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Abstract " "
There is a need for simple yet accurate white-box Pl o
learning systems that train quickly and with lit- Ll N G
tle data. To this end, we showcase REBEL, a WA, i) LA e *%‘%E
multi-class boosting method, and present a novel f{u {{7? I f{ﬂ {{g}é $}
family of weak learners called localized similar- % LR u.,:i A V| L 5 y,:*f* §
ities. Our framework provably minimizes the o W‘*wﬂ * 2w 5w i,;:"'*wn* %
training error of any dataset at an exponential B T o By S w0
rate. We carry out experiments on a variety of Hraax * Hraax
synthetic and real datasets, demonstrating a con-
sistent tendency to avoid over tting. We eval- (a) Old: Decision Stumps  (b) New: Localized Similarities

uate our method on MNIST and standard UCI
datasets against other state-of-the-art methods,
showing the empirical pro ciency of our method.

Figure 1. (a) The typical decision stumps commonly used in
boosting lead to classi cation boundaries that are axigredd
and not representative of the data. Although these methaxs c
achieve perfect training accuracy, it is apparent that tregwily
over t. (b) Our method uselcalized similaritiesa novel family

of simple weak learners (see Sécl). Paired with a procedure
The past couple of years have seen vast improvements frh‘at provably guarantees exponentia_ll _Ioss minimiz.atim‘dﬁs'

. . . si ers focus on smooth, well-generalizing boundaries.
the performance of machine learning algorithms. Deep

Nets of varying architectures reach almdistnot better
than) human performance in many domaingCunetal.  ists, etc.) may not have the expertise or artistry requived t

2019. A key strength of these systems is their ability to hypothesize a set of appropriate models.
transform the data using complex feature representatio

to facilitate classi cation. However, there are severahco
siderable drawbacks to employing such networks.

1. Motivation

n& second drawback is that the complex representations
achieved by these networks are dif cult to interpret and to
analyze. For many riskier applications (e.g. self-driving
A rst drawback is that validating through many architec- cars, robotic surgeries, military drones, etc.), a machine
tures, each of which may have millions of parameters, reshould only run autonomously if it is able éxplainits ev-
quires a lot of data and time. In many elds (e.g. pathologyery decision and action. Further, when used towards the sci-
of not-so-common diseases, expert curation of esoteric subnti ¢ analysis of phenomena (e.g. understanding animal
jects, etc.), gathering large amounts of data is expensiveehavior, weather patterns, nancial market trends, etc.)
or even impossibleYu et al, 2019. Autonomous robots the goal is to extract a causal interpretation of the system i
that need to learn on the y may not be able to afford thequestion; hence, to be useful, a machine should be able to
large amount of processing power or time required to propprovide a clear explanation of its internal logic.

erly train more complex networks simply due to their hard-

ware constraints. Moreover, most potential users (e.g= no
machine-learning scientists, small business owners,yrobb

or these reasons, it is desirable to have a simple white-box
machine learning system that is able to train quickly and
with little data. With these constraints in mind, we show-

!Caltech, Pasadena, USA. Correspondence to: Rorcase a multi-class boosting algorithm callR&BEL and

Appel < appel@vision.caltech.edy Pietro Perona <per- g novel family of weak learners callesimilarity stumps
ona@vision.caltech.edu leading to much better generalization than decision stumps
Proceedings of th&4™ International Conference on Machine &S shown n Figl. Our proposed_framework IS S|_mple, ef -
Learning Sydney, Australia, PMLR 70, 2017. Copyright 2017 by Cient, and is able to perfectly train amydataset (i.e. fully
the author(s). minimize the training error in a nite number of iterations)
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The main contributions of our work are as follows: because they require their weak learners to be too strong,
. . . : or because their loss functions are unable to deal with
1. a simple multi-class boosting framework using local- . . . :
. T some training data con gurationsM{kherjee & Schapire
ized similarities as weak learners (see Sc.

5 f that th o is fully minimized withi 2010 outline the appropriat&Veak Learning Condition
- aproo that the ”‘?"”'”9 erroris fully minimized within- 5 5 boosting algorithm must require of its weak learn-
a nite number of iterations (see Ses).

_ ers in order to guarantee training convergence. However,

3. a procedure for selecting an adequate learner at eagy method is prescribed with which to nd an adequate set
iteration (see Se@&.2) of weak learners.

