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A. Mixing Properties of Probabilistic Automata

Lemma 2 (n-mixing for PFA) Let A be PFA and assume that it is (C, 0)-geometrically mixing in the sense that for some
constants C > 0,0 € (0,1) we have

Atf /At
vVt € N, ,uf:sup—Ha a/ i
aa la—ad|h

< Co',

where the supremum is over all probability vectors. Then we have 1,, < C/(0(1 —0)).

Proof of Lemma 2:

We start by controlling the term 7, defined by

t
on =1 %, D i
j=i+1l
We proceed similarly to Lemma 7 of (Kontorovich & Weiss, 2014). By definition of the total variation
norm || - {|7v,

- 1 sup sup al AyAL AT A8 al A A AT 1 ALB
i = 5 -
2 ueXi—lo0’€X ZCHt—i+1 aTAquﬂ OéTAuAU’B ’
. . . . . . T
where Ay = > vez A,. At this point, it is convenient to introduce the vector alg = %.

Indeed, we then have the rewriting

sup sup
ueXi—1l g0’ex ZCxt—it1

Mi,j

(au,a - au,a’)TAj_i_lAZﬂ’

DN = DN

< sup sup |[|(ou,o _au,a’)TAj_i_lHIHAZB”oo

ueXi—1 o,0'€X ZCEt—it+1

where we used a simple application of Holder inequality. Since A is a PFA, we note that || Az 5|00 <
1 because || 3, _;_ ;41 AzBlloc = 1 and all the entries are non-negative. Also note that oy B =

ey o llt = 1. Thus [lay,e — vy 0| < 2. We deduce from these steps that

_ o\ T 4i—i-1
s < sup 0= ) Is

a0’ llov = [y 7

where the supremum is taken over all «, o' that are probability vectors. We note that the later quantity
is precisely the definition of the coefficient uf_i_l. Assuming (C, #)-geometrically mixing, that is
p < C67 for all j, this implies that

Ni,j < cgi—i—t,
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We then deduce that

t t—2
., C o C1-ot c
o< 1 i—itl <= 7= — < )
s +Cf??§tj=i+19 5 +;9) 9 1-0 S0(1-0) O

The following result provides a control of the 7, coefficients, and shows this can be made explicit in specific cases.

Corollary 1 Let A be PFA with n states and assume that its matrix A has a spectral gap, that is | 2(A)| < 1. then there
exists C such that 1), < m. When the corresponding chain is further aperiodic, irreducible and reversible,
we further have C' < \/n.

Proof of Corollary 1:

The first part of the result is folklore, and can be proven using some tedious steps involving the Jordan
decomposition of the matrix see e.g. Fact 3 in (Rosenthal, 1995).

When the chain is irreducible, aperiodic and more importantly reversible, the spectral gap admits the
following characterization, see Lemma 2.2 from (Kontoyiannis & Meyn, 2012):

Av
v2(A) = Aa(A) = sup { ||||V|”2 cvst vl #0011 = 0}.
2
Thus, from Ay(A) < 1 together with a change of norm from || - ||; to || - ||2 and a standard argument
(closely following that of Lemma 7), we obtain that
wy <O,
where C' = max,cgn» Hi”; =M. |

We end this section with a more technical lemma, that is useful to decompose terms in the proof of Theorem 3.

Lemma 6 (Mixing times of PFA) Ler A = («, 8, {A,}) be a PFA. Then, for any s > s’ € N it holds
1A% — BaT Ao < 20t

Proof of Lemma 6:

Let denote o] = o A%. We need to bound |45 — B ||s. Recall that for any matrix M the
| - [loc-induced norm is given by || M || = max; 3, [M (4, j)| = max; [[M(4,:)]|1. The ith row of
As — Ba. is given by eiTASl — a, where e; is the ith column of the identity matrix. In particular,
eiTAS/ is the distribution over states after starting in state 7 and running the chain for s’ steps, and
a/ is the distribution over states starting from the distribution given by « and running the chain for s
steps. The latter can also be rewritten as o] = o A% = aT A5~ A5 = o] A%, where a__,
again a distribution over states. Therefore we obtain the desired bound, since:

’ ! !
1A% = Ba oo = Q%IIGIAS —ay_ A

is

! !
< swp o] A* —ag A |y
~

aras |l — a2l
<2ul

llei — as—orl1
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B. Geometry of Stochastic Weighted Automata

Lemma 3 (claim (i)) For any w € ¥* we have || A, B]|g < 1.

