
Random Fourier Features for Kernel Ridge Regression:
Approximation Bounds and Statistical Guarantees

Appendix: Proofs

A. Preliminaries
Our upper and lower bound analysis relies predominantly on Fourier analysis, so we now introduce some additional nota-
tion and state some useful facts about these.

A.1. Properties of Fourier Transforms

Definition 16 (Fourier Transform). The Fourier transform of a continuous function f : Rd ! C in L
1

(Rn

) is defined to
be the function Ff : Rd ! C as follows:

(Ff)(⇠) =

Z

Rd

f(t)e�2⇡it

T ⇠ dt.

We also sometimes use the notation ˆf for the Fourier transform of f . We often informally refer to f as representing the
function in time domain and ˆf as representing the function in frequency domain.

The original function f can also be obtained from ˆf by the inverse Fourier transform:

f(t) =

Z

Rd

ˆf(⇠)e2⇡i⇠
T
t d⇠

Definition 17 (Convolution). The convolution of two functions f : Rd ! C and g : Rd ! C is defined to be the function
(f ⇤ g) : Rd ! C given by

(f ⇤ g)(⌘) =
Z

Rd

f(t)g(⌘ � t) dt.

The convolution theorem shows that the Fourier transform of the convolution of two functions is simply the product of the
individual Fourier transforms:
Claim 18 (Convolution Theorem). Given functions f : Rd ! C and g : Rd ! C whose convolution is h = f ⇤ g, we have

ˆh(⇠) = ˆf(⇠) · ĝ(⇠)
for all ⇠ 2 Rd.

Now, suppose d = 1, i.e., the functions we consider take inputs in R. We define the rectangle function and normalized sinc
function, which we use extensively in our analysis.
Definition 19 (Rectangle Function). We define the rectangle function rect

a

: R ! C as

rect

a

(x) =

8
><

>:

0 if |x| > a/2
1

2

if |x| = a/2

1 if |x| < a/2

.

If a = 1, then we often omit the subscript and simply write rect.
Definition 20 (Normalized Sinc Function). We define the normalized sinc function sinc : R ! C as

sinc(x) =
sin(⇡x)

⇡x
.
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It is well known that the Fourier transform of the rectangle function (with a = 1) is the normalized sinc function:

F(rect) = sinc

We use � to denote the Dirac delta function. Recall that the Dirac delta function satisfies the following useful property for
any function f : Z 1

�1
f(x)�(x� a) dx = f(a),

i.e. the integral of a function multiplied by a shifted Dirac delta functions picks out the value of the function at a particular
point. Thus, it is not hard to see that the Fourier transform of a � is the constant function which is 1 everywhere:

(F�)(⇠) =

Z 1

�1
e�2⇡it⇠ · �(t) dt = e�2⇡i·0·⇠

= 1

for all ⇠. Similarly, the Fourier transform of a shifted delta function is as follows:

(F�(·� a))(⇠) =

Z 1

�1
e�2⇡it⇠ · �(t� a) dt = e�2⇡ia⇠.

Moreover, it is not hard to see that convolving a function by a shifted delta funciton results in a shift of the original function:

(f ⇤ �(·� a))(x) = f(x� a).

Thus, by the convolution theorem, we obtain the following identity:

Claim 21. Given a function f : R ! C, we have

(Ff(·� a))(⇠) = (F(f ⇤ �(·� a)))(⇠) = ˆf(⇠) · e�2⇡ia⇠.

Similarly,

Claim 22. Given a function f : R ! C, we have

(F(f(x) · e2⇡iax))(⇠) = ˆf(⇠ � a).

Finally, we introduce a useful function known as the Dirac comb function:

Definition 23. The Dirac comb function with period T is defined as f satisfying

f(x) =

1X

j=�1
�(x� jT ).

It is a standard fact that the Fourier transform of a Dirac comb function is another Dirac comb function which is scaled and
has the inverse period:

Claim 24. Let

f(x) =

1X

j=�1
�(x� jT )

be the Dirac comb function with period T . Then,

(Ff)(⇠) =
1

T

1X

j=�1
�

✓
⇠ � j

T

◆
.

We use the Dirac comb function in our lower bound constructions.
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A.2. Properties of Gaussian Distributions

We also need several useful facts about Gaussian distributions. The following is a standard fact about the cumulative
distribution function of the standard Gaussian distribution:

Claim 25 ((Feller, 1968)). For any x > 0, we have

1p
2⇡

Z 1

x

e�t

2

/2 dt  e�x

2

/2

x
p
2⇡

.

Moreover, as a direct consequence, for any �, x > 0, we have that

1p
2⇡�

Z 1

x

e�t

2

/2�

2

dt  �e�x

2

/2�

2

x
p
2⇡

.

Also, if x � 1, then ✓
1

x
� 1

x3

◆
· 1p

2⇡
e�x

2

/2  1p
2⇡

Z 1

x

e�t

2

dt.

We also need the following property about Gaussian samples.

Claim 26. Let t � 10, and a
1

, a
2

, . . . , a
t

be sampled according to the Gaussian distribution given by probability density
function 1p

2⇡

e�x

2

/2. Also, let a⇤ = max

1jt

|a
j

|. Then,

Pr


1p
2⇡

e�a

⇤2

/2  8

p
log t

t

�
� 1

2

.

Proof. Choose q
1

such that Z 1

q

1

1p
2⇡

e�x

2

/2 dx =

1

t
. (14)

Note that by Claim 25, we have Z 1

2

p
log t

1p
2⇡

e�x

2

/2 dx  1

2

p
2⇡t2

p
log t

 1

t
.

Thus, q
1

 2

p
log t.

Also, since 1

t

 1

4

, we have that q
1

� 6

5

. Thus, by another application of Claim 25,

1

t
=

Z 1

q

1

1p
2⇡

e�x

2

/2 dx �
✓

1

q
1

� 1

q3
1

◆
1p
2⇡

e�q

2

1

/2 � 1

4q
1

· 1p
2⇡

e�q

2

1

/2,

and so,
1p
2⇡

e�q

2

1

/2  4q
1

t
 8

p
log t

t
.

Therefore,

Pr


1p
2⇡

e�a

⇤2

/2  8

p
log t

t

�
� Pr[a⇤ � q

1

]

= 1�
✓
1� 1

t

◆
t

� 1� 1

e

� 1

2

,

as desired.
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B. Proof of Lemma 2
Note that A � B implies that B�1 � A

�1 so for the bias term we have:

f

T
(

˜

K+ �I
n

)

�1

f  (1��)

�1

f

T
(K+ �I

n

)

�1

f . (15)

We now consider the variance term. Denote s = rank(

˜

K), and let �
1

(A) � �
2

(A) � · · · � �
n

(A) denote the
eigenvalues of a matrix A. We have:

s
�

(

˜

K) = Tr

⇣
(

˜

K+ �I
n

)

�1

˜

K

⌘
=

sX

i=1

�
i

(

˜

K)

�
i

(

˜

K) + �

= s�
sX

i=1

�

�
i

(

˜

K) + �

 s� (1 +�)

�1

sX

i=1

�

�
i

(K) + �

= s�
sX

i=1

�

�
i

(K) + �
+

�

1 +�

sX

i=1

�

�
i

(K) + �

 n�
nX

i=1

�

�
i

(K) + �
+

� · s
1 +�

= s
�

(K) +

� · s
1 +�

 (1��)

�1s
�

(K) +

� · s
1 +�

where we use the fact that A � B implies that �
i

(A)  �
i

(B) (this is a simple consequence of the Courant-Fischer
minimax theorem).