4. empirical demonstrations of state-of-the-art resutts o

a range of datasets (see Se. The goal of our work is to propose a multi-class boosting

framework with a simple family of binary weak learners
that guarantee training convergence and are easily inter-
2. Background pretable. Using REBELAppel et al, 2016 as the multi-

d class boosting method, our framework is meant to be as
straightforward as possible so that it is accessible anct pra
tical to more users; outlining it in Se8.below.

Boosting is a fairly mature method, originally formulate
for binary classi cation (e.g. AdaBoost and similar vari-
ants) Schapire 1990 Freund 1995 Freund & Schapire

1996. Multi-class classi cation is more complex than its
binary counterpart, however, many advances have beeB. Our Framework
made in both performance and theory in the context of ) o
boosting. Since weak learners come in two avors, pi-IN this section, we de ne our notation, introduce our boost-

nary and multi-class, two corresponding families of boosti"d framework, and describe our training procedure.

ing methods have been explored. Notation

The clever combination of multiple binary weak learn-| scalars (regular), vectors (bold)x; X [x1;X2;::]

ers can result in a multi-class prediction. AdaBoost.MH fnodr;ig’t‘g‘: xggg?: 0 (O[O_;tﬁ? 1] ﬂ} km[l;tl;):::]
. . . : k (0 with alinthek™ entry

reduces thek-class problem into a Slngle, b'”arY prob- logical indicator function: 1(LocicaL exeressioy 2 f 0;1g

lem with aK-fold augmented dataseB¢hapire & Singer inner product: hx: vi

1999. AdaBoost.MO and similar methods reduce the| element-wise multiplication: x v

K-class problem intaC one-versus-all binary problems | element-wise function: FIx]  [F(x1); F(x2); ]

using Error-Correcting Output Codes to select the nal ) o ) o
hypothesized class\{wein et al, 200% Sun et al, 2005 In the multi-class classi cation s_ettlng, a_datapo_mt ipne

Li, 200§. More recently, CD-MCBoost and CW-Boost sented as a feat_urg vecborand is associated with a class
return aK-dimensional vector of class scores, focusing!@P€ly- Each pointis comprlsedd affeatures and belongs
each iteration on a (binary) problem of improving the {0 One ofK classesxx 2 X RS y2Y f 1,2;:5Kg
margin of one class at a timeSgberian & Vasconcelps A good classi er reduces the training error while gener-
20171 Shen & Hag2011). REBEL also returns a vector of alizing well to potentially-unseen data. We use REBEL
class scores, increasing the margin between dynamicallyappel et al, 2016 due to its support for binary weak learn-
selected binary groupings of tie classes at each iteration ers, its mathematical simplicity (i.e. closed-form solu-
(Appel et al, 2016. tion to loss minimization), and its strong empirical peffor
[pance. REBEL returns a vector-valued outhytthe sum

When multi-class weak learners are acceptable (and ava g -
learnef, accumulation vectaag pairs, where

able), a reduction to binary problems is unnecessary. Ad?’ T fweak i
aBoost.M1 is a straightforward extension of its binaryft : X !f 1g anda; 2 R:

counterpartfreund & Schapirel996. AdaBoost.M2 and XT
AdaBoost.MR make use of K-fold augmented dataset H(x) f(x) a
to estimate output label probabilities or rankings for a t=1

given input Ereund & Schapirel996 Schapire & Singer

1999. More recent methods such as SAMME, AOSO-The hypothesized class is simply the index of the maximal
LogitBoost, and GD-MCBoost are based on linear come&ntry inH:

b!natior}s of a xed set of codewords, outputting- F(x) argmaxthH(x); ,ig

dimensional score vector<Zlfu et al, 2009 Sun et al, y2yY

2011, Saberian & Vasconcelp011).
! 0201} The average misclassi cation errdican be expressed as:

In the noteworthy paper “A Theory of Multiclass Boosting” N
(Mukherjee & Schapire2010, many of the existing boost- " e TCORITD (1)
ing methods were shown to be inadequate at training; either N et e
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REBEL uses an exponential loss function to upper-boundt. Binarizing Multi-Class Data

the average training misclassi cation error: ) i i .
At each iteration, the rst step in determining an adequate

1 X weak learner idinarizingthe data, i.e. assigning a tempo-
"L —  hexp[yn H(xn)];1i (2) rarybinary label to each data point by placing it into one of
2N n=1 two groups. The following manipulations result in a proce-

dure for binarizing datapoints given their boosting wegght
. . . . th -
where:y, 1 2y (ie al+lswitha 1linthey,"index) Eq.5 can be upper-bounded as follows:
zZH—
Being a greedy, additive model, all previously-trained pa- P _ . 1 D[srT P
rameters are xed and each iteration amounts to jointly op- Lr = 2h § §:;1i h §+¢;1i > W;
timizing a new weak learndr and accumulation vectar.

