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Abstract
There is a need for simple yet accurate white-box
learning systems that train quickly and with lit-
tle data. To this end, we showcase REBEL, a
multi-class boosting method, and present a novel
family of weak learners called localized similar-
ities. Our framework provably minimizes the
training error of any dataset at an exponential
rate. We carry out experiments on a variety of
synthetic and real datasets, demonstrating a con-
sistent tendency to avoid over�tting. We eval-
uate our method on MNIST and standard UCI
datasets against other state-of-the-art methods,
showing the empirical pro�ciency of our method.

1. Motivation

The past couple of years have seen vast improvements in
the performance of machine learning algorithms. Deep
Nets of varying architectures reach almost(if not better
than)human performance in many domains (LeCun et al.,
2015). A key strength of these systems is their ability to
transform the data using complex feature representations
to facilitate classi�cation. However, there are several con-
siderable drawbacks to employing such networks.

A �rst drawback is that validating through many architec-
tures, each of which may have millions of parameters, re-
quires a lot of data and time. In many �elds (e.g. pathology
of not-so-common diseases, expert curation of esoteric sub-
jects, etc.), gathering large amounts of data is expensive
or even impossible (Yu et al., 2015). Autonomous robots
that need to learn on the �y may not be able to afford the
large amount of processing power or time required to prop-
erly train more complex networks simply due to their hard-
ware constraints. Moreover, most potential users (e.g. non-
machine-learning scientists, small business owners, hobby-
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(a) Old: Decision Stumps (b) New: Localized Similarities

Figure 1. (a) The typical decision stumps commonly used in
boosting lead to classi�cation boundaries that are axis aligned
and not representative of the data. Although these methods can
achieve perfect training accuracy, it is apparent that theyheavily
over�t. (b) Our method useslocalized similarities, a novel family
of simple weak learners (see Sec.5.1). Paired with a procedure
that provably guarantees exponential loss minimization, our clas-
si�ers focus on smooth, well-generalizing boundaries.

ists, etc.) may not have the expertise or artistry required to
hypothesize a set of appropriate models.

A second drawback is that the complex representations
achieved by these networks are dif�cult to interpret and to
analyze. For many riskier applications (e.g. self-driving
cars, robotic surgeries, military drones, etc.), a machine
should only run autonomously if it is able toexplainits ev-
ery decision and action. Further, when used towards the sci-
enti�c analysis of phenomena (e.g. understanding animal
behavior, weather patterns, �nancial market trends, etc.),
the goal is to extract a causal interpretation of the system in
question; hence, to be useful, a machine should be able to
provide a clear explanation of its internal logic.

For these reasons, it is desirable to have a simple white-box
machine learning system that is able to train quickly and
with little data. With these constraints in mind, we show-
case a multi-class boosting algorithm calledREBELand
a novel family of weak learners calledsimilarity stumps,
leading to much better generalization than decision stumps,
as shown in Fig.1. Our proposed framework is simple, ef�-
cient, and is able to perfectly train onanydataset (i.e. fully
minimize the training error in a �nite number of iterations).
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The main contributions of our work are as follows:

1. a simple multi-class boosting framework using local-
ized similarities as weak learners (see Sec.3)

2. a proof that the training error is fully minimized within
a �nite number of iterations (see Sec.5)

3. a procedure for selecting an adequate learner at each
iteration (see Sec.5.2)

4. empirical demonstrations of state-of-the-art results on
a range of datasets (see Sec.7)

2. Background

Boosting is a fairly mature method, originally formulated
for binary classi�cation (e.g. AdaBoost and similar vari-
ants) (Schapire, 1990; Freund, 1995; Freund & Schapire,
1996). Multi-class classi�cation is more complex than its
binary counterpart, however, many advances have been
made in both performance and theory in the context of
boosting. Since weak learners come in two �avors, bi-
nary and multi-class, two corresponding families of boost-
ing methods have been explored.

