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Abstract

As artificial agents proliferate, it is becoming in-
creasingly important to ensure that their interac-
tions with one another are well-behaved. In this
paper, we formalize a common-sense notion of
when algorithms are well-behaved: an algorithm
is safe if it does no harm. Motivated by recent
progress in deep learning, we focus on the spe-
cific case where agents update their actions ac-
cording to gradient descent. The paper shows
that that gradient descent converges to a Nash
equilibrium in safe games. The main contribu-
tion is to define strongly-typed agents and show
they are guaranteed to interact safely, thereby
providing sufficient conditions to guarantee safe
interactions. A series of examples show that
strong-typing generalizes certain key features of
convexity, is closely related to blind source sepa-
ration, and introduces a new perspective on clas-
sical multilinear games based on tensor decom-
position.

1. Introduction “First, do no harm”

Recent years have seen rapid progress on core problems
in artificial intelligence such as object and voice recog-
nition (Hinton & et al, 2012; Krizhevsky et al., 2012),
playing video and board games (Mnih et al., 2015; Sil-
ver et al., 2016), and driving autonomous vehicles (Zhang
et al., 2016). As artificial agents proliferate, it is increas-
ingly important to ensure their interactions with one an-
other, with humans, and with their environment are safe.

Concretely, the number of neural networks being trained
and used is growing rapidly. There are enormous and in-
creasing economies of scale that can likely be derived from
treating them as populations — rather than as isolated algo-
rithms. How to ensure interacting neural networks cooper-
ate effectively? When can weights trained on one problem
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be adapted to another without adverse effects? The prob-
lems fall under mechanism design, a branch of game theory
(Nisan et al., 2007). However, neural nets differ from hu-
mans in that they optimize clear objectives using gradient
descent. The setting is thus more structured than traditional
mechanism design.

Safety. The first contribution of the paper is formalize
safety as a criterion on how agents interact. We propose
a basic notion of safety based on the common-sense prin-
ciple that agents should do no harm to one another. More
formally, each agent optimizes an objective whose value
depends on the actions of the agent and the actions of the
rest of the population. A game is safe if the actions chosen
by each agent do no (infinitesimal) harm to any other agent,
where harm is measured as increased loss.

The key simplifying assumption in the paper is to take gra-
dient descent as a computational primitive (Balduzzi,
2016). Questions about mechanism design are sharp-
ened under the assumption that agents use gradient de-
scent. The assumption holds broadly since the key driver
of progress in artificial intelligence is deep learning, which
uses gradient descent to optimize complicated objective
functions composed from simple differentiable modules
(LeCun et al., 2015).

A weakness of the approach is that it conceives safety more
narrowly than, for example, Amodei et al. (2016) which is
concerned with societal risks arising from artificial intelli-
gence. We argue that a necessary foundational component
of the broader Al-safety project is to clarify exactly what
safety entails when the objectives of the agents and the al-
gorithms they employ are precisely specified.

Strongly-typed games. The second contribution is to in-
troduce type systems suited to multi-agent optimization
problems (that is, games). We build on the typed linear
algebra introduced in Balduzzi & Ghifary (2016). The
nomenclature is motivated by an analogy with types in the
theory of programming. Type systems are used to prevent
untrapped errors (errors that go unnoticed and cause arbi-
trary behavior later on) when running a program (Cardelli,
1997). A program is safe if it does not cause untrapped er-
rors. Type systems can enforce safety by statically rejecting
all programs that are potentially unsafe.
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The idea underlying types in programming is that “like
should interact with like”. Typed linear algebra, defini-
tion 1, formalizes “like interacts with like” in the simplest
possible way — by fixing an orthogonal basis. Section 2 in-
troduces a wider class of games than in the literature and
defines safety. Theorem 1 shows that gradient descent con-
verges to a Nash equilibrium in safe games. Section 3 ex-
tracts the key ingredients required for safe gradients from
two warmup examples. The ingredients are simultaneous
diagonalization, i.e. the existence of a shared latent or-
thogonal basis, and monotonic covariation, i.e. that the
derivatives of the objectives have the same sign in the la-
tent coordinate system. The main result, theorem 2, is that
strongly-typed games are guaranteed to be safe.