Combining the above variance bound with the bias bound in (15) yields:

bR
˜

K

(f)  (1��)

�1 bR
K

(f) +

�

(1 +�)

· rank(
˜

K)

n
· �2

⌫

and the bound R(

˜f)  bR
˜

K

(f) completes the proof.

C. Proof of Proposition 4
Since k is positive definite and k(0) = 1, |k(x, z)|  1 for all x and z. This implies that the maximum eigenvalue of
K is bounded by n, and the lower bound follows immediately. The upper bound on ⌧

�

(⌘) follows from the fact that
kz(⌘)k2

2

= n and all eigenvalues of K + �I
n

are bounded from below by �. The bound also establishes that the integral
converges. We now have,

Z

Rd

⌧
�

(⌘)d⌘ =

Z

Rd

p(⌘)z(⌘)⇤(K+ �I
n

)

�1

z(⌘)d⌘

=

Z

Rd

Tr

�
p(⌘)(K+ �I

n

)

�1

z(⌘)z(⌘)⇤
�
d⌘

= Tr

✓Z

Rd

p(⌘)(K+ �I
n

)

�1

z(⌘)z(⌘)⇤d⌘
◆

= Tr

✓
(K+ �I

n

)

�1

Z

Rd

p(⌘)z(⌘)z(⌘)⇤d⌘
◆

= Tr

�
(K+ �I

n

)

�1

K

�
= s

�

(K) .

The second equality is due to the fact that z(⌘) is a rank one matrix, and third equality is due to linearity of the trace
operation and the fact that all diagonal entries are positive.
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D. Proof of Lemma 6 and Theorem 7
To prove Lemma 6 we need the following lemma which is essentially a restatement of Corollary 7.3.3 from (Tropp, 2015).
However, the minimum t in the following statement is much lower than the bound that appears in (Tropp, 2015) which is
unnecessarily loose (possibly, a typo in (Tropp, 2015)). For completeness, we include a proof.

Lemma 27. Let B be a fixed d
1

⇥ d
2

matrix. Construct a d
1

⇥ d
2

random matrix R that satisfies

E [R] = B and kRk
2

 L.

Let M
1

and M

2

be semidefinite upper bounds for the expected squares:

E [RR

⇤
] � M

1

and E [R

⇤
R] � M

2

.

Define the quantities
m = max(kM

1

k
2

, kM
2

k
2

) and d = (Tr (M

1

) +Tr (M

2

))/m.

Form the matrix sampling estimator

¯

R

n

=

1

n

nX

k=1

R

k

where each R

k

is an independent copy of R. Then, for all t �pm/n+ 2L/3n,

Pr(k ¯R
n

�Bk
2

� t)  4d exp

✓ �nt2/2

m+ 2Lt/3

◆
. (16)

Proof. The proof mirrors the proof of Corollary 6.2.1 in (Tropp, 2015), using Theorem 7.3.1 instead of Theorem 6.1.1
(both from (Tropp, 2015)).

Since E [R] = B, we can write

Z ⌘ ¯

R

n

�B =

1

n

nX

k=1

(R

k

� E [R]) =

nX

k=1

S

k

,

where we have define S

k

⌘ n�1

(R

k

� E [R]). These random matrices are i.i.d and each has zero mean.

Now, we can bound each of the summands:

kS
k

k
2

 1

n
(kR

k

k
2

+ kE [R] k
2

)  1

n
(kR

k

k
2

+ E [kRk
2

])  2L

n
,

where the first inequality is the triangle inequality and the second is Jensen’s inequality.

To find semidefinite upper bounds V
1

and V

2

on the matrix-valued variances we note that

E [S

1

S

⇤
1

] = n�2E [(R� E [R])(R� E [R])

⇤
]

= n�2

�
E [RR

⇤
]� E [R]E [R]

⇤�

� n�2E [RR

⇤
] .

Likewise, E [S

⇤
1

S

1

] � n�2E [R

⇤
R]. Since the summands are i.i.d, if we define V

1

⌘ n�1

M

1

and V

2

⌘ n�1

M

2

, we
have E [ZZ

⇤
] � V

1

and E [Z

⇤
Z] � V

2

.

We now calculate,
⌫ ⌘ max(kV

1

k
2

, kV
2

k
2

) =

m

n

and
Tr (V

1

) +Tr (V

2

)

max(kV
1

k
2

, kV
2

k
2

)

= d .

Noticing, that the condition t � pm/n + 2L/3n meets the required lower bound in Theorem 7.3.1 in (Tropp, 2015) we
can now apply this theorem, which along with the above calculations translates to (16).
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We can now prove Lemma 6.

Proof of Lemma 6. Let K+�I
n

= V

T
⌃

2

V be an eigendecomposition of K+�I
n

. Note that the �-spectral approximation
guarantee (2) is equivalent to

K��(K+ �I
n

) � ZZ

⇤ � K+�(K+ �I
n

) ,

so by multiplying by ⌃

�1

V on the left and V

T
⌃

�1 on the right we find that it suffices to show that

k⌃�1

VZZ

⇤
V

T
⌃

�1 �⌃

�1

VKV

T
⌃

�1k
2

 � (17)

holds with probability of at least 1� ⇢. Let

Y

l

=

p(⌘
l

)

p
⌧̃

(⌘
l

)

⌃

�1

Vz(⌘
l

)z(⌘
l

)

⇤
V

T
⌃

�1 .

Note that E [Y

l

] = ⌃

�1

VKV

T
⌃

�1 and 1

s

P
s

l=1

Y

l

= ⌃

�1

VZZ

⇤
V

T
⌃

�1. Thus, we can use the matrix concentration
result above to prove (17).

To apply this bound we need to bound the norm of Y
l

and the stable rank E
⇥
Y

2

l

⇤
. Since Y

l

is always a rank one matrix
we have

kY
l

k
2

=

p(⌘
l

)

p
⌧̃

(⌘
l

)

Tr

�
⌃

�1

Vz(⌘
l

)z(⌘
l

)

⇤
V

T
⌃

�1

�

=

p(⌘
l

)

p
⌧̃

(⌘
l

)

z(⌘
l

)

⇤
V

T
⌃

�1

⌃

�1

Vz(⌘
l

)

=

p(⌘
l

)

p
⌧̃

(⌘
l

)

z(⌘
l

)

⇤
(K+ �I

n

)

�1

z(⌘
l

)

=

s
⌧̃

· ⌧(⌘
l

)

⌧̃(⌘
l

)

 s
⌧̃

since ⌧̃(⌘
l

) � ⌧(⌘
l

). We also have

Y

2

l

=

p(⌘
l

)

2

p
⌧̃

(⌘
l

)

2

⌃

�1

Vz(⌘
l

)z(⌘
l

)

⇤
V

T
⌃

�1

⌃

�1

Vz(⌘
l

)z(⌘
l

)

⇤
V

T
⌃

�1

=

p(⌘
l

)

2

p
⌧̃

(⌘
l

)

2

⌃

�1

Vz(⌘
l

)z(⌘
l

)

⇤
(K+ �I

n

)