The clever combination of multiple binary weak learn-
ers can result in a multi-class prediction. AdaBoost.MH
reduces theK-class problem into a single binary prob-
lem with aK-fold augmented dataset (Schapire & Singer,
1999). AdaBoost.MO and similar methods reduce the
K-class problem intoC one-versus-all binary problems
using Error-Correcting Output Codes to select the �nal
hypothesized class (Allwein et al., 2001; Sun et al., 2005;
Li , 2006). More recently, CD-MCBoost and CW-Boost
return aK-dimensional vector of class scores, focusing
each iteration on a (binary) problem of improving the
margin of one class at a time (Saberian & Vasconcelos,
2011; Shen & Hao, 2011). REBEL also returns a vector of
class scores, increasing the margin between dynamically-
selected binary groupings of theK classes at each iteration
(Appel et al., 2016).

When multi-class weak learners are acceptable (and avail-
able), a reduction to binary problems is unnecessary. Ad-
aBoost.M1 is a straightforward extension of its binary
counterpart (Freund & Schapire, 1996). AdaBoost.M2 and
AdaBoost.MR make use of aK-fold augmented dataset
to estimate output label probabilities or rankings for a
given input (Freund & Schapire, 1996; Schapire & Singer,
1999). More recent methods such as SAMME, AOSO-
LogitBoost, and GD-MCBoost are based on linear com-
binations of a �xed set of codewords, outputtingK-
dimensional score vectors (Zhu et al., 2009; Sun et al.,
2011; Saberian & Vasconcelos, 2011).

In the noteworthy paper “A Theory of Multiclass Boosting”
(Mukherjee & Schapire, 2010), many of the existing boost-
ing methods were shown to be inadequate at training; either

because they require their weak learners to be too strong,
or because their loss functions are unable to deal with
some training data con�gurations. (Mukherjee & Schapire,
2010) outline the appropriateWeak Learning Condition
that a boosting algorithm must require of its weak learn-
ers in order to guarantee training convergence. However,
no method is prescribed with which to �nd an adequate set
of weak learners.

The goal of our work is to propose a multi-class boosting
framework with a simple family of binary weak learners
that guarantee training convergence and are easily inter-
pretable. Using REBEL (Appel et al., 2016) as the multi-
class boosting method, our framework is meant to be as
straightforward as possible so that it is accessible and prac-
tical to more users; outlining it in Sec.3 below.

3. Our Framework

In this section, we de�ne our notation, introduce our boost-
ing framework, and describe our training procedure.

Notation

scalars (regular), vectors (bold):x; x � [x1 ; x2 ; :::]
constant vectors: 0 � [0;0; :::]; 1 � [1;1; :::]
indicator vector: ��� k (0 with a1 in thek th entry)
logical indicator function: 1(LOGICAL EXPRESSION) 2 f 0;1g
inner product: hx ; v i
element-wise multiplication: x � v
element-wise function: F[x ] � [F(x1); F(x2); :::]

In the multi-class classi�cation setting, a datapoint is repre-
sented as a feature vectorx and is associated with a class
labely. Each point is comprised ofd features and belongs
to one ofK classes:x 2 X � Rd; y 2 Y � f 1;2; :::;K g

A good classi�er reduces the training error while gener-
alizing well to potentially-unseen data. We use REBEL
(Appel et al., 2016) due to its support for binary weak learn-
ers, its mathematical simplicity (i.e. closed-form solu-
tion to loss minimization), and its strong empirical perfor-
mance. REBEL returns a vector-valued outputH , the sum
of T f weak learnerf , accumulation vectorag pairs, where

f t : X ! f� 1g and at 2 R
K

:

H(x) �
TX

t =1

f t(x) at

The hypothesized class is simply the index of the maximal
entry inH :

F(x) � arg max
y2 Y

fhH(x); ���y ig

The average misclassi�cation error" can be expressed as:

" �
1
N

NX

n =1

1(F(xn ) 6= yn ) (1)
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REBEL uses an exponential loss function to upper-bound
the average training misclassi�cation error:

" � L �
1

2N

NX

n =1

hexp [yn � H(xn )]; 1i (2)

where: yn � 1� 2���yn (i.e. all +1 s with a� 1 in theyth
n index)

Being a greedy, additive model, all previously-trained pa-
rameters are �xed and each iteration amounts to jointly op-
timizing a new weak learnerf and accumulation vectora.
To this end, the loss at iterationI+1 can be expressed as:

LI+1 =
1
N

NX

n =1

hwn ; exp [f (xn ) yn � a]i (3)

where: wn �
1
2

exp [yn � HI (xn )]