Implications. Safety and strong-typing generalize key
properties of convexity. Convexity is of course the gold
standard for well-behaved gradients. We uncover latent
types and demonstrate safety of Newton’s method, natural
gradient and mirror descent; see sections 3.2, A2 and A3.

The main theme of sections 4 and 5 is disentangling latent
factors. We show that strong-typing in quadratic games is
closely related to blind source separation. Section 5 ana-
lyzes classical N-player games. The analysis yields a new
perspective on classical games based on tensor-SVD that is
closely related to independent component analysis.

Sections 6 and A6 switch to neural networks and ana-
lyze two biologically plausible variants of backpropagation
(Balduzzi et al., 2015; Lillicrap et al., 2016). We show that
the main results of the papers are to prove the respective
algorithms are safe.

Scope and related work. This paper lays the foundations
of safety in gradient-based optimization. Applications are
deferred to future work.

The literature on safety is mostly focused on problems aris-
ing in reinforcement learning, for example ensuring agents
avoid dangerous outcomes (Turchetta et al., 2016; Amodei
et al., 2016; Berkenkamp et al., 2016). Gradients are typi-
cally not available in reinforcement learning problems. We
study interactions between algorithms with clearly defined
objectives that utilize gradient-based optimization, which
gives a more technical perspective.

The idea of a population of neural networks solving mul-
tiple related tasks is developed in Fernando et al. (2017),
which uses genetic algorithms to adapt components to new
tasks. However, they repeatedly reinitialize components to
undo the damage done by the genetic algorithm. Our work
is intended, ultimately, to help design algorithms that detect
and avoid damaging updates. A recent survey paper argues
the brain optimizes a family of complementary loss func-
tions (Marblestone et al., 2016) without considering how

the complementarity of the loss functions could be checked
or enforced.

The idea of investigating game-theoretic and mechanism
design questions specific to certain classes of algorithms is
introduced in Rakhlin & Sridharan (2013); Syrgkanis et al.
(2015). The papers consider how convergence in games can
be accelerated if the players use variants of mirror descent.

Terminology. If a > 0 then « is positive; if > 0 then it
is strictly positive. A (not necessarily square) matrix D is
diagonal if d;; = O for all ¢ # j and similarly for tensors.
Vectors are columns. The inner product is (v, w) = vTw.

2. Safety
2.1. Types and orthogonal projections

Let us recall some basic facts about orthogonal projections.
Let (V, (e, ®)) be a vector space equipped with an inner
product. An orthogonal projection is a linear transform
7 :V — Vthatis

Ol. idempotent, w2 = 7, and
02. self-adjoint, (7wv,v’) = (v, wv’) forany v,v' € V.

Lemma 1. Let P denote an (n x k)-matrix with orthogo-
nal columns p1, ..., pk. Then the (n x n)-matrix PPT =
k k . .
i1 Pi(pi,®) = > i, pip; is an (orthogonal) projec-

tion.

Lemma 2. Iftwo orthogonal projections 7 and T commute
then their product is an orthogonal projection.

Proof. Letq := nr. If 77 = 77 then
=T AT =TT -TT=TT=q.
Checking self-adjointness is an exercise. O

Definition 1. A type Ty, = (V, (o, 0), {m,}2}) is a D-
dimensional vector space with an inner product and or-
thogonal projections w, : V. — V such that w,ws = 0
forr # sand Zle 7, = Ly is the identity. Type Ty has
dimension D and rank R.

A full rank type, D = R, is equivalent to a vector space
equipped with an orthogonal basis. Lower rank types are
less rigid, and can be thought of as vector spaces equipped
with generalized orthogonal coordinates.

2.2. Safe games

Definition 2. A game consists of a type Ty, feasible set
H C V, players [N] := {1,...,N}, losses £, : H — R,
and an assignment p : [N] — [R] of players to projections.
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The type structure and assignments specify the coordinates
controlled by each player. On round ¢, player n chooses
¢! € V and updates the joint action via

t4+1

witl =w' —m,,)(€,) where w' w't! e,

Updates leaving the feasible set can be mapped back into
it, see section Al. The projection 7 (5, specifies the coor-
dinates of the joint-action vector that player n can modify.
Example 1. Tn a block game actions w € V = [[>_, RP»
decompose as w = (wy,...,wy) where the n player
can modify the coordinates in w,,. The orthogonal pro-
jections 7, (w) = (0,...,W,,...,0) form a rank-N type
with p(n) = n forall n € [N].