Proof of Lemma 3 (claim (i)):

We shall use the cone monotonicity property of || - ||g, which says that 0 <x u <x v implies
|lullg < ||v||g. First note that by construction of K we have 0 <x A,,(. If we show that 4,8 <x
also holds, then cone monotonicity implies || A, 5|z < ||5]lg = 1.

To prove the claim note that because (3 is an eigenvector of A of eigenvalue 1 we have 5 = A*8 =
> jw|=t AwB- Therefore, 3 — Aw.B = Z\w’\:|w\:w’7§w’ A, B which is a vector in C because convex
cones are closed under non-negative linear combinations, and we conclude that A,,8 <x 5. (|

Lemma 3 (claim (i) For any w € ¥* we have ||a" Ay, ||g.« = aT A, pB.

Proof of Lemma 3 (claim (ii)):

By unrolling the definitions of the dual norm and Bz we get

HaTAwHB,* = sup ol Ayv .
—B<kv<kB

Now note that for any v such that 5 — v € K we have
aTA’u;U = OKTAwﬁ - OCTAw(ﬂ - U) < aTAwB )

where we used that 3 — v € K implies A, (8 —v) € K implies o' A, (8 — v) > 0. Since —f <x
B <x B3, the supremum in the definition of ||a'" A, ||, is attained at v = /3 and the result follows. [J

C. Mixing Properties of Stochastic Weighted Automata

Lemma 4 (n-mixing for SWFA) Ler A be SWFA and assume that it is (C, 0)-geometrically mixing in the sense that for
some C > 0,0 € (0,1),

< Cot .

TAt _ TAt
b = sup llevg oy A'llg,
ao,(xl:(xJB:(xIBZI HOZ() - al”ﬂ,*
Then the n-mixing coefficient satisfies

«_C
Ter S g1 =)

Proof of Lemma 4:
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o . T
The proof follows the same initial steps as for Lemma 2. Introducing the vector alo = %,

we then have the rewriting

T pi—i—1
sup sup (au,a - au,a’) Al AZB
ueLt—l g o’eX ZCut—itl

i

< sup sup (e = auor) T AT 5]l AZB] 5

weXi—1 g,0'€X ZCEt—it+1

= N

where we used a simple application of Holder inequality and the norm induced by /3. Since A is a
SWFA, the same argument in the proof of Lemma 3 (i) can be used to show that ||Az ]|z < 1 for
any Z C X'77+1. On the other hand, from Lemma 3 (i) we have 1 = o, .8 = ||a, , [ 5,+. Thus
lotw.o — o || g+ < 2. We deduce from these steps that

)

7;.; < sup [(a—a)TAT= 4.
i X
T o = /| g,

where the supremum is taken over all o, o/ that satisfy o' 3 = 1 We note that the later quantity
is precisely the definition of the coefficient uf_i_l. We then conclude similarly to the proof of
Lemma 2. O

Lemma 7 (Geometrical mixing of weighted automata) Let A = (o, 3, {A,}) be a stochastic WFA, A = _A,, and

Av| g«
78(A) = sup {W cvst |vlp. #0078 = 0} .

be its spectral gap with respect to 3. It holds that

|ag A" — o A'||g..

A t
Hy = sup < (A) .
ag,ai:a] B=a] B=1 Hao - al”ﬁ,*
Proof of Lemma 7:
To this end, note that if o, vy are are such that ag = alT = 1, then v = o — «; is such that

vT3 = 0. A crucial remark is that since A is a weighted automaton matrix, oy A3 = o] A3 = 1
and thus w = A(ag — ) also satisfies w3 = 0. Likewise, (ag — o) T A*3 = 0 forall t € N.