Given a weak learnerf , we de�ne true and false (i.e. correct
and incorrect) multi-class weight sums (sT

f andsF
f ) as:

sT
f �

1
N

NX

n =1

1[f (xn)yn < 0]� wn ; sF
f �

1
N

NX

n =1

1[f (xn)yn > 0]� wn

thus: sT
f + sF

f =
1
N

NX

n =1

wn ; sT
f � sF

f =
1
N

NX

n =1

f (xn) wn � yn

Using these weight sums, the loss can be simpli�ed to:

LI+1 � L f � h sT
f ; exp [� a]i + hsF

f ; exp [a]i (4)

In this form, it is easily shown that with the optimal accu-
mulation vectora� , the loss has an explicit expression:

a� =
1
2

�
ln [sT

f ] � ln [sF
f ]

�
) L

�

f = 2 h
p

sT
f � sF

f ; 1i (5)

At each iteration, growing decision trees requires an ex-
haustive search through a pool of decision stumps (which
is tractable but time-consuming), storing the binary learner
that best reduces the multi-class loss in Eq.5. In some sit-
uations, axis-aligned trees are simply unable to reduce the
loss any further, thereby stalling the training procedure.

Our proposed framework circumvents such situations. At
each iteration, instead of exhaustively searching for an ad-
equate learner, we �rst determine an appropriate “binariza-
tion” of the multi-class data (i.e. a separation of theK-class
data into two distinct groups) and then �nd a weak learner
with a guaranteed reduction in loss, foregoing the need for
an exhaustive search.

4. Binarizing Multi-Class Data

At each iteration, the �rst step in determining an adequate
weak learner isbinarizingthe data, i.e. assigning a tempo-
rary binary label to each data point by placing it into one of
two groups. The following manipulations result in a proce-
dure for binarizing datapoints given their boosting weights.

Eq.5 can be upper-bounded as follows:

L
�

f = 2 h
p

sT
f � sF

f ; 1i � h sT
f + sF

f ; 1i �
1
2

U
z }| {

D[sT
f � sF

f ]2

[sT
f + sF

f ]
; 1

E

(6)

since:
p

x(1� x) �
1
2

�
� 1

2
� x

�2
8x; using:x =

sT

sT+sF

By expandingsT
f � sF

f , U is expressed as a squared norm:

U =

*
h

1
N

NP

n =1
f (xn ) wn � yn

i2

h
1
N

NP

n =1
wn

i ; 1

+

=




NX

n =1

f (xn ) un





2

(7)

where: un �
1

p
N

wn � ynr
NP

n =1
wn

Eq. 7 can be written as a product of matrices by stacking
all of theun as column vectors of aK � N matrix U and
de�ning f as a row vector with elementsf (xn ):

U = f [U
>

U ] f
>

Note that the trace ofU
>

U can be lower-bounded:

tr( U
>

U ) =
NX

n =1

kun k2 =

*
NP

n =1
[wn ]2

N
h NP

n =1
wn

i ; 1

+

�
1

N 2

NX

n =1

hwn ; 1i

since by Jensen's inequality:
NX

n =1

x2
n �

1
N

� NX

n =1

xn

�2

Furthermore,U
>

U hasN (not-necessarily unique) non-
negative eigenvalues, each associated with an independent
eigenvector. Let̂vn be the eigenvector corresponding to the
nth largest eigenvalue� n . Hence,f can be decomposed as:

f = hf ;v̂1 i v̂1 +
NX

n =2

hf ;v̂n i v̂n (8)

) U = � 1hf ;v̂1 i2 +
NX

n =2

� n hf ;v̂n i2 � � 1hf ;v̂1 i2
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Since the trace of a matrix is equal to the sum of its eigen-
values andU

>

U has at mostK non-zero eigenvalues (� 1

being the largest), hence:

� 1 �
1
K

tr( U
>

U ) �
L0

KN
(9)

since:
1
N

NX

n =1

hwn ; 1i = L0

Based on this formulation, binarization is achieved by set-
ting thebinarized classbn of each samplen as the sign of
its corresponding element in̂v1: bn � sign(ĥv1; ���n i )

Accordingly, if b is the vector with elementsbn , then:

hb;v̂1 i2 = hsign [v̂1];v̂1 i2 = hĵv1j; 1i2 � 1 (10)

(please refer to supplement for proof)

Finally, by combining Eq.6, Eq.9, and Eq.10, with perfect
binarized classi�cation (i.e. when the binary weak learner
perfectly classi�es the binarized data), the loss ratio at any
iteration is bounded by:

Lf �

L0
� 1 �

1
2KN

In general, there is no guarantee that any weak learner can
achieve perfect binarized classi�cation. In the following
section, we show that with the ability toisolateany single
point in space (i.e. to classify an inner point as+1 and all
outer points as� 1), the loss decreases exponentially.