�1

z(⌘)z(⌘
l

)

⇤
V

T
⌃

�1

=

p(⌘
l

)⌧(⌘
l

)

p
⌧̃

(⌘
l

)

2

⌃

�1

Vz(⌘
l

)z(⌘
l

)

⇤
V

T
⌃

�1

=

⌧(⌘
l

)

p
⌧̃

(⌘
l

)

Y

l

=

s
⌧̃

⌧(⌘
l

)

⌧̃(⌘
l

)

Y

l

� s
⌧̃

Y

l

Let �
1

� · · · � �
n

be the eigenvalues of K. We have

E [s
⌧̃

Y

l

] = s
⌧̃

⌃

�1

VKV

T
⌃

�1

= s
⌧̃

�
I

n

� �⌃�2

�

= s
⌧̃

· diag (�
1

/(�
1

+ �), . . . ,�
n

/(�
n

+ �)) := D .
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So,

Pr

 �����
1

s

sX

l=1

Y

l

�⌃

�1

VKV

T
⌃

�1

�����
2

� �

!
 8Tr (D)

kDk
2

exp

✓ �s�2/2

kDk
2

+ 2s
⌧̃

�/3

◆

 8

s
⌧̃

· s
�

(K)

s
⌧̃

· �
1

/(�
1

+ �)
exp

✓ �s�2

2s
⌧̃

(1 + 2�/3)

◆

 16s
�

(K) exp

✓ �s�2

2s
⌧̃

(1 + 2�/3)

◆

 16s
�

(K) exp

✓�3s�2

8s
⌧̃

◆
 ⇢

where the third inequality is due to the assumption that �
1

= kKk
2

� � and the last inequality is due to the bound on
s.

Proof of Theorem 7. Define ⌧̃(⌘) = p(⌘) · n
�

and note that ⌧̃(⌘) � ⌧
�

(⌘) by Proposition 4 and that s
⌧̃

= n
�

. Finally,
note that p

⌧̃

(⌘) = p(⌘), the classic Fourier features sampling probability.

E. Proof of Lemmas 11 and 12
Let R(�) ✓ Cn denote the range of �. Here we first prove that the operator � is defined on all L

2

(dµ) and is a bounded
linear operator. Indeed, for y 2 L

2

(dµ) we have:

k�yk2
2

=

����
Z

Rd

z(⇠)y(⇠)dµ(⇠)

����
2

2

(by Jensen’s inequality)


Z

Rd

kz(⇠)y(⇠)k2
2

dµ(⇠)

=

Z

Rd

ky(⇠)k2
2

· kz(⇠)k2
2

dµ(⇠)

= n · kyk2
L

2

(dµ)

.

Thus, R(�) is a linear subspace of Cn. Therefore, there is a unique adjoint operator �⇤
: R(�) ! L

2

(dµ), such that
h�y,xiCn

= hy,�⇤
xi

L

2

(dµ)

for every y 2 L
2

(dµ) and x 2 R(�). It is easy to verify that (�⇤
x)(⌘) = z(⌘)⇤x . We now

have the following:

Proposition 28.
��

⇤
= K

Proof. We have that for every x 2 Cn,

��

⇤
x =

Z

Rd

z(⇠)(�⇤
x)(⇠)dµ(⇠)

=

Z

Rd

z(⇠)z(⇠)⇤xdµ(⇠)

=

✓Z

Rd

z(⇠)z(⇠)⇤dµ(⇠)
◆
x = Kx

so ��

⇤
= K.

We are now ready to prove the two lemmas.
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Proof of Lemma 11. The minimizer of the right-hand side of (11) can be obtained from the usual normal equations, and
simplified using the matrix inversion lemma for operators (Ogawa, 1988):

y? =

p
p(⌘)(�⇤

�+ �I
L

2

(dµ)

)

�1

�

⇤
z(⌘)

=

p
p(⌘)�⇤

(��

⇤
+ �I

n

)

�1

z(⌘)

=

p
p(⌘)�⇤

(K+ �I
n

)

�1

z(⌘) .

So, y?(⇠) =
p
p(⌘)z(⇠)⇤(K+ �I

n

)

�1

z(⌘). We now have

ky?k2
L

2

(dµ)

= p(⌘)

Z

Rd

|z(⇠)⇤(K+ �I
n

)

�1

z(⌘)|2dµ(⇠)

= p(⌘)

Z

Rd

z(⌘)⇤(K+ �I
n

)

�1

z(⇠)z(⇠)⇤(K+ �I
n

)

�1

z(⌘)dµ(⇠)

= p(⌘)z(⌘)⇤(K+ �I
n

)

�1

✓Z

Rd

z(⇠)z(⇠)⇤dµ(⇠)
◆
(K+ �I

n

)

�1

z(⌘)

= p(⌘)z(⌘)⇤(K+ �I
n

)

�1

K(K+ �I
n

)

�1

z(⌘)

= p(⌘)z(⌘)⇤(K+ �I
n

)

�1

(K+ �I
n

� �I
n

)(K+ �I
n

)

�1

z(⌘)

= p(⌘)z(⌘)⇤(K+ �I
n

)

�1

z(⌘)� �p(⌘)z(⌘)⇤(K+ �I
n

)

�2

z(⌘)

and

k�y? �
p
p(⌘)z(⌘)k2

2

= p(⌘)k��

⇤
(K+ �I

n

)

�1

z(⌘)� z(⌘)k2
2

= p(⌘)k(K(K+ �I
n

)

�1 � I

n

)z(⌘)k2
2

= p(⌘)k�(K+ �I
n

� �I
n

)(K+ �I
n

)

�1 � I

n

�
z(⌘)k2

2

= p(⌘)k��(K+ �I
n

)

�1

�
z(⌘)k2

2

= �2p(⌘)z(⌘)⇤(K+ �I
n

)

�2

z(⌘) .

Now plugging these into (11) gives:

ky?k2
L

2

(dµ)

+ ��1k�y? �
p

p(⌘)z(⌘)k2
2

= p(⌘)z(⌘)⇤(K+ �I
n

)

�1

z(⌘)� �p(⌘)z(⌘)⇤(K+ �I
n

)

�2

z(⌘)

+ �p(⌘)z(⌘)⇤(K+ �I
n

)

�2

z(⌘)

= p(⌘)z(⌘)⇤(K+ �I
n

)

�1

z(⌘)

= ⌧
�

(⌘)

Proof of Lemma 12. The optimization problem (11) can equivalently be reformulated as the following problem:

⌧(⌘) = minimum kyk2
L

2

(dµ)

+ kuk2
2

y 2 L
2

(dµ); u 2 Cn

subject to: �y +
p
�u =

p
p(⌘)z(⌘)

First we show that for any ↵ 2 Cn, the argument of the minimization problem in (12) is no bigger than ⌧
�

(⌘). That is
because for the optimal solution to above optimization, namely ¯

u and ȳ, we have:

�ȳ +
p
�¯u =

p
p(⌘)z(⌘)
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hence,

|
p
p(⌘)↵⇤

z(⌘)| = |↵⇤
(�ȳ +

p
�¯u)|

= |↵⇤
�ȳ +↵⇤p�¯u|

 |↵⇤
�ȳ|+ |↵⇤p�¯u|

= |h↵,�ȳiCn |+ |↵⇤p�¯u|
= |h�⇤↵, ȳi

L

2

(dµ)

|+ |↵⇤p�¯u|
 k�⇤↵k

L

2

(dµ)