Example 2. In an open game the type has rank(7y ) = 1
so the single projection is the identity and p(n) = 1 for all
n. Every player can modify all the coordinates.

Block games coincide with the standard definition of a
game in the literature. Open games arise below when con-
sidering Newton’s method, natural gradients, mirror de-
scent and neural networks.

The goal of each player is to minimize its loss. Safety is the
condition that no player’s updates harm any other player.

Definition 3. It is safe for player m to choose 5; eVif
it does no infinitesimal harm to any player

<7Tp(m)(€:n)7 an(wt)> > OfOV alln € [N]

A game is safe if it is safe for players to use gradient de-
scent: i.e. if choosing &' := V £,,(w?) is safe for all m.

It is worth getting a degenerate case out of the way. A block
game is decomposable if player m’s loss only depends on
the actions it controls. Intuitively, a decomposable game is
N independent optimization problems. More formally:

Lemma 3. A block game is decomposable if {,,(w) =
Ly (70, W) for all w and m. Decomposable games are safe.

Proof. Since 7, is self-adjoint, we have that (m,,,£,n) =
(tm&, mmn). Decomposability implies 7,,(V £,) = 0
when m # n, so

—
(T (V L), T (V £)) = tm=n
else

{nwm(wm)n%
0

which is always positive. O

2.3. Convergence

A block game is convex if the feasible set H is compact
and convex and the losses ¢, : H — R are convex in
the coordinates controlled by the respective players. Nash
equilibria are guaranteed to exist in convex block games
(Nash, 1950). However, finding them is often intractable

(Daskalakis et al., 2009). We show gradient descent con-
verges to a Nash equilibrium in safe convex games.

Theorem 1. Gradient descent converges to a Nash equi-
librium in safe convex games with smooth losses.

Proof. Introduce potential function ®(w) = 22;1 Qy, -
¢, (w) where a,, > 0 are strictly positive. Then

N
(T (V9), 9 ) = 3 (T (V). V ) (1)
n=1

Z Q- ||7rm(v£m)||§ >0

since safety implies the cross-terms are nonnegative. The
players’ updates therefore converge to either a critical point
of ® or to the boundary of the feasible set. Suppose gradi-
ent descent converges to the interior of H. Eq (1) implies
thatif V ® = 0 then 7,,,(V £,,,) = 0 for all m. By convex-
ity of the losses, the critical point is a minimizer of each
loss with respect to that player’s actions, implying it is a
Nash equilibrium. A similar argument holds if gradient de-
scent converges to the boundary, see section Al. O

Example 3 (convergence in a safe constrained game). Con-
sider a two-player block game with ¢ (x,y) = = + 2y and
l5(x,y) = 2x + y where player-1 controls  and player-
2 controls y. Introduce feasible set H = {(z,y) € R? :
22 + y? < 1}. The game is convex and safe. The set of
Nash equilibria is the bottom-left quadrant of the bound-
ary {(z,y) € H : z,y < 0and 22 + y? = 1}. Gradient
descent with positive combinations of 71 (V £1) = % and

o (Vi) = a% always converges to a Nash equilibrium.

A simple game that does not converge is the following zero-
sum game, which is related to generative adversarial net-
works (Goodfellow, 2017).

Example 4 (convergence requires positivity). Consider the
two-player block game ¢; (x,y) = zy and ¢y (z,y) = —xy
where player-1 controls x and player-2 controls y. The
Nash equilibrium is the origin (x,y) = (0,0). However,
gradient descent does not converge. Observe that V ¢; =
ya% + xa% and V {5 = —ya% — ma% som (Vi) = ya%
and 73(V o) = —x 2. The flow 71 (V £1) + m2(V £o)
rotates around the origin. No positive combination of
71(V £1) and 7o (V £3) converges to the origin.