6
To this end, the loss at iteratidrl can be expressed as: pP— 1 1 2 T( )
since: x(1 x) 5 5 X 8x; using:ix=_—
LN 2 2 S+
Lia = N et W explf(xn) Yo ali 3) By expandingy  §, U is expressed as a squared norm:
h i
M 2
* 9 +
where: w, 1 explyn Hi(xn)] Wn_lf(xn)Wn Yn W 2
2 U= + A i ;1 = f(Xn) un
1 =
Given a weak learndr, we de ne true and false (i.e. correct N _ Wn n=t
. . . n=1
and incorrect) multi-class weight sung @nds) as: (7
where:u, p— Wn_Yn
.o1X 1 W
T o Heaw<o woi g T Titaye>0] w 0
n=1 n=1
Eq. 7 can be written as a product of matrices by stacking
thus: S+ = X T X ¢ all of theu, as column vectors of K N matrixU and
us: §+g = N lW”' § 5= N . (Xn) Wn Yn de ning f as a row vector with elementéx,):
n= n=
U= fuulf

Using these weight sums, the loss can be simpli ed to:

La Lt hg;exp[ aji + hg;expla]i (4)  Note that the trace o) U can be lower-bounded:

In this form, it is easily shown that with the optimal accu- » P wa2 t R
mulation vectoia, the loss has an explicit expression: tr( U U)= ku,k? = y =|; _ 1 Niz hw, : 1i
1 p n=1 N Wh n=1

a=>h[g] W[§] ) L =2 § §1 () n=1
_ » A 1 X2
At each iteration, growing decision trees requires an ex- Since by Jensen's inequality:  x; N Xn
haustive search through a pool of decision stumps (which n=1 n=1

is tractable but time-consuming), storing the binary learn s ) .
that best reduces the multi-class loss in &qln some sit-  Furthermore,U U hasN (not-necessarily unique) non-
uations, axis-aligned trees are simply unable to reduce thgegative eigenvalues, each associated with an independent

loss any further, thereby stalling the training procedure. ~€igenvector. Le¢, be the eigenvector corresponding to the
] o n'" largest eigenvalue, . Hencef can be decomposed as:
Our proposed framework circumvents such situations. At

each iteration, instead of exhaustively searching for an ad _ X _

equate learner, we rst determine an appropriate “binariza f=H0nit+  H%hi%g (8)
tion” of the multi-class data (i.e. a separation of kxelass n=2

data into two distinct groups) and then nd a weak learner X

with a guaranteed reduction in loss, foregoing the need for ) U= qhepi2+ JHE0 2 02

an exhaustive search. n=2
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Since the trace of a matrix is equal to the sum of its eigenin Eq. 2), our framework attains minimal training error on

values andgg has at moskK non-zero eigenvalues {
being the largest), hence:

1 > Lo
—tr(U U — 9
1 K r(U v) KN ()]
. 1 X .
since: N hwn;1i = Lg
n=1

Based on this formulation, binarization is achieved by se
ting thebinarized clasdy, of each sampla as the sign of
its corresponding elementin: b, sign(hty; ni)

Accordingly, if b is the vector with elements, , then:

ho ;0,2 1 (10)

bsign [01];%4i2 = hijtyj; 12
(please refer to supplement for proof)

Finally, by combining Eg6, Eq.9, and Eq10, with perfect
binarized classi cation (i.e. when the binary weak learne
perfectly classi es the binarized data), the loss ratiorat a
iteration is bounded by:

In general, there is no guarantee that any weak learner ¢
achieve perfect binarized classi cation. In the following
section, we show that with the ability teolateany single
point in space (i.e. to classify an inner pointigk and all
outer points as 1), the loss decreases exponentially.