· kȳk
L

2

(dµ)

+

p
�k↵⇤k

2

· k¯uk
2

where the last inequality follows from Cauchy-Schwarz inequality (|↵⇤
�ȳ| = |(↵⇤

�ȳ)⇤| = |(�ȳ)⇤↵| =

|hȳ,�⇤↵i
L

2

(dµ)

|  k�⇤↵k
L

2

(dµ)

· kȳk
L

2

(dµ)

). By another use of Cauchy-Schwarz we have:

p(⌘)|↵⇤
z(⌘)|2 

⇣
k�⇤↵k

L

2

(dµ)

kȳk
L

2

(dµ)

+

p
�k↵⇤k

2

· k¯uk
2

⌘
2


⇣
k�⇤↵k2

L

2

(dµ)

+ �k↵⇤k2
2

⌘
·
⇣
kȳk2

L

2

(dµ)

+ k¯uk2
2

⌘

therefore, for every ↵ 2 Cn,

p(⌘)|↵⇤
z(⌘)|2

k�⇤↵k2
L

2

(dµ)

+ �k↵k2
2

 kȳk2
L

2

(dµ)

+ k¯uk2
2

= ⌧
�

(⌘) (18)

Now it is enough to show that at the optimal ↵ the dual problem gives the leverage scores. We show that ¯↵ =

p
p(⌘)(K+

�I
n

)

�1

z(⌘) matches the leverage scores. First note that for any ↵ 2 Cn we have

k�⇤↵k2
L

2

(dµ)

+ �k↵k2
2

= h�⇤↵,�⇤↵i
L

2

(dµ)

+ �↵⇤↵

= h��

⇤↵,↵iCn
+ �↵⇤↵

= hK↵,↵iCn
+ �↵⇤↵

= ↵⇤
(K+ �I

n

)↵

Now by substituting ¯↵ =

p
p(⌘)(K+ �I

n

)

�1

z(⌘) we have:

p(⌘)|¯↵⇤
z(⌘)|2

k�⇤
¯↵k2

L

2

(dµ)

+ �k¯↵k2
2

=

p(⌘)2|z(⌘)⇤(K+ �I
n

)

�1

z(⌘)|2
p(⌘)z(⌘)⇤(K+ �I

n

)

�1

(K+ �I
n

)(K+ �I
n

)

�1

z(⌘)

= p(⌘)|z(⌘)⇤(K+ �I
n

)

�1

z(⌘)|
= ⌧

�

(⌘) (19)

F. Proof of Theorem 13
Recall from Lemma 11 that

⌧
�

(⌘) = min

y2L

2

(dµ)

��1k�y �
p
p(⌘)z(⌘)k2

2

+ kyk2
L

2

(dµ)

(20)

To upper bound ⌧
�

(⌘) for any ⌘, we will exhibit some test function, y
⌘

(·), and compute the quantity under the minimum.
y
⌘

(·) will be a ‘softened spike function’ given by:
Definition 29 (Softened spike function). For any ⌘, and any u define:

y
⌘,u

(t) =

p
p(⌘)

p(t)
· e�(t�⌘)

2

u

2

/4 · v · sinc (v(t� ⌘)) (21)

where v = 2(R+ u
p
2 log n

�

).
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The reweighted function g
⌘,u

(t) = p(t) · y
⌘,u

(t) is just a Gaussian with standard deviation ⇥(1/u) multiplied by a sinc
function with width ˜O(1/(u+R)), both centered at ⌘. Taking the Fourier transform of this function yields a Gaussian with
standard deviation ⇥(u) convolved with a box of width ˜O(u) + R. This width is wide enough such that when centered
between [�R,R] the box covers nearly all the mass of the Gaussian, and so the Fourier transform is nearly identically 1

on the range [�R,R]. Shifting by ⌘, means that it is very close to a pure cosine wave with frequency ⌘ on this range, and
hence makes the first term of (20) small. We make this argument formal below.

F.1. Bounding ��1k�y
⌘,u

�pp(⌘)z(⌘)k2
2

Lemma 30 (Test Function Fourier Transform Bound). For any integer n, every parameter 0 < �  n and every ⌘, u, and
any kernel density function p(⌘) if x

j

2 [�R,+R] for all j 2 [n] for any radius R > 0, then:

��1k�y �
p
p(⌘)z(⌘)k2

2

=

1

�

nX

j=1

���ĝ
⌘,u

(x
j

)�
p
p(⌘) · z(⌘)

j

���
2

 p(⌘). (22)

where g
⌘,u

(t) ⌘ p(t)y
⌘,u

(t).

Proof. We have g
⌘,u

(t) = p(t)y
⌘,u

(t) = p(⌘)e�(t�⌘)

2

u

2

/4 · v · sinc (v(t� ⌘)) and ĝ
⌘,u

(x
j

) = (�y)
j

. We thus have:

ĝ
⌘,u

(x
j

) =

p
p(⌘)

Z

R
e�2⇡itxje�(t�⌘)

2

u

2

/4 · v · sinc (v(t� ⌘)) dt

=

p
p(⌘)e�2⇡ixj⌘

Z

R
e�2⇡itxje�t

2

u

2

/4 · v · sinc (vt) dt

=

p
p(⌘) · z(⌘)

j

· h(x
j

) (23)

where h(x) = 2

p
⇡

u

e�4⇡

2

x

2

/u

2 ⇤rect
v

(x) by the fact that multiplication in time domain becomes convolution in the Fourier
domain (Claim 18), F(e�t

2

u

2

/4

) =

2

p
⇡

u

e�4⇡

2

x

2

/u

2

, and F(v · sinc (vt)) = rect

v

(x).

For any x, we have h(x)  RR 2

p
⇡

u

e�4⇡

2

x

2

/u

2

= 1. Additionally, for any x 2 [�R,R] we have by Claim 25 and the fact
that v = 2R+ 2u

p
2 log n

�

:

h(x) =

Z
x+

v
2

x� v
2

2

p
⇡

u
e�4⇡

2

x

2

/u

2

dx

� 1� 2

Z 1

v/2�R

2

p
⇡

u
e�4⇡

2

x

2

/u

2

dx

� 1� 1

4

p
⇡
· u

v/2�R
e�4⇡

2

(v/2�R)

2

/u

2

(by second part of Claim 25)

� 1� 1

4

p
⇡
p
2 log n

�

· 1p
n
�

(since v = 2R+ 2u
p
2 log n

�

)

� 1� 1p
n
�

(by assumption n
�

� 2).