3. Strongly-Typed Games

Strong-typing is based two key ideas: diagonalization and
positivity. Diagonalization is an important tool in applied
mathematics. The Fourier transform simultaneously diag-
onalizes differentiation and convolution:

daf

f(%):zm'wf(f) and F(f xg) =F(f) Flg)
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The SVD diagonalizes any matrix: QTMP = D. Finally,
the Legendre transform f*(n) = maxg{nT0 — f(0)} di-
agonalizes the infimal convolution

(fUg)" = f+g" for (fUg)(0) = min{f(d)+9(6—3)}.

Diagonalization finds a latent orthogonal basis that is more
mathematically amenable than the naturally occurring co-
ordinate system. Strong-typing is based on an extension of
diagonalization to nonlinear functions. Before diving in,
we recall the basics of simultaneous diagonalization.

Symmetric matrices. Any symmetric matrix A factor-
izes as A = PTDP where P is orthogonal and D is di-
agonal. A collection Ay,..., Ay of symmetric matrices
is simultaneously diagonalizable iff the matrices commute,
in which case A; = PTD,;P where D, is diagonal and P
determines a common latent coordinate system (or type).

Arbitrary matrices. The diagonalization of an (m x n)-
matrix A is A = PDQT where P and Q are orthogonal
(m x m) and (n x n) matrices and D is positive diagonal.
A collection of matrices is simultaneously diagonalizable
if A, = PD,;QT for all . A necessary condition for simul-
taneous diagonalizability is that

ATA; and AiAJT- are symmetric for all 7, 5. )

Next, we work through two examples where diagonaliza-
tion and a positivity condition imply safety.

3.1. Warmup: When are two-player games safe?

To orient the reader, we consider a minimal example which
illustrates most of the main ideas of the paper: two-player
bilinear games (von Neumann & Morgenstern, 1944). Con-
sider a two-player block game with loss functions

l(v,w)=vTAw and /{y(v,w)=v'Bw

and projections 7 /2(v,w) = (v,0) and (0,w). The
gradients are V{; = Zij(ijijaivi + viAij%’j) =
(WTAT,vTA) and V/; = (wTBT,vTB). The game is
safe if

(m1(V41), Vi) =wTATBw >0 and
(V1,m3(Vi2)) =vIBATv >0 forall vand w.

Safety requires that ATB and BAT are positive semidef-
inite. Any square matrix decomposes into symmetric and
antisymmetric components M = M?* + M* = %(M +
MT) + (M — MT) where wTM®w = 0 for all w. Thus,
a square matrix is positive semidefinite iff its symmetric
component is positive semidefinite.

We therefore restrict to when ATB and BAT are symmet-
ric. Recalling (2), we further suppose that A and B are
simultaneously diagonalizable and obtain:

Lemma 4. A two-player game is safe if A = PDQT and
B = PEQT where P and Q are orthogonal matrices, D
and E are diagonal, and DE > 0.

Proof. The assumptions imply that
(1 V1,V i) =wTATBw =wTQ(DTE)Q™w >0
and (V£41,wa Vi) = wTP(ETD)PTw > 0. O

3.2. Warmup: When is Newton’s method safe?

It was observed in Dauphin et al. (2014) that applying New-
ton’s method to neural networks is problematic because it
is attracted to saddle points and can increase the loss on
nonconvex problems. We reformulate their observation in
the language of safety.

Consider a single player open game with twice differen-
tiable loss ¢ : V' — R and projection 7w = Ij,. Newton’s
method optimizes ¢ via weight updates

WtJrl:Wt*&t with £t:nt‘H71(wt)~vg(Wt),

2
where H;;(w) = 7811? Béwv (w) is the Hessian and n* > 0.
1OWj

Lemma 5. If { is strictly convex then Newton’s method is
safe, i.e. (H™1V (,V ) > 0 for all w.

Proof. Factorize the Hessian at w’ as H = PDPT. If £ is
strictly convex then D > 0 and so

H'VLVH) =D 'PTVLPTVL >0

as required. O

Two features are noteworthy: (i) the transform n = PT¢
diagonalizes the second-order Taylor expansion of /,

1
compare £(w + &) = (W) + &7 -V L+ §ETH£
1
with {(w +Pn) = {(w) +nT(PTV () + §nTDn,

and (ii) the proof hinges on the positivity of D. Sections A2
and A3 extend the approach to show the natural gradient
(Amari, 1998) and mirror descent (Raskutti & Mukherjee,
2015) are safe using the Legendre transform.