5. Isolating Points

Assume that we have a weak leariethat can isolate a
single pointx; in the input space&. Accordingly, denote
f, =2 ; 1 asavectorof 1s with a+1 in thei™ entry,
corresponding to classi cation using the isolating learne
fi(xn). If N 4, then for any unit vecto® 2 RN :

maxfhf; :¢i’g (11)
I

(please refer to supplement for proof)

Combining Eq6, Eq.9, and Eq.11, the loss ratio at each
iteration is upper-bounded as follows:

2
KN 2

min;fL+, g
Lo

1

Before the rst iteration, the initial losd. g = K=2. Each
iteration decreases the loss exponentially. Since the-tra

any* training set after a nite number of iterations:

& .
2
dene: Ty In(2=K|2\l) KN In KN
Nl 5= 2 2
K 2 T 1
T T -1 — < = "=0
) 0 ) 2 KN 2 N )

Although this bound is too weak to be of practical use, it
tis a bound nonetheless (and can likely be improved). In
the following section, we specify a suitable family of weak
learners with the ability to isolate single points.

5.1. One/Two-Point Localized Similarities

Classical decision stumps compare a single feature to a
threshold, outputtingl or 1. Instead, our proposed fam-
ily of weak learners (calletbcalized similaritie¥ compare
points in the input space using a similarity measure. Due
to its simplicity and effectiveness, we use negative sqliare
"Euclidean distancek x; X k? as a measure of similarity
between point; andx;. A localized similarity has two
modes of operation:

1. In one-point mode, given an anchqrand a threshold
, the input space is classi ed as positive if it is more
similar to x; than , and negative otherwise; ranging

an betweentl and 1:

xk?
x k2

kXi

fi(x) T RY,

. In two-point mode, given supports andx; , the input
space is classi ed as positive if it is mosmilar to
Xi than tox; (and vice-versa), with maximal absolute
activations around; andx; ; falling off radially away
from the midpoinim:

hd;x mi
4kdk4 + kx mk#

fj (x)

where: d }[xi Xj] and:m %[Xi"‘)(j]

2
One-point mode enables the isolation of any single data-
point, guaranteeing a baseline reduction in loss. However,
it essentially leads to pure memorization of the training
data; mimicking a nearest-neighbor classi er. Two-point
mode adds the capability to generalize better by provid-
ing margin-style functionality. The combination of these

! There may be situations in which multiple samples belong-
ing to different classes are coincident in the input spadeesé
cases can be dealt with (before or during training) eithea®y

.signing all such points as a special “mixed” class (to betdeigth
lat a later stage), or by setting the class labels of all cdamnti

ing error is discrete and is upper bounded by the loss (apoints to the single label that minimizes the error.
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two modes enables the exibility to tackle a wide range of "oy x .,
classi cation problems. Furthermore, in either mode, the o e * o«

. . . . . . . . . * * =
functionality of a localized similarity is easily intergedble: *’*,w**** Y + 8 **; o *
@, . P . . - . ek ey * W K e

which of these xed training points is a given query point Y O W
H ” Y & ek t * o * ¥
more similar to? 1m0 * LI 2

5.2. Finding Adequate Localized Similarities

Given a dataset witth\ samples, there are aboNf pos-
sible localized similarities. The following procedure ef
ciently selects an adequate localized similarity:

. Figure 2. A 500-point 2-dimensional synthetic dataset with a
0. Using Eq>5, calculate the base loss for thehomoge- (2=3; 1=3) split of train data (left plot) to test data (right plot).

neousstumpf; (i.e. the one-point stump with an§  gackground shading corresponds to the hypothesized ciitsg u
and 1 , classifying all points as1). our framework.

1. Compute the eigenvectdy (as in Eq.8); label the
points based on their binarized class latigls

2. Find the optimal isolating localized similarity (i.e.
with x; and appropriate, classifying point as+1 and
all other points as 1).