Plugging into (23) gives
���ĝ

⌘,u

(x
j

)�
p
p(⌘) · z(⌘)

j

���
2

= p(⌘) |h(x
j

)� 1|2

 p(⌘)

n
�

,

and so,

1

�

nX

j=1

h
ĝ(x

j

)�
p
p(⌘) · z(⌘)

j

i
2

 n
�

· p(⌘) · �
n
< p(⌘)

proving the claim.
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F.2. Bounding ky
⌘,u

k2
L

2

(dµ)

Having established Lemma 30, we note that showing that the weighted Fourier transform of y
⌘,u

is close to
p

p(⌘)z(⌘)
reduces to bounding the norm of the test function. To that effect, we show the following:

Lemma 31 (Test Function `
2

Norm Bound). For any integer n, any parameter 0 < �  n

2

, every |⌘|  10

p
log n

�

, and
every 2000 log n

�

 u  500 log

1.5 n
�

, if y
⌘,u

(t) is defined as in (20), as per Definition 29, then we have

kyk2
L

2

(dµ)

 12

⇣
R+ u

p
2 log n

�

⌘
(24)

Before proving Lemma 31, we first prove a claim:

Claim 32. Suppose |⌘|  100

p
log n

�

, and

⌘ � c
p
log n

�

b
 t  ⌘ +

c
p
log n

�

b

for some absolute constant c > 0. If b � 100c · log n
�

then,

e�
t2

2

+

⌘2

2  3.

Proof. Let � = t� ⌘. Then, note that |�|  c
p
log n

�

/b, and so,

e�
t2

2

+

⌘2

2

= e�
(�+⌘)

2

2

+

⌘2

2

= e��⌘��

2

2

 e|�⌘|��

2

2

 e|�|·|⌘|

 e(c
p
logn�/b)(100

p
logn�)

 e  3,

since b � 100c · log n
�

.

Now, we are ready to prove Lemma 31:

Proof of Lemma 31. Recall that for the Gaussian kernel, we have p(⌘) = 1p
2⇡

e�⌘

2

/2. We calculate:

Z

R
|y

⌘,u

(t)|2dµ(t) = p(⌘)

Z

R

p
2⇡et

2

/2 · e�(t�⌘)

2

u

2

/2 · v2 (sinc (v(t� ⌘)))
2

dt

=

p
2⇡p(⌘) · v2

Z
⌘+

20

p
log n�
u

⌘� 20

p
log n�
u

et
2

/2 · e�(t�⌘)

2

u

2

/2

(sinc (v(t� ⌘)))
2

dt

+

p
2⇡p(⌘) · v2

Z

|t�⌘|� 20

p
log n�
u

et
2

/2 · e�(t�⌘)

2

u

2

/2

(sinc (v(t� ⌘)))
2

dt (25)

For the integral over |t� ⌘| � 20

p
logn�

u

we have:
Z

|t�⌘|�20

p
log n�
u

et
2

/2 · e�(t�⌘)

2

u

2

/2

(sinc (v(t� ⌘)))
2

dt  1

�
v · 20

p
logn�

u

�
2

Z

|t�⌘|�20

p
log n�
u

et
2

/2 · e�(t�⌘)

2

u

2

/2dt

 1

v

Z

|t�⌘|�20

p
log n�
u

et
2

/2 · e�(t�⌘)

2

u

2

/2dt (26)
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The first inequality above is because by definition of sinc (·) we have the following for all |t� ⌘| � 20

p
logn�

u

:

|sinc (v(t� ⌘)) |2 =

sin

2

(⇡v(t� ⌘))

(⇡v(t� ⌘))2
 1

(v(t� ⌘))2
 1

�
v · 20

p
logn�

u

�
2

The last inequality in (26) is because of the following reason:

1

�
v · 20

p
logn�

u

�
2

=

1

v
· 1

v · � 20
p
logn�

u

�
2

 1

v
· 1

800

⇣
log

1.5
n�

u

⌘ (since v = 2(R+ u
p

2 log n
�

) � 2u
p
2 log n

�

, see Definition 29)

 1

v
(since u  500 log

1.5 n
�

)

Now note that t2  2(t� ⌘)2 + 2⌘2. We have the following for all |t� ⌘| � 20

p
logn�

u

:

t2  2(t� ⌘)2 + 2⌘2

 2(t� ⌘)2 + 200 log n
�

(by the assumption |⌘|  10

p
log n

�

)

 2(t� ⌘)2 + (t� ⌘)2u2/2 (by the assumption |t� ⌘| � 20

p
log n

�

u
)

 2

3

(t� ⌘)2u2

where the last inequality follows from u � 2000log n
�

� 600 (because n
�

� 1/2). Hence,

1

v

Z

|t�⌘|�20

p
log n�
u

et
2

/2 · e�(t�⌘)

2

u

2

/2dt  1

v

Z

|t�⌘|�20

p
log n�
u

e�(t�⌘)

2

u

2

/3dt

 1

v
· n100

�

(27)

Now, the first integral in (25):

Z
⌘+20

p
log n�
u

⌘�20

p
log n�
u

et
2

/2 · e�(t�⌘)

2

u

2

/2

(sinc (v(t� ⌘)))
2

dt  3e
⌘2

2

Z

R
(sinc (v(t� ⌘)))

2

dt

=

3e
⌘2

2

v
. (28)

where the inequality follows from Claim 32 with c = 20 and b = u, since, by assumption, u � 2000 log n
�

and |t| 
|⌘|+ |t� ⌘|  10

p
log n

�

+

20

u

p
log n

�

 100

p
log n

�

whenever t 2
h
⌘ � 20 logn�

u

, ⌘ +

20 logn�

u

i
.

By incorporating (27) and (28) into (25) we have:

Z

R
|y

⌘,u

(t)|2dt 
p
2⇡p(⌘) · v2

⇣
1

v
· n�100

�

+

3e
⌘2

2

v

⌘
 6v (29)

where the last inequality uses that
p
2⇡p(⌘) =

p
2⇡p
2⇡

e�⌘

2

/2  1.
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Proof of Theorem 13. By the assumptions of the theorem n is an integer, parameter 0 < �  n/2, and R > 0, and all
x
1

, ..., x
n

2 [�R,R] and p(⌘) = 1p
2⇡

e�
⌘2

2 , therefore all the preconditions of Lemmas 31, and 30 are satisfied and hence
the lemmas go through and the upper bounds in (22) and (24) hold true. The theorem follows by setting u = 2000log n

�

and then plugging upper bounds (22) and (24) into (20).

G. Proof of Theorem 14
With the choice of the Gaussian kernel with � = (2⇡)�1 we have p(⌘) = (2⇡)�1/2

exp(�⌘2/2). Recall from Lemma 12
that

⌧
�

(⌘) = max

↵2Cn

p(⌘) · |↵⇤
z(⌘)|2

k�⇤↵k2
L

2

(dµ)

+ �k↵k2
2

. (30)

In particular, this gives us a method of bounding the leverage scores from below, namely, by exhibiting some ↵ and
computing the quantity under the maximum.

The rest of this section is organized as follows. In Section G.1, we construct our candidate set of data points x
1

, x
2

, . . . , x
n

along with the vector ↵. In particular, ↵ will be chosen to be a vector of samples of a function f
�,b,v

at each of the data
points. Section G.2 then describes basic Fourier properties of the function f

�,b,v

and ↵ that we will require later. The
remaining sections then bound each of the relevant quantities that appear in (30) for our specific choice of x

1

, x
2

, . . . , x
n

and ↵. In particular, Section G.3 shows a lower bound for ↵⇤
z(⌘), while Section G.4 shows an upper bound for k↵k2

2

and
Section G.5 shows an upper bound for k�⇤↵k2

L

2

(dµ)

.

G.1. Construction of Data Point Set and the Vector of Coefficients ↵

Definition 33. For parameters �, b > 0 and v > 0, let the function f
�,b,v

be defined as follows:

f
�,b,v

(x) = 2 cos(2⇡�x)

✓
1p
2⇡b

e�(.)