3.3. Strongly-typed games are safe

We apply the lessons from the warmups to define a factor-
ization of nonlinear functions.
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Definition 4. The functions {{,, : V — R})_, simultane-
ously factorize if there is a triple

(PO s, (B = RY, {0 BRE 5 RYL,).
satisfying
£a(w) = gu(L(PTW),..., [L(PTw)) foralln

where Py are (D X p;)-matrices whose columns jointly form

an orthogonal basis of V and f; and g,, are differentiable,

and the g,,’s co-vary monotonically: %gﬁ‘ %Lf? > 0.

The projections 7, = P;P] define a type structure on V.
Intuitively, the outputs z; = f;(P]w) are latent factors
computed from the inputs w such that each z; is indepen-
dent of the others — independence is enforced by the pro-
jections 7;. Monotonic covariation of the functions g,, with
respect to the factors z; plays the same role as positivity in
two-player games and Newton’s method.

Definition 5. Game (Ty, {£,,}\_,) is strongly-typed if the
loss functions admit a simultaneous factorization whose
projections {T, = P/P}_| commute with {m,}}_,.

Theorem 2. Strongly-typed games are safe.

Proof.: Commutativity implies there is a basis {e;}? ; for
V that simultaneously diagonalizes the projections {7}

and {7;}. Express elements of V" as (v1,...,vp) in the
basis. Safety then reduces to showing
ag’ﬂl agn
<7T (v ) v > Z Bvi Bvi

{70, (€0)70}

Observe that %% = 0if k # [ since fj and f; are func-

tions of orthogonal coordinates. It follows that

O0m 00 _ (5~ 00m 051 (= D0u 0
81)2- Bvi 8fk 6’01‘ =1 afl Bvi

k=1
:iagm%, of\ <,
— Ofi 0fi \Ovi) ~
since the g,,’s co-vary monotonically. O

Strong-typing is a sufficient but not necessary condition for
safety. More general definitions can be proposed according
to taste. Definition 5 is easy to check, covers the basic ex-
amples below, and incorporates the concrete intuition de-
veloped in the warmups.

3.4. Comparison with potential games

The proof of theorem 1 suggests that safe games are related
to potential games (Monderer & Shapley, 1996). In our

notation, a block game is a weighted potential game if there
exists a potential function ® and scalar weights a,, > 0
satisfying

bo(W) =l (WH T, V) =y, - (<I>(w) —d(w+ ﬂ'nv))

forallw,v € Vandn € [N].

We provide two counter-examples to show that strongly-
typed games are distinct from potential games.

Example 5 (a strongly-typed game that is not a potential
game). Let ¢1(x,y) = x1y1 + 222y2 and lr(x,y) =
3z1y1 + 4x2y2. The block game with projections onto
x and y is strongly-typed but is not a weighted potential
game.

Example 6 (a potential game that is not safe). Let
l1(z,y) = ay and lo(x,y) = zy — 9z, with projections
onto = and y. The game is a potential game but is not safe
because

(m1(V ), Vi) = ((y,0),(y — 9,2)) = y* — 9y

can be negative.

4. Quadratic Games

Given a collection of (D x D)-matrices { A }N_, and D-
vectors {b("™)} the corresponding quadratic game has loss
functions

l(w) = %WTA(R)W +wTb(™,

We assume the matrices A (™) are symmetric without loss
of generality.

4.1. Open quadratic games

In an open quadratic game, each player updates the entire
joint action.

Corollary 1. An open quadratic game is safe if there is
an orthogonal (D x D)-matrix P, diagonal matrices D™
such that DM D®) > 0, and D-vector b such that

AW —PDMWPT gnd bW = AWp,

We derive corollaries 1 and 2 from theorem 2. Alternate,
direct proofs are provided in appendix A4.

