output is considered
as the patient’s real-time risk score. This differs from
the static simulation setting in (Ghassemi et al., 2015)
were predictions are issued in a one-shot fashion using
only the data obtained within 24 hours after a patient’s
admission. We used the built-in MATLAB functions
for training the logistic regression and the random for-
est predictors. For SW-GP, we used multi-task Gaus-
sian process regression using squared exponential ker-
nel and using the free-form parametrization in (Bonilla

et al., 2007), and used the gradient method to learn the
parameters of two Gaussian process models: one for
patients with l = 0, and one for patients with l = 1.
The risk score for a patient’s risk score is computed as
the test statistic of a sequential hypothesis test that is
based on the two learned Gaussian process models as
in (Yoon et al., 2016). Hence, the SW-GP baseline is a
combination of the methods in (Ghassemi et al., 2015)
and (Yoon et al., 2016) that is capable of handling ir-
regularly sampled data.