2

/2b

2 ⇤ rect
v

◆
(x)

= 2 cos(2⇡�x)

Z
x+

v
2

x� v
2

1p
2⇡b

e�t

2

/2b

2

dt

Lemma 34. For any � > 0, v > 0, and b > 0, if we define the function f
�,b,v

as in Definition 33, then

F (f
�,b,v

) (z) = e�2⇡

2

b

2

(z��)

2

(v · sinc (v(z ��)) + e�2⇡

2

b

2

(z+�)

2

(v · sinc (v(z +�))).

Proof. Note that

F
✓

1p
2⇡b

e�(·)2/2b2
◆
(z) = e�2⇡

2

b

2

z

2

.

Thus, by the convolution theorem (see Claim 18),

F
✓

1p
2⇡b

e�(·)2/2b2 ⇤ rect
v

◆
(z) = e�2⇡

2

b

2

z

2 · v · sinc (v(z)) .

Now by the duality of phase shift in time domain and frequency shift in the Fourier domain,

F(f
�,b,v

)(z) = F
✓
(e2⇡i�(·)

+ e�2⇡i�(·)
) ·
✓

1p
2⇡b

e�(·)2/2b2 ⇤ rect
v

◆◆
(z)

= F
✓

1p
2⇡b

e�(·)2/2b2 ⇤ rect
v

◆
(z ��) + F

✓
1p
2⇡b

e�(·)2/2b2 ⇤ rect
v

◆
(z +�)

= e�2⇡

2

b

2

(z��)

2 · v · sinc (v(z ��)) + e�2⇡

2

b

2

(z+�)

2 · v · sinc (v(z +�)) .
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Intuition for Theorem 14 If, instead of a discrete set of data points, we had a continuum of points, ↵ would be a
function (or, alternatively, an infinite-dimensional vector coresponding to the evaluation of the function on the continuum
of points). The intuition is that in this case, we would essentially like to choose ↵ to be the function f

�,b,v

for some
suitable choice of parameters �, b, v. In this case, the computation of bounds for the various quantities appearing in (30)
would be relatively simple and involve bounding integrals. However, since our data points are actually discrete and ↵ is
finite-dimensional, we must instead choose ↵ to be the vector of samples of f

�,b,v

on the data points, and the bounds we
deduce require computing Fourier transforms of f

�,b,v

multiplied by suitable Dirac combs (see Lemma 36). Computation
of the necessary bounds is further complicated by the fact that the data points are bounded in [�R,R], which requires us
to truncate the aforementioned Dirac combs and have appropriate Fourier tail bounds (see Lemma 37).

Let us provide some intuition about the quantities |↵⇤
z(⌘)|2, k�⇤↵k2

L

2

(dµ)

and k↵k2
2

that arise in (30) along these lines.
If we have ⇡ 2R equally spaced data points between �R and R, then note that the points are separated by distance ⇡ 1.
This approximately corresponds to dealing with the continuous case in which ↵ is a function f

�,b,v

and, therefore, sums in
the discrete case can be approximated by corresponding integrals over continuous functions. Suppose � = ⌘ and v = R.

Note that the quantity ↵⇤
z(⇠) corresponds to

↵⇤
z(⇠) ⇡

Z 1

�1
f
⌘,b,R

(x)e�2⇡i⇠x dx

⇡ F(f
⌘,b,R

)(⇠)

= e�2⇡

2

b

2

(⇠�⌘)

2 ·R · sinc (R(⇠ � ⌘)) + e�2⇡

2

b

2

(⇠+⌘)

2 ·R · sinc (R(⇠ + ⌘)) . (31)

Thus, ↵⇤
z(⇠) (which we bound rigorously in Section G.3) can be approximated as follows:

↵⇤
z(⇠) ⇡ R(1 + e�8⇡

2

b

2

⌘

2

sinc (2R⌘)) ⇡ ⌦(R), (32)

where the last transition uses the fact that sinc (·) � �1/4. Next, note that the quantity k↵k2
2

(which we bound rigorously
in Section G.4) is roughly

k↵k2
2

⇡
Z 1

�1
f
⌘,b,R

(x)2 dx =

Z 1

�1
4 cos

2

(2⇡⌘x)

 Z
x+

R
2

x�R
2

1p
2⇡b

e�t

2

/2b

2

dt

!
2

dx

⇡ 4

Z 3R
2

� 3R
2

✓Z 1

�1

1p
2⇡b

e�t

2

/2b

2

dt

◆
2

dx

⇡ O(R). (33)

Finally, note that k�⇤↵k2
L

2

(dµ)

(which we bound rigorously in Section G.5) is roughly

k�⇤↵k2
L

2

(dµ)

⇡
Z 1

�1
|↵⇤

z(⇠)|2 · 1p
2⇡

e�⇠

2

/2 d⇠

⇡
Z 1

�1

⇣
e�2⇡

2

b

2

(⇠�⌘)

2 ·R · sinc (R(⇠ � ⌘)) + e�2⇡

2

b

2

(⇠+⌘)

2 ·R · sinc (R(⇠ + ⌘))
⌘
2

· 1p
2⇡

e�⇠

2

/2 d⇠

⇡ 1p
2⇡

e�⌘

2

/2R2

Z 1

�1
sinc (R(⇠ � ⌘))

2

d⇠

⇡ O(p(⌘)R), (34)

using (31).

Now, going back to the discrete case, consider what happens if we scale up the number of points from 2R to n, keeping the
points evenly spaced in the interval [�R,R]. In this case, the spacing between points decreases by a factor of � ⇡ n/2R.
Thus, this corresponds to the measure of integration over R scaling up by a factor of �. Hence, |↵⇤

z(⌘)| and k↵k2
2

can be
expected to scale up by a factor of �, while k�⇤↵k2

L

2

(dµ)

would scale up by a factor of �2. Thus, along with (32), (33),
and (34), we get that

p(⌘) · |↵⇤
z(⌘)|2

k�⇤↵k2
L

2

(dµ)

+ �k↵k2
2

⇡ (�R)

2p(⌘)

�2p(⌘)R+ ��R
⇡ R · p(⌘)

p(⌘) + �/�
⇡ R · p(⌘)

p(⌘) + 2Rn�1

�

,
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which is within a constant factor of the expression in Theorem 14.
Definition 35 (Construction of data points and ↵). We first define the set of data points x

j

for j = 1, 2, . . . , n for odd n as
follows:

x
j

=

✓
j � n+ 1

2

◆
· 2R
n

Thus, the data points are on a grid of width 2R

n

extending from �R to R.

The vector ↵ is chosen to be the tuple of evaluations of f
⌘,b,v

at the individual x
j

, for some parameters b, v, and ⌘. More
specifically, for 1  j  n, we define

↵
j

= f
⌘,b,v

(x
j

)

= 2 cos(2⇡⌘x
j

)

Z
xj+

v
2

xj� v
2

1p
2⇡b

e�t

2

/2b

2

dt. (35)

G.2. Basic Properties of f
�,b,v

and ↵

By the Nyquist-Shannon sampling theorem, we have the following lemma.
Lemma 36. For any parameters � > 0, v > 0, and b > 0, if we define the function f

�,b,v

as in Definition 33, then for
any w > 0,

F
0

@f
�,b,v

(·) ·
1X

j=�1
�(·� jw)

1

A
(z) = w�1v

1X

j=�1
e�2⇡

2

b

2

(z�jw

�1��)

2 · sinc �v(z � jw�1 ��)

�

+ w�1v

1X

j=�1
e�2⇡

2

b

2

(z�jw

�1

+�)

2 · sinc �v(z � jw�1

+�)

�
.