Proof. Let fi(x) = x(5 — b;) and g,,(z) = ZiD:1 dgn) - Z
Then

ta(w) = g (fi(PIW), ... fo(PLW)).

where p; are the columns of P, is strongly-typed. O



Strongly-Typed Agents are Guaranteed to Interact Safely

The Hessian of £,, is Hy, = A ™) The conditions of corol-
lary 1 can be reformulated as (i) the Hessians of the losses
commute H, H, = H, H, _ for all m and n, and (ii)
the Newton steps for the losses coincide (when the Hes-
sians are nonsingular):

H, (V) = (A™) A (w —b) = w — b.
——

Newton step

Example: Disentangling latent factors. An important
problem in machine learning is disentangling latent factors
(Bengio, 2013). Basic methods for tackling the problem
include PCA, canonical correlation analysis (CCA) and in-
dependent component analysis (ICA). We show how the
factorization in corollary 1 can arise “in nature” as a vari-
ant of blind source separation.

Suppose a signal on D channels is recorded for 7' time-
points giving (D x T')-matrix X. Assume the observations
combine L independent latent signals: X = MS where S
is an (L x T')-matrix representing the latent signal and M
is a mixing matrix.

Blind source separation is concerned with recovering the
latent signals. The covariance of the signal is A = XXT.
Factorize A = PDPT and let S = PTX. Although this
may not recover the original signal, i.e. S = S in general,
it does disentangle X into uncorrelated factors:

SST = PTXXTP = D.

Finally, recall that finding the first principal component can
be formulated as the constrained maximization problem:

argmax wTAw.

{w:[lwlla=1}
Now suppose there are N sets of observations
XM XWN) generated by a single orthogonal

mixing matrix acting on different sets of (potentially
rescaled) latent signals: X(") = PS(™) . Finding the first
principle components of the signals reduces to solving the
constrained optimization problems

N
argmax wTX™(XM)Tw 3)
{w:llwll2=1} ne1
Corollary I implies that (3) is a safe. Note the corollary im-
plies the optimization problems have compatible gradients,
not that they share a common solution. In general there are

many Nash equilibria, analogous to example 3.

Quadratic games and linear regression. The blind
source separation example assumes that the linear terms
b(™ in the loss are zero. If the linear term is nonzero
then linear regression is a special case of minimizing the
quadratic loss. Safety then relates to searching for weights
that simultaneously solve linear regression problems on
multiple datasets.

4.2. Block Quadratic Games

The block quadratic game has losses as above; however
the action space decomposes into (w1, ..., wy) with cor-
responding projections. Block decompose the components
of the loss as

A AR b{"
AW =1 © | andb™ = |
AV AR b{y

Corollary 2. A block quadratic game is safe if there are:
(i) (D x D)-orthogonal P with P,,, = 0 for m # n;

(ii) (D x L) matrix R with R, diagonal for all n;

(iii) diagonal (L x L)-matrices D™ with DMD™ > (;
(iv) and a D-vector b

A" =PRD™RTPT  and

b™ = AMb  foralln.

such that

The notation P,,,,, and R.,,, refers to blocks in the rows and
columns of P and columns of R.

Proof. Let p; denote the columns of P and g,(z) =
ZlL:l dl(") - z1. Given [, construct P; by concatenating the
columns p; of P for which the corresponding entries of R;;
are nonzero and let r; be the vector containing the nonzero
entries of R,;. Define fi(x;) = r] (%t —by) - (r]x;). Then

(W) = gn (fl(PIw), N .,fL(P;w)).

It is an exercise to check the game is strongly-typed. O

Example: Disentangling latent factors. We continue
the discussion of blind source separation and safety. Sup-
pose that the mixing matrix decomposes into blocks

Mlo
M = :
MN.
The blocks generate multiple views on a single latent signal,

(Kakade & Foster, 2007; McWilliams et al., 2013; Benton
etal., 2017). The n™ view is M,,.S.

As in the example in section 4.1, now suppose there are N
sets of observed signals generated from [V sets of latent sig-
nals. Each agent attempts to find the principal component
specific to its view on its set of observations. Corollary 2
implies that the problems

N
argmax  wTX™(XM)Tw
{wn:llwnll2=1}

n=1
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can be safely optimized using gradient descent if the mix-
ing matrix has the block form

Mno = Pnn . Rno

where P, is orthogonal and R,, is diagonal. In
other words, if the views are generated by rescaling and
changing-the-basis of the latent signals.