3. Using Eq5, calculate the corresponding ldss Of the
two stumpd; andf;, store the one with smaller loss a
best-so-far.

4. Find pointx; most similaf to x; among points of the
oppositebinarized class:

[

o
0

Training Loss,

o
o

©

»

T
TestError [%]

log 10 Loss [-20.6]

Train Error [0.0%]
Test Error [0.0%]

o
N

Relative Error, Training Loss

xj =arg min fkxi x; k?g

j =

0 3
10° 10 10? 10°
. . . Iteration [max = 1000]

5. Calculate the loss achieved using the two-point local-

ized similarityf; . If it outperforms the previous best, Figure 3. A plot of training loss, training error, and test error as
store the newer learner and update the best-so-far 10S$, classi er is trained for 1000 iterations. Note that thet &sor

6. Find all points that arsimilar enougtio xj and remove does not increase even after the training error drops ta Zére
them from consideration for the remainder of the curlower insetis a zoomed-in plot of the train and test erra pper
rentiteration. In our implementation, we removexgjl ~ insetis a plot of training loss using a log-scaled y-axighboset
for which: plots are congruous with the original x-axis.

fi(xn) fj(xj)=2

If all points have been removed, return the best-so-far . S
) L . are doing. The results shown in this chapter are based on
localized similarity; otherwise, loop back to step 4.

a dataset composed of 500 points belonging to one of three
Upon completion of this procedure, the best-so-far localelasses in a spiral formation, with €=3; 1=3) train/test
ized similarity is guaranteed to lead to an adequate redusplit. Fig.2 shows the hypothesized class using a classi er
tion in loss, based on the derivation in Sé@bove. trained for 1000 iterations.

o ) Our classi er achieves perfect training (left) and test
6. Generalization Experiments classi cation (right), producing a visually simplevell-

our boost thod blv red the | Il aft lgeneralizingcontour around the points. Training curves
ur boosting method provably reduces the 1oss well atey, given in Fig3, tracking the loss and classi cation er-

the training error IS m|n|m|zed.. In Fh's section, we demo.n'rors per training iteration. Note that the test error dods no
strate that the_ c_ontmual red_ucuon in loss serves only to IMi crease even after the training error drops to zero.

prove the decision boundaries and not to over t the data.

The following experiments explore the functionality of our
Ramework (i.e. REBEL using localized similarities) in two
scenarios that commonly arise in practice: (1) varying-spar

2 “most similar” need not be exact; approximate nearestSity Of training data, and, (2) varying amounts of mislabele
neighbors also works with negligible differences. training data.

We generated 2-dimensional synthetic datasets in order
better visualize and get an intuition for what the class er
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(a1 ) Train Data () Test Data (g) Training on45 of the data (267 points) (a;) Train Data (1) Test Data (€) 1% mislabeled data (4 points)
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Figure 4. Classi cation boundaries (a,b), and training curves (c) Figure 5. Classi cation boundaries (a,b), and training curves (c)

when a classi er is trained on varying amounts of data. Saases when a classi er is trained on varying fractions of mislazttata.

correctly-classi ed, circles are misclassi ed. In all e&s the test  In all cases, the test error is fairly stable once reachisigniii-

error is fairly stable once reaching its minimum. mum. Even with30% mislabeled data, the classi cation bound-
aries are reasonable given the training labels.

6.1. Sparse Training Data

In all cases, the training curves still show that the tesirerr
is fairly stable once reaching its minimum value. Moreover,
test errors approximately equal the fraction of mislabeled
data, further validating the generalization of our method.

In this section of experiments, classi ers were traineahgsi
varying amounts of data, frod5 to 1=5 of the total train-
ing set. Fig.4 shows the classi cation boundaries learned
by the classi er (a,b;), and the training curves;(c In all
cases, the boundaries seem to aptly t (and ovadr t) the
training data (i.e. being satis ed with isolated patcheth- 6.3. Real Data

outoverzealously trying to connect points of the same clasglthough the above observations are promising, they could

together). This is more rigorously observed from the trainresult from the fact that the synthetic datasets are 2-
ing curves; the test error does not increase after reactsing idimensional. In order to rule out this possibility, we

minimum (for hundreds of iterations). performed similar experiments on several UCI datasets
(Bache & Lichman 2013 of varying input dimensionali-
6.2. Mislabeled Training Data ties (from 9 to 617). From the training curves in F&y.

we observe that once the test errors saturate, they no longer

In this section of experiments, classi ers were trainechwit . . .
increase, even after hundreds of iterations.