Proof. By the Nyquist-Shannon sampling theorem, we have

F
0

@f
�,b,v

(·)
1X

j=�1
�(·� jw)

1

A
(z) =

0

@w�1

1X

j=�1
�(·� jw�1

) ⇤ F(f
�,b,v

)(·)
1

A
(z)

=

1X

j=�1
w�1F(f

�,b,v

)(z � jw�1

). (36)

Thus, by Lemma 34, we find that (36) can be written as

1X

j=�1
w�1F(f

�,b,v

)(z � jw�1

) = w�1

1X

j=�1
e�2⇡

2

b

2

(z�jw

�1��)

2 · v · sinc �v(z � jw�1 ��)

�

+ w�1

1X

j=�1
e�2⇡

2

b

2

(z�jw

�1

+�)

2 · v · sinc �v(z � jw�1

+�)

�
,

which completes the proof.

Lemma 37. For every odd integer n � 3 and parameters 0 < �  n

2

, ⌘ > 0, v  R, and b  R

4

p
logn�

, if we define the
function f

�,b,v

as in Definition 33, then
������
F
0

@
X

|j|>n
2

f
⌘,b,v

✓
j · 2R

n

◆
· �
✓
·� j · 2R

n

◆1

A
(z)

������


p
�n

for all z.
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Proof. By definition of f
⌘,b,v

, we have the following for all x:

|f
⌘,b,v

(x)| 
Z

x+

v
2

x� v
2

2p
2⇡b

e�t

2

/2b

2

dt.

Therefore, if |j| > n

2

, then

����f⌘,b,v
✓
j · 2R

n

◆���� 
2p
2⇡b

Z 1

j· 2Rn � v
2

e�t

2

/2b

2

dt

 2p
2⇡b

Z 1

jR
n

e�t

2

/2b

2

dt

 2p
2⇡

· nb
jR

· e� 1

2

·
(

jR
nb )

2

 2b

R
· e� 1

2

·
(

jR
nb )

2

, (37)

where we have used the fact that j · 2R

n

� v

2

� j · 2R

n

� R

2

� j · R

n

, along with Claim 25. Therefore, again using Claim 25,
we have

������
F
0

@
X

|j|>n
2

f
⌘,b,v

✓
j · 2R

n

◆
· �
✓
·� j · 2R

n

◆1

A
(z)

������

X

|j|>n
2

����f⌘,b,v
✓
j · 2R

n

◆����


X

|j|>n
2

2b

R
· e� 1

2

·
(

jR
nb )

2

 2b

R
·
 
nb

R

Z 1

(n�1)R
2nb

e�t

2

/2 dt

!

 n

4 log n
�

·
Z 1
p
logn�

e�t

2

/2 dt

 n

4 log n
�

· 1p
log n

�

· e� 1

2

·
(

p
logn�)

2

 1

4 log

3/2

(n
�

)

·
p
�n


p
�n,

since n � 3, R � 4b
p
log n

�

, and �  n/2.

Lemma 38. For every odd integer n � 3, any parameter 0 < �  n

2

, every frequency ⌘ and ⇠, and any parameter v  R

and b  R

4

p
logn�

, if ↵ is defined as in (35) of Definition 35, then we have,

������
↵⇤

z(⇠)� nv

2R

1X

j=�1

✓
e�2⇡

2

b

2

(⇠� jn
2R�⌘)

2

sinc

✓
v(⇠ � jn

2R
� ⌘)

◆
+ e�2⇡

2

b

2

(⇠� jn
2R+⌘)

2

sinc

✓
v(⇠ � jn

2R
+ ⌘)

◆◆������


p
�n. (38)
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Proof. Note that

↵⇤
z(⇠) =

nX

j=1

↵
j

e�2⇡ixj⇠

=

X

|j|n
2

f
⌘,b,v

(2Rj/n) · e�2⇡i

(

2Rj
n )

⇠

= F
0

@
X

|j|n
2

f
⌘,b,v

(2Rj/n) · �
✓
·� 2Rj

n

◆1

A
(⇠)

= F
0

@
1X

j=�1
f
⌘,b,v

(·) · �
✓
·� 2Rj

n

◆1

A
(⇠)� F

0

@
X

|j|>n
2

f
⌘,b,v

✓
2Rj

n

◆
· �
✓
·� 2Rj

n

◆1

A
(⇠). (39)

By Lemma 36 (applied with w = 2R/n), we have the following expression for the first term in (39):

F
0

@
1X

j=�1
f
⌘,b,v

(·) · �
✓
·� 2Rj

n

◆1

A
(⇠) =

nv

2R

1X

j=�1
e�2⇡

2

b

2

(⇠� jn
2R�⌘)

2 · sinc
✓
v

✓
⇠ � jn

2R
� ⌘

◆◆

+

nv

2R

1X

j=�1
e�2⇡

2

b

2

(⇠� jn
2R+⌘)

2 · sinc
✓
v

✓
⇠ � jn

2R
+ ⌘

◆◆
. (40)

Now, by the assumption that R � 4b
p
log n

�

and v  R, it follows from Lemma 37 that the second term in (39) can be
bounded as

������
F
0

@
X

|j|>n
2

f
⌘,b,v

(2Rj/n) · �
✓
·� 2Rj

n

◆1

A
(⇠)

������


p
�n. (41)

Thus, the desired result follows by combining (39), (40), and (41).

G.3. Bounding ↵⇤
z(⌘)

Lemma 39. For every odd integer n � 17, any parameter 0 < �  (

v

R

)

2 · n/16, every frequency |⌘|  n

10R

, and any
parameter v  R and R

2

p
n

 b  R

4

p
log(n�)

, if ↵ is defined as in (35) of Definition 35, then we have

|↵⇤
z(⌘)| � nv

5R
.

Proof. Since v  R and b  R

4

p
log(n�)

and �  n/2, Lemma 38 implies that

������
↵⇤

z(⌘)� nv

2R

1X

j=�1

⇣
e�2⇡

2

b

2

(� jn
2R )

2

sinc (v(�jn/2R)) + e�2⇡

2

b

2

(2⌘� jn
2R )

2

sinc (v(2⌘ � jn/2R))

⌘
������


p
�n. (42)
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Hence,

|↵⇤
z(⌘)| � nv

2R

������

1X

j=�1

⇣
e�2⇡

2

b

2

(� jn
2R )

2

sinc (v(�jn/2R))

+ e�2⇡

2

b

2

(2⌘� jn
2R )

2

sinc (v(2⌘ � jn/2R))

⌘����
p
�n

� nv

2R
e�2⇡

2

b

2

(0)

2

sinc (v(0)) +
nv

2R
e�2⇡

2

b

2

(2⌘)

2

sinc (v(2⌘))

� nv

2R

X

|j|�1

⇣
e�2⇡

2

b

2

(� jn
2R )

2

+ e�2⇡

2

b

2

(2⌘� jn
2R )

2

⌘
�

p
�n

� 3

4

⇣ nv
2R

⌘
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X

|j|�1

⇣
e�2⇡

2

b

2

(� jn
2R )

2

+ e�2⇡

2

b

2

(2⌘� jn
2R )

2

⌘
�
p
�n, (43)

since |sinc (·) |  1 and sinc (·) � � 1

4

.