A second remark is that if || A%v||g. = 0 for some s < ¢, then | A’v||5, = 0. Thus, we can restrict
to v such that || A°v||g . # 0 for all s < ¢. Then, it comes for such v = ag — o,

1A Vllg _ [AA " w]lg.  [Av]s.s
B A=ty

<s(A)"

e vllse

V]

For the last inequality, we used the fact that since A is a weighted automaton matrix, and v = g —ayq,

then v A3 = 0 for all s. This guarantees that indeed % < y3(A) for all s. O

Lemma 8 (Mixing times of SWA) Ler A = («, 3,{As}) be a SWFA. Then, for all s > s’ € N it holds
14 = BT A%ll5 < 2u

4
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Proof of Lemma 8:

Let o] = a' A%, To prove this we proceed as follows:

14 = Ballls = sup [I(A* — Ba])vlls
lells<t

_ T s’ T
= sup sup u (A° —pPBag)v
lolls <1 [lullp,«<1

= sup |lu"(A% —Ba])lp.
.. <1

= sup fu' (A — Bal_y A )||g. -
[lullg,«<1

Next we note that for any u such that ||u||s . < 1 we have |u' 8] < 1, so:

lu" B g« = lu" Bllle ll5,x

< ey |

By -

Furthermore, the same argument we used to show that [|a " A, |5« = o' A, 3 implies that || o || 5,« =
|aT A« = aT A'B3 = 1. Therefore, we see that ||ul|s. < 1implies [[u' By |5« < 1, and we

get the inequality
|A* = Ballls < sup sup  luf A% —ug A% ||g..
lutllg,« <1 fluzllp,«<1
< uf, sup sup ||U1 —U2||B,>k
lluillg,« <1 [luzllg,«<1
< 2l H

D. Single-Trajectory Concentration Inequalities for Probabilistic Automata

Theorem 2 (Single-trajectory, entry-wise concentration) Let A be a PFA that is (C,0)-geometrically mixing, and
& ~ pa € P(X¥) a trajectory of observations. Then for any u € U,v € V and § € (0, 1) it holds

UV UV luv|C \/ luv| — 1y In(1/0) <
IP)(Ht,E (u,v) — Hu,v) > 90 —0) (1+ ; ) 5y <6

Proof of Theorem 2:

We control 1, by a direct application of Lemma 2.

Control of ||g||Lip: Let us fix u € U,v € V define g(§) = tﬁi{év(um). We first control the
regularity of f.

To this end, let &’ be a trajectory {’ = x1,...,Zk—1, T}, Tht1, - - - , T that only differs by one element
from &, say at position k. Then, we get for any u, v

t

g(&) — g(fl) = Z(H{l's co T un|—1 = w} — ... x;v e Tofuv|—1 = uv})

s=1

< Hsel[l,t]:kes:s+|uv] —1]}.

5
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Now, in order to bound |[{s € [1,¢] : k € [s : s + |uv| — 1]}| note that k € [s : s + |uv| — 1] if and
only if s < k < s+ |uv| — 1. From the first inequality we see that s < k, and from the second one
s 2 k — |Juv| 4+ 1. Combined with the restrictions on s, this means that

{s € [l,t] : k€[s:s+|uw|— 1]} = |[max{1l, k — |uv| + 1}, min{k, ¢}]| < |uv],

which show that ||g||ip < |uv].

Combining the two quantities Combining these two results, and noting that ¢ + |uv| — 1 symbols
appears in g(&), we deduce that Ve > 0,

P(t(ﬁg&v(u,v) — H"Y (u,0)) > Juv|(t + |uv| — 1)5) < exp ( -

2(t + Juv| — 1)0%(1 — 0)%e?
C?2

or equivalently, for all § € (0, 1),

P(ﬁgév(“’” = 1" (u,0) > WW 9(10 ) ln(zl/g)) <.

The proof of following result is more challenging.

Theorem 3 (Single-trajectory, matrix-wise) Let py € P(X“) be as in Theorem 2 and define the probability mass
mY =3 v vey Je(wv). Then, forall § € (0,1),

~ _ 2C 2mu:V
Uy {uyv
P(IHt —H" |2 > <\/Z+ 1_0> ;

+0(21L_C’0)\/(1 Lt—l)min{|U||V|,2;1,{71\;}111(1/6)> <5,

Proof of Theorem 3:

Let us introduce the function g(¢) = | HXY — H“"Y 5. We first control llg|| Lip then E[g(£)], before
applying Theorem 1.