5. Isolating Points

Assume that we have a weak learnerf i that can isolate a
single pointx i in the input spaceX. Accordingly, denote
f i = 2 ��� i � 1 as a vector of� 1s with a+1 in the i th entry,
corresponding to classi�cation using the isolating learner
f i(xn ). If N � 4, then for any unit vector̂v 2 RN :

max
i

fhf i ;v̂ i2g �
4
N

(11)

(please refer to supplement for proof)

Combining Eq.6, Eq.9, and Eq.11, the loss ratio at each
iteration is upper-bounded as follows:

min i fL f i g
L0

� 1 �
2

KN 2

Before the �rst iteration, the initial lossL 0 = K=2. Each
iteration decreases the loss exponentially. Since the train-
ing error is discrete and is upper bounded by the loss (as

in Eq. 2), our framework attains minimal training error on
any1 training set after a �nite number of iterations:

de�ne: T0 �

&
ln(2=KN )
ln

�
1� 2

KN 2

�

'

�
�
KN 2

2
ln

� KN
2

� �

) T � T0 )
K
2

�
1�

2
KN 2

�T
<

1
N

) " = 0

Although this bound is too weak to be of practical use, it
is a bound nonetheless (and can likely be improved). In
the following section, we specify a suitable family of weak
learners with the ability to isolate single points.

5.1. One/Two-Point Localized Similarities

Classical decision stumps compare a single feature to a
threshold, outputting+1 or � 1. Instead, our proposed fam-
ily of weak learners (calledlocalized similarities) compare
points in the input space using a similarity measure. Due
to its simplicity and effectiveness, we use negative squared
Euclidean distance�k x i � x j k2 as a measure of similarity
between pointsx i andx j . A localized similarity has two
modes of operation:

1. In one-point mode, given an anchorx i and a threshold
� , the input space is classi�ed as positive if it is more
similar to x i than � , and negative otherwise; ranging
between+1 and� 1:

f i(x) �
� � k x i � xk2

� + kx i � xk2

2. In two-point mode, given supportsx i andx j , the input
space is classi�ed as positive if it is moresimilar to
x i than tox j (and vice-versa), with maximal absolute
activations aroundx i andx j ; falling off radially away
from the midpointm:

f ij (x) �
hd; x � mi

4kdk4 + kx � mk4

where: d �
1
2

[x i � x j ] and: m �
1
2

[x i + x j ]

One-point mode enables the isolation of any single data-
point, guaranteeing a baseline reduction in loss. However,
it essentially leads to pure memorization of the training
data; mimicking a nearest-neighbor classi�er. Two-point
mode adds the capability to generalize better by provid-
ing margin-style functionality. The combination of these

1 There may be situations in which multiple samples belong-
ing to different classes are coincident in the input space. These
cases can be dealt with (before or during training) either byas-
signing all such points as a special “mixed” class (to be dealt with
at a later stage), or by setting the class labels of all coincident
points to the single label that minimizes the error.
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two modes enables the �exibility to tackle a wide range of
classi�cation problems. Furthermore, in either mode, the
functionality of a localized similarity is easily interpretable:
“which of these �xed training points is a given query point
more similar to?”

5.2. Finding Adequate Localized Similarities

Given a dataset withN samples, there are aboutN 2 pos-
sible localized similarities. The following procedure ef�-
ciently selects an adequate localized similarity:

0. Using Eq.5, calculate the base lossL 1 for thehomoge-
neousstumpf1 (i.e. the one-point stump with anyx i

and � � 1 , classifying all points as+1 ).
1. Compute the eigenvector̂v1 (as in Eq.8); label the

points based on their binarized class labelsbn .
2. Find the optimal isolating localized similarityf i (i.e.

with x i and appropriate� , classifying pointi as+1 and
all other points as� 1).