Now we show that
P

|j|�1

�
e�2⇡

2

b

2

(� jn
2R )

2

+e�2⇡

2

b

2

(2⌘� jn
2R )

2

�
is small. Note that by the assumption of b � R

2

p
n

, we have

e�2⇡

2

b

2

(� jn
2R )

2  e�jn for all |j| � 1. Also recall that |⌘|  n

10R

, and so, (2⌘ � jn

2R

)

2 � (

jn

4R

)

2 for all |j| � 1. Hence, we
have

X

|j|�1

�
e�2⇡

2

b

2

(� jn
2R )

2

+ e�2⇡

2

b

2

(2⌘� jn
2R )

2

� 
X

|j|�1

�
e�|j|n

+ e�
|j|n
4

�

 5e�
n
4 (44)

by assumption n � 17. The lemma follows by combining (43) and (44).

G.4. Bounding k↵k2
2

Lemma 40. For every odd integer n and parameters b, ⌘, v > 0, if ↵ is defined as in (35) of Definition 35, then we have

k↵k2
2

 4n.

Now we are ready for the proof of Lemma 40.

Proof of Lemma 40. Let w = 2R/n. Then, we observe that

k↵k2
2

=

nX

j=1

↵2

j


X

|j|n�1

2

 
2p
2⇡b

cos(2⇡jw⌘)

Z
jw+

v
2

jw� v
2

e�x

2

/2b

2

!
2


X

|j|n�1

2

✓
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2⇡b

cos(2⇡jw⌘)

Z 1

�1
e�x

2

/2b

2

◆
2


X

|j|n�1

2

✓
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2⇡b

Z 1

�1
e�x

2

/2b

2

◆
2

because | cos(·)|  1. Hence,

k↵k2
2


X

|j|n�1

2

4

= 4n (45)

as desired.
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G.5. Bounding k�⇤↵k2
L

2

(dµ)

Note that all the results so far hold for any kernel p(⌘) and are independent of the kernel function. Now, we upper bound
k�⇤↵k

L

2

(dµ)

. This quantity depends on the particular choice of kernel, which is assumed to be Gaussian.

Lemma 41. For every odd integer n � 17, any parameter 10

n

< �  n

2

, every |⌘|  100

p
log n

�

, and any
1000 log

1.5 n
�

 R  n

500

p
logn�

, and R

2

p
n

 b  R

4

p
logn�

, if ↵ is defined as in (35) of Definition 35 with parame-

ter v = R, then for the Gaussian kernel with p(⇠) = 1p
2⇡

e�⇠

2

/2, we have:

k�⇤↵k2
L

2

(dµ)

 6

n2

R
· p(⌘) + 3�n. (46)

Proof. Recall from Lemma 38 that:
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.

Now, by the definition of the L
2
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2

p(⇠) d⇠ + 2�n, (47)

where we have used the inequality (a
1

+ a
2

)

2  2a2
1

+ 2a2
2

in the second step, and the last equality occurs because the
kernel probability distribution function p(⇠) is symmetric in our case, along with the fact that the underlying sum is over
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all j. Now, the integral in (47) can be split into two integrals as follows:
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First, we consider the case in which |⇠|  10

p
log n

�

. By the assumption of the lemma, |⌘|  100

p
log n

�

, and hence,
|⇠ � ⌘|  110
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�

. This implies that |⇠ � ⌘|  1
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), since we are assuming that R  n
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. Therefore, for
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where we used assumptions b � R

2

p
n

and n � 17.

Now, using (49), we see that the first integral in (48) can be bounded as follows:
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Next, by Claim 32, we have e�⇠
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. Hence,
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Note that the last line follows from the fact that v ·sinc (v⌘) is the Fourier transform of rect
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(x), and so, by the convolution
theorem,
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since the sinc (·) function is bounded by 1 in absolute value. Thus, (50), (51), and (52) imply that
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Next, we bound the second integral in (48). Consider ⇠ satisfying |⇠| � 10
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. Note that the following upper bound
holds for any ⇠ and ⌘:
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by Claim 25. Combining (47), (48), (53), and (55) now yields the desired result.
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Proof of Theorem 14. Note that we can choose data points x
1

, x
2

, . . . , x
n

and the vector ↵ according to the construction
in Definition 35 with v = R and b = R

4

p
logn�

. Thus, Lemmas 39, 40, and 41, as well as (30), imply that
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as desired.

H. Proof of Corollary 15
First claim of the corollary (upper bound on statistical dimension): Let t = 10
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Further, by the more refined bound of Theorem 13, for any ⌘  10
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Combining (56) and (57) gives the lemma.
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I. Proof of Theorem 8 and 10
Proof of Theorem 8. We show a lower bound on the number of samples required under the random feature map of Rahimi
and Recht by exhibiting a set of data points for which the appropriate number of samples does not suffice.
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where ⌘
1

, ⌘
2

, . . . , ⌘
s

are the s samples from the distribution given by p. Hence, (59) is equivalent to
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We again use the same construction of n data points x
1

, x
2

, . . . , x
n

2 R, according to the construction in Definition 33.
Moreover, we define ⌘⇤ to be
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where b = R/4
p
log n

�

and v = �. We will show that this choice of data points and ↵ satisfy (60).

First, we upper bound the first term on the left side of (60). Note that by Claim 26, with probability at least 1/2 over the
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samples z
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where we have let ⌘ = ⌘⇤ and applied Lemma 41.

Next, we bound the right side of (60) from below. Note that
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by Lemma 39 applied with ⌘ = ⌘⇤.
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Note that by combining (61), (62), and (63), we have that with probability at least 1/2,
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since s  n
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/400 and also because R � 3000 log
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). This completes the proof.

Proof of Theorem 10. By the assumptions of the theorem n is an integer, parameter 0 < �  n/2, and R > 0, and all
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2 , therefore all the preconditions of Proposition 4, and Theorem 13 are satisfied
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By Definition 9 and Claim 25 we have:

Z

[�1,�t][[t,1]

⌧̄
R

(⌘)d⌘ = n
�

Z

[�1,�t][[t,1]

e�⌘

2

/2

p
2⇡

d⌘

 n
�

·
 
2

e�t

2

/2

p
2⇡t

!

 n
�

·
 
e�t

2

/2

t

!

 1

Furthermore, for any ⌘  10
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Combining the bounds above gives the result.

Sampling from p̄
R

(·): Sampling from p̄
R

(·) amounts to sampling from a mixture of the uniform distribution on
[�10

p
log(n

�

),+10

p
log(n
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)] and from the tail of the Gaussian distribution: with probability 25max(R,3000 log

1.5
n�)

s⌧̄R
·

20

p
log(n

�

) sample from the uniform distribution and with remaining probability sample from the tail of the Gaussian.
Sampling from the tail of the Gaussian can be easily accomplished via rejection sampling at unit expected cost. Indeed, we
only need to generate a sample from the tail with probability proportional to the mass of the tail. On the other hand, once
we do, the expected cost of obtaining a sample via rejection sampling is inversely proportional to the amount of mass in
the tail, leading to unit cost in expectation.