Step 1: Control of ||g||1:p. In this step, we show that

L -
lgllzip < ;\/mm{\UHVL 2nyny }

where L = maxy, ey vev |uv| denote the maximal length of words in U - V and gy = |¢ € [0, L] :
|Ue| > 0|, ny = |¢ € [0,L] : |V| > 0], denote the number lengths such that the set Uy = {u €
U : |u| = £} (respectively Vp = {v € V : |v| = £}) is non empty. Note that the second term in
the min can be exponentially smaller than the first. For example, taking U = V = %<L/2 we have
|U||V] = O(|2|F) while nyyny = O(L?).

Step 1.1. Let £’ ~ p be a trajectory &' = x1,...,%k—1, L}, Tk+1,- - -, T¢ that only differs by one

6
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element from &, say at position k. We note that

SUY  F5UY SUY HUY SUY UV
VALY = H VNl = Y — BV | <Y — B s

su Z (Z Z Wz Zopjuoj—1 = w0} — g 7)o Tp -1 = uv})q,,)2

RV tHQHQ uweU veV s=1
< ( |uv|q) < su luvl? q2.
<y X () < o a2 S 3

Let L = maXycy,vey [uv|. A simple bound is then ||g||Li, < £+/[U[[V], which is essentially
optimal if all words uv, u € U, v € V have same length.

Step 1.2. A more refined bound may be helpful in case many words have length |uv| much smaller
than L. To his end, let us write Hy"Y = 1 20| M, with M (u,v) = by = H{as .. Tuy jun|—1 =

wv}. Similarly, let Htu 5)’ =1 23:1 M w1th the obvious definition. Now, by the same argument we
used to bound ||g||1.;p in the entry-wise case, we have

k k
LI -m) = Y Mo-Mi= Y A

s=k—L+1 s=k—L+1

since for s < k — L + 1 or s > k we must have M, = M.

Now let us partition the sets U and V' as disjoint unions of sets with strings of the same length. That is,
we write U = UL U, with U, = U N 2¢, and V = ULV, with analogous definitions. This allows
us to write M € {0, 1}Y*V as a block matrix M = (M»9)o<; j<r with M3 € {0,1}VixVi,

For simplicity of notation, in the sequel we are assuming that Uy, V, # @ for all 0 < ¢ < L, but
the argument remains the same after we remove the empty sets of rows and columns. Note that by
definition we have M%7 (u,v) = I{@ ... 254i+j—1 = uv} for any u € UY; and v € V;. This implies
that each of the block matrices M7 contains at most one non-zero entry.

If we make analogous definitions and write M/, = (M s/” )o<i,j<L» then we obtain a block decompo-
sition for A; = My — M, = (A%7)o<i,j<r, Where each block is either:

1. zero,

2. a {0, 1}-matrix with a single 1,

3. a {0, —1}-matrix with a single —1,

4. a{0,1, —1}-matrix with a single 1 and a single —1.

In any of these cases one can see that the bound [|A%7 ||y, < [|AL||F < /2 is always satisfied.
Therefore, we have [|A, |13 < [|A, |17 = 32, ; |AY[|E < 2nyny, where

ny = |£€ [O7L] : |UZ‘ >O|a
ny = |0el[0,L]: Vi >0].

By plugging these estimates into ﬁggv Hy HYY ¢ we finally get

Ly/2nymy

|y = B < =,

t,€

Therefore we obtain the bound ||g|| rip < (Lv/2nymny)/t.
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Control of E[g(¢)]. We now want to control the following quantity E[| XY — Y ||,]. More
precisely, we show in this step that

0 (L2 — 9) (ZUEL{,UEV ﬁ(uv))
t b
,and fy(w) = 1370 fo(w), where f,(w) = P[¢ € 25 TwX®].

SUY FUY
E[|HY — H V[l <

Step 2.1. Let ¢ € RY be a unit vector (||g]|2 = 1.) Then, by Jensen’s inequality, the norm of
Hi'{ Y _ FI? Y is controlled by its Frobenius norm

E(|H"Y — B V|2 < E[|HDY - HY|3)

< B (A o) — A (0 )
ueUd wveV
< DD E[(HY (u,v) — HY (u,0)))
ucl veV
= > |whevE[(fi(w) = fi(w))?]
weld-V

where U - V is the set of all words of the form u - v withw € U and v € V; |w|y,y = |(u,v) €
UxVv: = w| and fi(w) = %22:1 bs . with the notation defined above. We also use

fe(w) = [ )] =15 fo(w), where f(w) = P[¢ € ¥*~'wX*]. This implies that we have a
sum of variances, and each of them can be written as

E[(fi(w) = fi(w))*] = E[fi(w)’] = fi(w)?