varying fractions of mislabeled data; froh®6 to 30% of
the training set. Fig5 shows the classi cation boundaries In Fig. 7, we plot the training losses on a log-scaled y-axis.
(a,b) and the training curvesi(c All classi ers seemto The linear trend signi es an exponential decrease in loss
degenerate gracefully, isolating rogue points and ottsswi per iteration. Our proven bound predicts a much slower (ex-
maintaining smooth boundaries. Even the classi er trainecponential) rate than the actual trend observed during-train
on 30% mislabeled data (which we would consider to being. Note that within the initial 10%of the iterations, the

unreasonably noisy) is able to maintain smooth boundariekoss drops at an even faster rate, after which it settles down



A Simple Multi-class Boosting Framework

6-dimensional)

GLASS (9-dimensional)

PENDIGIT (1

GLASS
(d=9:K =6 ;N =53)

PENDIGIT
(d=16 ;K =10 ;N =7494)

S
S

‘— Proven bound

[—Proven bound
-+ Loss
|—Exponential Fit|

I
I

£, |—Exponential Fit|

o
=
o
=

10° 10*

log, Loss [222.7]

Train Error [ 0.0%]
Test Error_[27.0%]

log,; Loss [10.2]
Train Error [0.0%]
Test Error_[1.8%]

°

Relative Error, Training Loss
S

Relative Error, Training Loss

so
5

° 10 10? 10°

Iteration [max = 2000]

ISOLET (617-dimensional) ..k

107
Iteration [max = 10000]

OPTDIGIT (64-dimensional)
T T

o
10° 10

Training Loss

Training Loss

T

w0 a0 w00

o

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Iteration Number

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iteration Number

o

B

°

OPTDIGIT
© (d=64 ;K =10 ;N =3823)

[—Proven bound

ISOLET
(d=617 ;K =26 ;N =6238)

[—Proven bound

log, , Loss [-34.7) log, , Loss [10.6]
Train Error [0.0%]
Test Error_[3.5%)

°

Relative Error, Training Loss
Relative Error, Training Loss

Train Error [0.09]
Test Error_[2.3%)
° 1

Iteration [max = 10000]

Lo
>

10°
Iteration [max = 10000]

S

10*
== Loss.
| Exponential Fit]

=+ Loss.
|—Exponential Fit|

N
Figure 6. Training curves for classi ers trained on UCI datasetsg..»
with a range of dimensionalities. In all cases, the testrago

stable once it reaches its minimum.

Training Lt
Training Loss

1
1o 0 1000 2000 30

5000 6000 7000 8000 9000 10000
Iteration Number

=
o 0 1000 2000 3000 5000 6000 7000 8000 9000 10000

Iteration Number

to a seemingly-constant rate of exponential decay. We ha -
not yet determined the characteristics (i.e. the thealbjic

justi ed rates) of these observed trends, and relegate thi§/gure 7. Training losses for classi ers trained on UCI datasets.
endeavor to future work. The linear trend (visualized using a log-scaled y-axishisig

an exponential decrease in loss, albeit at a much fastethate
] ) established by our proven bound.
7. Comparison with Other Methods

In Sec.5 we proved that our framework adheres to the-
oretical guarantees, and in Seg.above, we showet
that it has promising empirical properties. In this s

tion, we compete against several state-of-the-art bcu ™|
ing baselines. Specically, we compared 1-vs-All Az

1] Ada 1vsAll
0] Ada.MH
0] Ada.ECC
0] Struct-Boost
1] CW-Boost
0] AOSO-Logit
1 RBL-Stump
0] RBL-Is0.Sim

aBoost and AdaBoost.MH Sghapire & Singer 1999, Em Pl | AF A e
AdaBoost.ECC Dietterich & Bakiri, 1999, Struct-Boost 7 _7
(Shen et a].2014, CW-Boost Shen & Hag2011), AOSO- ians T R

LogitBoost Sun et al, 2011, REBEL (Appel et al, 201§

using shallow decision trees, REBEL using only 1-pointfigure 8. Test errors of various state-of-the-art and baseline
(isolating) similarities, and our full framework, REBEL-us classi cation methods on MNIST and several UCI datasets.
ing 2-point localized similarities. REBEL using localized similarities (shown in yellow) is thest-

. performing method on all but one of the datasets shown. When
Based on the same experimental setup asSimeQietal.  onstrained to use only 1-point (isolating) similaritissigwn in

2014 Appel et al, 2016, competing methods are trained req), the resulting classi er is completely inadequate.
to a maximum of 200 decision stumps. For each dataset,

ve random splits are generated, wi9% of the samples
for training,25%for validation (i.e. for setting hyperparam-