3. Using Eq.5, calculate the corresponding lossL i . Of the
two stumpsf1 andf i , store the one with smaller loss as
best-so-far.

4. Find pointx j most similar2 to x i among points of the
oppositebinarized class:

x j = arg min
bj = � bi

fk x i � x j k2g

5. Calculate the loss achieved using the two-point local-
ized similarityf ij . If it outperforms the previous best,
store the newer learner and update the best-so-far loss.

6. Find all points that aresimilar enoughto x j and remove
them from consideration for the remainder of the cur-
rent iteration. In our implementation, we remove allxn

for which:
f ij (xn ) � f ij (x j )=2

If all points have been removed, return the best-so-far
localized similarity; otherwise, loop back to step 4.

Upon completion of this procedure, the best-so-far local-
ized similarity is guaranteed to lead to an adequate reduc-
tion in loss, based on the derivation in Sec.4 above.

6. Generalization Experiments

Our boosting method provably reduces the loss well after
the training error is minimized. In this section, we demon-
strate that the continual reduction in loss serves only to im-
prove the decision boundaries and not to over�t the data.

We generated 2-dimensional synthetic datasets in order to
better visualize and get an intuition for what the classi�ers

2 “most similar” need not be exact; approximate nearest-
neighbors also works with negligible differences.

Figure 2. A 500-point 2-dimensional synthetic dataset with a
(2=3; 1=3) split of train data (left plot) to test data (right plot).
Background shading corresponds to the hypothesized class using
our framework.
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Figure 3. A plot of training loss, training error, and test error as
a classi�er is trained for 1000 iterations. Note that the test error
does not increase even after the training error drops to zero. The
lower inset is a zoomed-in plot of the train and test error, the upper
inset is a plot of training loss using a log-scaled y-axis; both inset
plots are congruous with the original x-axis.

are doing. The results shown in this chapter are based on
a dataset composed of 500 points belonging to one of three
classes in a spiral formation, with a(2=3; 1=3) train/test
split. Fig.2 shows the hypothesized class using a classi�er
trained for 1000 iterations.

Our classi�er achieves perfect training (left) and test
classi�cation (right), producing a visually simplewell-
generalizingcontour around the points. Training curves
are given in Fig.3, tracking the loss and classi�cation er-
rors per training iteration. Note that the test error does not
increase even after the training error drops to zero.

The following experiments explore the functionality of our
framework (i.e. REBEL using localized similarities) in two
scenarios that commonly arise in practice: (1) varying spar-
sity of training data, and, (2) varying amounts of mislabeled
training data.
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(a4 ) Train Data (b4 ) Test Data (c4 ) Training on4=5 of the data (267 points)
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(a3 ) Train Data (b3 ) Test Data (c3 ) Training on3=5 of the data (200 points)
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(a2 ) Train Data (b2 ) Test Data (c2 ) Training on2=5 of the data (133 points)
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(a1 ) Train Data (b1 ) Test Data (c1 ) Training on1=5 of the data (67 points)
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Figure 4. Classi�cation boundaries (a,b), and training curves (c)
when a classi�er is trained on varying amounts of data. Starsare
correctly-classi�ed, circles are misclassi�ed. In all cases, the test
error is fairly stable once reaching its minimum.

6.1. Sparse Training Data

In this section of experiments, classi�ers were trained using
varying amounts of data, from4=5 to 1=5 of the total train-
ing set. Fig.4 shows the classi�cation boundaries learned
by the classi�er (ai ,bi ), and the training curves (ci ). In all
cases, the boundaries seem to aptly �t (and notover�t) the
training data (i.e. being satis�ed with isolated patcheswith-
outoverzealously trying to connect points of the same class
together). This is more rigorously observed from the train-
ing curves; the test error does not increase after reaching its
minimum (for hundreds of iterations).

6.2. Mislabeled Training Data

In this section of experiments, classi�ers were trained with
varying fractions of mislabeled data; from1% to 30% of
the training set. Fig.5 shows the classi�cation boundaries
(ai ,bi ) and the training curves (ci ). All classi�ers seem to
degenerate gracefully, isolating rogue points and otherwise
maintaining smooth boundaries. Even the classi�er trained
on 30% mislabeled data (which we would consider to be
unreasonably noisy) is able to maintain smooth boundaries.