The open and block settings share a common theme: Safe
disentangling requires observed signals that are generated
by a single (structured) mixing process applied to (arbi-
trary) sets of independent latent signals. The same phe-
nomenon arises in multi-player games, resulting in tensor
decompositions that generalize ICA.

5. Multi-Player Games and Tensor-SVD

A classic N-player strategic game consists in finite action-
sets A,, and losses /,, : A = ]_[7]:[:1 A, — R. Enumerate
the elements of each set as A,, = [D,], and encode the
losses as (D1, ..., Dy )-tensors

Apla, ... an] =0y (a1,...,ay) where ay, € [D,,].

Given a collection of N such tensors, define the corre-
sponding multilinear game' as

Co(Wi,.o o, WN) = Ap X1 W1 X XN Wy

Di,....Dn
= Z Alag,...,an] - wila] - wilan].

al,‘..,aN:1

The classic example is when actions are drawn from the
D,,-simplex AP» = {w, € RP» Zf;l wpla] =
1 and w,,[a] > 0 for all }.

We now recall the orthogonal tensor decomposition or ten-
sor SVD (Zhang & Golub, 2001; Chen & Saad, 2009). A
tensor admits a tensor-SVD if it can be written in the form

L
Adel~ull®-~-®ulN:D><1Ul><---><NUN
=1

where U" is a (D,, x L)-matrix with orthogonal columns
and D is a diagonal (L, ..., L)-tensor.

Corollary 3. A multilinear game is safe if it admits a si-
multaneous tensor-SVD

A(?L):D(n) ><1U1><'~-><NUN

where the diagonals have the same sign coordinatewise.

"We use the n-mode product notation X, see de Lathauwer
et al. (2000).

Proof. Let g, (z) = Zle dl(")zl and f;(x) = [[,, n. De-
fine P; as the (D x N)-matrix whose n'™ column is u}’ in
the block of rows corresponding to w,, and zero elsewhere.
Then

and the game is strongly-typed. O

Not all tensors admit a tensor-SVD. However, all tensors
do admit a higher-order SVD (de Lathauwer et al., 2000).
Section A5 explains why simultaneous HOSVD does not
guarantee safety and the stronger tensor-SVD is required.

Example: Disentangling latent factors Suppose S is a
latent signal with independent non-Gaussian coordinates.
We observe X = PS + € where P is a (D x L) mixing
matrix and € is Gaussian noise. By whitening the signal
as a preprocessing step, one can ensure the columns of P
are orthogonal. ICA recovers S from the cumulants of X,
see Hyvérinen et al. (2001). The main insight is that the
4™_order cumulant tensor admits a tensor-SVD:

A[ivj7 k7l] = Cum(xia xja-rkwxl)

= § PionpquPlr : cum(so, Spy Sqs Sr)

0,p,q,T

= Z PierTPkrPlr . kurt(sT)

since cum(s,, Sp, Sq,5r) = O unless o = p = s = r be-
cause the signals are independent. The expression can be
written A = ICx 1 P X5 P x 3P x4 P where diagonal tensor
IC specifies the kurtosis of the latent signal. In other words,
computing the tensor-SVD recovers the mixing matrix and
allows to recover the latent signal up to basic symmetries.

Following the same prescription as the examples above, if
there are IV sets of observations generated from NV latent
signals by the same mixing matrix, then the resulting cu-
mulant tensors satisfy corollary 3.

6. Biologically Plausible Backpropagation

Our ultimate goal is to apply strong-typing to safely opti-
mize neural nets with multiple loss functions (Marblestone
et al., 2016). Doing so requires constructing variants of
backprop that allow the propagation of multiple error sig-
nals. First steps in this direction have been taken with bio-
logically plausible models of backprop that introduce addi-
tional degrees of freedom into the algorithm.

Feedback alignment is a recent algorithm with compa-
rable empirical performance to backprop. It is also more
biologically plausible since it loosens backprop’s require-
ment that forward- and back- propagating weights are sym-
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metric (Lillicrap et al., 2016). The main theoretical result
of the paper, see their supplementary information, is

Theorem. Let dgp = WTe denote the error backpropa-
gated one layer of the neural network. Under certain con-
ditions, the error signal computed by feedback alignment,
dra = Be, satisfies

dpa=a - Whe where a > 0

and W is the pseudoinverse of W.