, , ability of our framework to produce easily interpretable
eters where needed), and the remairBgofor testing.

classi ers that are also empirically pro cient.
REBEL using localized similarities is the most accurate
method on ve of the six datasets tested. In the Vowel7.1. Comparison with Neural Networks and SVMs

dataset, it achieves almost half of the error as the next be%om lex neural networks are able to achieve remarkable
method. Note that although our framework uses REBEL as P

its boosting method, the localized similarities add anaxtr performance on large datasets, but they require an amount

edge, beating REBEL with decision trees in all runs. of t_rammg data propor_tlonal to their compIeX|_ty._ In the
regime of small to medium amounts of data (within which

Further, when limited to only using 1-point (i.e. isolatjng UCI and MNIST datasets belong,i.80<N < 10° train-
localized similarities, the performance is extremely pooring samples), such networks cannot be too complex. Ac-
validating the need for 2-point localized similarities asp cordingly, in Fig.9, we compare our method against fully-
scribed in Sec5.2 Overall, these results demonstrate theconnected neural networks.
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; ; s Firstly, we note that the largest-margin boundary between
g % g two points is the hyperplane that bisects them. Every two-
— point localized similarity acts as such a bisector. There-
|G 2o ‘% E fore, it is not surprising that with only a pool of localized
prasniows g‘% E{ similarities, a classi er should have what it needs to place
i good boundaries. Further, not all pairs need to be separated
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2 (since many neighboring points belong to the same class);
Aot hence, only a small subset of theN 2 possible learners
o St g E will ever need to be selected.
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& ) SRS @é P Secondly, we note that if some point (either an outlier or an

> © unfortunately-placed point) continues to increase in Weig
until it can no-longer be ignored, it can simply be isolated
Figure 9. Comparison of our method versus Neural Networks andand individually dealt with using a one-pointlocalized sim
Support Vector Machines on ten datasets of varying sizeslénd ilarity, there is no need to combine it with other “innocent-
culties. Our method is the most accurate on almost all detas  bystander” points. This phenomenonis observed in the mis-
labeled training experiments in Séc2

0!03

Number of Training Samples (N)

Together, the two types of localized similarities comple-
. ) ment each other. With the guarantee that every step reduces
Four neural networks were implemented, each having ong,e 455, each iteration focuses on either further smoethen

of the following architecturesd 4d K], [d 4K K], ing out an existing boundary, or reducing the weight of a
[d 2d d K],[d 4K 2K K], wheredisthe number single un t point.

of input dimensions anK is the number of output classes.
Only the one with the best testror is shown in the plot. A .
multi-class SVM Chang & Lin 2011 was validated using 9- Conclusions

a5 6 parameter sweep f@ and . Our method was run \ye haye presented a novel framework for multi-class boost-
until the training loss fell belot=N. Overall, REBEL US- 4 that makes use of a simple family of weak learners
ing localized similarities achieves the best results oheig 5164 |ocalized similarities. Each of these learners has a
of the ten datasets, decisively marking it as the method of:learly understandable functionality; a test of similakie-

choice for this range of data. tween a query point and some pre-de ned samples.

We have proven that the framework adheres to theoretical
guarantees: the training loss is minimized at an exponen-
In Sec.6, we observed that our classi ers tend to smoothential rate, and since the loss upper-bounds the training erro

the decision boundaries in the iterations beyond zero-traifwhich can only assume discrete values), our framework is
ing error. In Fig.10, we see that this is not the case with therefore able to achieve maximal accuracy on any dataset.

the typically-used axis-aligned decision stumps. Why do€gye frther explored some of the empirical properties of

this happen with our framework? our framework, noting that the combination of localized
similarities and guaranteed loss reduction tend to lead to a
non-over tting regime, in which the classi er focuses on
smoothing-out its decision boundaries. Finally, we com-
pare our method against several state-of-the-art methods,
outperforming all of the methods in most of the datasets.

8. Discussion

Altogether, we believe that we have achieved our goal of
presenting a simple multi-class boosting framework with
theoretical guarantees and empirical pro ciency.
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Figure 10. The contrasted difference between overtraining usin
(a) classical decision stumps and (b) localized simiksiti (a)
leads to massive over tting of the training data, wheredddgads
to smoothening of the decision boundaries.
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