(a1 ) Train Data (b1 ) Test Data (c1 ) � 1% mislabeled data (4 points)
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(a2 ) Train Data (b2 ) Test Data (c2 ) � 3% mislabeled data (10 points)

100 101 102 103

Iteration [max = 1000]

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
E

rr
or

, T
ra

in
in

g 
Lo

ss

T
es

t E
rr

or
 [%

]
T

es
t E

rr
or

 [%
]

T
es

t E
rr

or
 [%

]
T

es
t E

rr
or

 [%
]

log
10

 Loss [-15.0]

Train Error [0.0%]
Test Error  [3.6%]

10-20

10-10

T
ra

in
in

g 
Lo

ss
 

40 102

0

5

10

15

T
es

t E
rr

or
 [%

]

(a3 ) Train Data (b3 ) Test Data (c3 ) � 10% mislabeled data (32 points)
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(a4 ) Train Data (b4 ) Test Data (c4 ) � 30% mislabeled data (97 points)
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Figure 5. Classi�cation boundaries (a,b), and training curves (c)
when a classi�er is trained on varying fractions of mislabeled data.
In all cases, the test error is fairly stable once reaching its mini-
mum. Even with30% mislabeled data, the classi�cation bound-
aries are reasonable given the training labels.

In all cases, the training curves still show that the test error
is fairly stable once reaching its minimum value. Moreover,
test errors approximately equal the fraction of mislabeled
data, further validating the generalization of our method.

6.3. Real Data

Although the above observations are promising, they could
result from the fact that the synthetic datasets are 2-
dimensional. In order to rule out this possibility, we
performed similar experiments on several UCI datasets
(Bache & Lichman, 2013) of varying input dimensionali-
ties (from 9 to 617). From the training curves in Fig.6,
we observe that once the test errors saturate, they no longer
increase, even after hundreds of iterations.

In Fig. 7, we plot the training losses on a log-scaled y-axis.
The linear trend signi�es an exponential decrease in loss
per iteration. Our proven bound predicts a much slower (ex-
ponential) rate than the actual trend observed during train-
ing. Note that within the initial� 10%of the iterations, the
loss drops at an even faster rate, after which it settles down
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OPTDIGIT (64-dimensional) ISOLET (617-dimensional)
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Figure 6. Training curves for classi�ers trained on UCI datasets
with a range of dimensionalities. In all cases, the test error is
stable once it reaches its minimum.

to a seemingly-constant rate of exponential decay. We have
not yet determined the characteristics (i.e. the theoretically
justi�ed rates) of these observed trends, and relegate this
endeavor to future work.

7. Comparison with Other Methods

In Sec.5 we proved that our framework adheres to the-
oretical guarantees, and in Sec.6 above, we showed
that it has promising empirical properties. In this sec-
tion, we compete against several state-of-the-art boost-
ing baselines. Speci�cally, we compared 1-vs-All Ad-
aBoost and AdaBoost.MH (Schapire & Singer, 1999),
AdaBoost.ECC (Dietterich & Bakiri, 1995), Struct-Boost
(Shen et al., 2014), CW-Boost (Shen & Hao, 2011), AOSO-
LogitBoost (Sun et al., 2011), REBEL (Appel et al., 2016)
using shallow decision trees, REBEL using only 1-point
(isolating) similarities, and our full framework, REBEL us-
ing 2-point localized similarities.

Based on the same experimental setup as in (Shen et al.,
2014; Appel et al., 2016), competing methods are trained
to a maximum of 200 decision stumps. For each dataset,
�ve random splits are generated, with50%of the samples
for training,25%for validation (i.e. for setting hyperparam-
eters where needed), and the remaining25%for testing.

REBEL using localized similarities is the most accurate
method on �ve of the six datasets tested. In the Vowel
dataset, it achieves almost half of the error as the next best
method. Note that although our framework uses REBEL as
its boosting method, the localized similarities add an extra
edge, beating REBEL with decision trees in all runs.