Proof. See theorem 2 of Lillicrap et al. (2016). O

Corollary 4. Under the same conditions, feedback align-
ment is safe.

Proof. We require to check (dpa,d5p) > 0. Applying
the theorem obtains

(0pa,0pp) =a- (Wie, WTe) = a- (WW'e,e).

Observe that WW T is an orthogonal projection by stan-
dard properties of the pseudoinverse so

(0ra,0pp) =a- (WWie, WW'e) >0

as required. O

In fact, Lillicrap et al. (2016) provide experimental and the-
oretical evidence that feedback alignment learns to align
the feedforward weights with the pseudoinverse of the
backconnections. In other words, they argue that feedback
alignment learns safe gradients.

Another variant of backprop is kickback, which loosens
backprop’s requirement that there are distinct forward- and
backward signals (Balduzzi et al., 2015). Kickback trun-
cates backprop’s error signals so that the network learns
from just the feedforward sweep together with scalar error
signals. One of the main results of Balduzzi et al. (2015) is
that kickback is safe, see section A6.

7. Conclusion

Backprop provides a general-purpose tool to train config-
urations of differentiable modules that share a single ob-
Jjective. However, effectively training populations of neural
networks on potentially conflicting tasks, such that they au-
tomatically exploit synergies and avoid damaging incom-
patibilities (such as unlearning old features that are not use-
ful on a new task) requires fundamentally new ideas.

A key piece of the puzzle is to develop type systems that
can be used to (i) guarantee when certain optimizations can
be safely performed jointly and (ii) flag potential conflicts
so that the incompatible optimization problems can be sep-
arated. The paper provides a first step in this direction.

From a different perspective, convex methods have played
an enormous role in optimization yet their relevance to
deep learning is limited. The approach to strong-typing
developed here is inspired by and extends certain features
of convexity. One of the goals of this paper is to carve
out some of the key concepts underlying convex geometry
and reassemble them into a more flexible, but still power-
ful framework. The proposed definition of strong-typing
should be considered a first and far from final attempt.

A large class of natural examples is generated by imposing
strong-typing on simple quadratic and multilinear games.
It turns out that, in these settings, strong-typing yields
the same matrix and tensor decompositions that arise in
blind source separation and independent component anal-
ysis, where multiple latent signals are mixed by the same
structured process. An important future direction is to dis-
entangle nonlinear latent factors.

Strong-typing and safety in neural nets. We conclude
by discussing the relevance of the framework to neural net-
works. Firstly, neural nets and strong-typing have many of
the same ingredients: neural nets combine linear algebra
(matrix multiplications and convolutions) with monotonic
functions (sigmoids, tanhs, rectifiers, and max-pooling
amongst others). Rectifiers and sigmoids have the addi-
tional feature that their outputs are always positive.

Secondly, there is a deeper connection between rectifiers
and strong-typing. Rectifiers are orthogonal projections
on weights: p(WTx) zeroes out the columns w; of W for
which w]x < 0. Rectifiers are more sophisticated projec-
tions than we have previously considered because they are
context-dependent. The columns that are zeroed out de-
pend on W and x: the rectifier-projection takes W and x
as parameters, compare remarks 1 and 2 in the appendix.
Representation learning in rectifier networks can thus be
recast as learning parameterized type structures. An inter-
esting future direction is to consider tensor-switching net-
works (Tsai et al., 2016), which decouple a neuron’s deci-
sion to activate from the information it passes along (for a
rectifier, both depend on WTx).

Finally, it has long been known that the brain does not use
backprop (Crick, 1989). One possibility is that backprop is
the optimal deep learning algorithm which, unfortunately,
evolution failed to stumble upon. Another is that there are
evolutionary advantages to not using backpropagation. For
example, it has been argued that the brain optimizes multi-
ple loss functions (Marblestone et al., 2016). Does jointly
optimizing or satisficing multiple objectives require learn-
ing mechanisms with more degrees of freedom than back-
prop (Balduzzi et al., 2015; Lillicrap et al., 2016)? Safety
and strong-typing provide the tools needed to frame and
investigate the question.
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