Further, when limited to only using 1-point (i.e. isolating)
localized similarities, the performance is extremely poor,
validating the need for 2-point localized similarities as pre-
scribed in Sec.5.2. Overall, these results demonstrate the
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Figure 7. Training losses for classi�ers trained on UCI datasets.
The linear trend (visualized using a log-scaled y-axis) signi�es
an exponential decrease in loss, albeit at a much faster ratethan
established by our proven bound.
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Figure 8. Test errors of various state-of-the-art and baseline
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REBEL using localized similarities (shown in yellow) is thebest-
performing method on all but one of the datasets shown. When
constrained to use only 1-point (isolating) similarities (shown in
red), the resulting classi�er is completely inadequate.

ability of our framework to produce easily interpretable
classi�ers that are also empirically pro�cient.

7.1. Comparison with Neural Networks and SVMs

Complex neural networks are able to achieve remarkable
performance on large datasets, but they require an amount
of training data proportional to their complexity. In the
regime of small to medium amounts of data (within which
UCI and MNIST datasets belong, i.e.10 < N < 106 train-
ing samples), such networks cannot be too complex. Ac-
cordingly, in Fig.9, we compare our method against fully-
connected neural networks.
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Figure 9. Comparison of our method versus Neural Networks and
Support Vector Machines on ten datasets of varying sizes anddif-
�culties. Our method is the most accurate on almost all datasets.

Four neural networks were implemented, each having one
of the following architectures:[d� 4d� K ], [d� 4K � K ],
[d� 2d� d� K ], [d� 4K � 2K � K ], whered is the number
of input dimensions andK is the number of output classes.
Only the one with the best testerror is shown in the plot. A
multi-class SVM (Chang & Lin, 2011) was validated using
a5 � 6 parameter sweep forC and . Our method was run
until the training loss fell below1=N. Overall, REBEL us-
ing localized similarities achieves the best results on eight
of the ten datasets, decisively marking it as the method of
choice for this range of data.

8. Discussion

In Sec.6, we observed that our classi�ers tend to smoothen
the decision boundaries in the iterations beyond zero train-
ing error. In Fig.10, we see that this is not the case with
the typically-used axis-aligned decision stumps. Why does
this happen with our framework?

Figure 10. The contrasted difference between overtraining using
(a) classical decision stumps and (b) localized similarities. (a)
leads to massive over�tting of the training data, whereas (b) leads
to smoothening of the decision boundaries.

Firstly, we note that the largest-margin boundary between
two points is the hyperplane that bisects them. Every two-
point localized similarity acts as such a bisector. There-
fore, it is not surprising that with only a pool of localized
similarities, a classi�er should have what it needs to place
good boundaries. Further, not all pairs need to be separated
(since many neighboring points belong to the same class);
hence, only a small subset of the� N 2 possible learners
will ever need to be selected.

Secondly, we note that if some point (either an outlier or an
unfortunately-placed point) continues to increase in weight
until it can no-longer be ignored, it can simply be isolated
and individually dealt with using a one-point localized sim-
ilarity, there is no need to combine it with other “innocent-
bystander” points. This phenomenon is observed in the mis-
labeled training experiments in Sec.6.2.

Together, the two types of localized similarities comple-
ment each other. With the guarantee that every step reduces
the loss, each iteration focuses on either further smoothen-
ing out an existing boundary, or reducing the weight of a
single un�t point.

9. Conclusions

We have presented a novel framework for multi-class boost-
ing that makes use of a simple family of weak learners
called localized similarities. Each of these learners has a
clearly understandable functionality; a test of similarity be-
tween a query point and some pre-de�ned samples.

We have proven that the framework adheres to theoretical
guarantees: the training loss is minimized at an exponen-
tial rate, and since the loss upper-bounds the training error
(which can only assume discrete values), our framework is
therefore able to achieve maximal accuracy on any dataset.

We further explored some of the empirical properties of
our framework, noting that the combination of localized
similarities and guaranteed loss reduction tend to lead to a
non-over�tting regime, in which the classi�er focuses on
smoothing-out its decision boundaries. Finally, we com-
pare our method against several state-of-the-art methods,
outperforming all of the methods in most of the datasets.

Altogether, we believe that we have achieved our goal of
presenting a simple multi-class boosting framework with
theoretical guarantees and empirical pro�ciency.
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