An important first observation is that we can write f,(w) = a A=A, 3. Furthermore, it follows
from A being a probabilistic automaton that le‘:l fs(w) = 1 for all s and [. This suggests that

we group the terms in the sum over W = U - V by length, so we write W; = W N X! and define
L; = maxyew, |wly,y the maximum number of ways to write a string of length [ in W as a product
of a prefix in U and a suffix in V. Note that we always have L; < [ + 1. Henceforth, we want to
control the following terms for all possible values of [:

S ol (B ()]~ o)) = 55 3 ke [E (wa> - (Zt:fs(w)> }

weW, weW,;

Step 2.2. Let us focus on each of the quadratic terms. On the one hand, it holds

<Zfs<w>> — S w22 Y fw)few),
s=1 s=1

1<s<s’ <t

while other on the other hand, we get

t 2 t
(stwj = DEBLI+2 Y Elbswbsl.
s=1 s=1

1<s<s'<t

Hence this enables to derive the following bound

EIIANY — B2 < 33 |wuv[z 1= fo(w) fs(w)
=0 weW; s=1

2 > (E[bs,wbsuw} — fs(w)fs (w))} : (6)

1<s<s'<t

8
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Step 2.3. In order to control the first term in (6), we remark that
t

Z Z |’LU u,v Z(l - fé(w))fs(w) Z Z(l - fs(uv))fs(uv)

=0 weWw; s=1 ueEU,veY s=1

Z Zfs(uv)

ueU,veY s=1

= t Z fi(uv). @)

ueU,veY

N

Step 2.4. We thus focus on controlling the remaining “cross”-term in (6) and to this end we study, for
w € Wy, the quantity

Elbs,wbs'w] = fs(w)fo(w) = PlEeXTI08 5] — (ol A1 A4,B8)(a’ A* T A,B),
where we introduced for convenience the set Zfl;_s = w5 N 2% 5w, Introducing as well the
vectors ol = a' A o = oA ! and the transition matrix A5, = 35 .. A,

corresponding to the “event” Ef;fs, it comes
T — T
Elbs o) = folw)fow) = al (457" = Aual_ A, )8.
We now discuss two cases. First the case when s’ — s > [, then the case when s’ — s < [.

Note that if ' — s > |w| = [, then ¥~ simplifies to £ 5 = wX* !y and thus A 5 =
A, A% 571 A, For such words, we thus obtain

Oé;r—l (AfuLS - Awﬂa;—lflw)ﬁ = aZ—lAw (AS,fS?l - 501—'—1)Aw5
ol Ay |1 A% =57 = Ba) _ [lool| AuwBlloc -

N

Moreover, from Lemma 6, it holds ||A¥ ~*~! — Bal |[lee < 24 _,_,. Also, it holds that
| AwBllso < 1. Finally, since o] | A, is a sub-distribution over states, we have

Dyl Aulln = Y [whval AuB
weW; weW;
= Z [wle,v fo(w) = Z fs(uv) .
weW,; ueU,veV:uveW,

Now, on the other hand if s — s < [, using the fact that E‘Z:*S C wESLS, then

ol (4570~ Aupal L Au)B < aliAu(4970 = pal_ A4,)8
= fs(w)(1 = fo(w)) < fs(w) .
U’st(w) = ZUEZ/I,’UEV:UUEWl fs(’LL’U).

Step 2.5. Therefore, combining the above steps, so far we have seen that for a fixed [ > 0, the sum
Zwew,, [wle,v ZKKS,@(]E[bS,wbS/’w} — fs(w) fs (w)) is upper bounded by:

> Yoo flwn)@ph o s —s =1+ I{s — s <1})

1<s<s' <t ueld weV:|uv|=l

= Z z_:fs(uv) { Z 2t s —s> 1+ —s <1} .

weU WEV:|uv|=1 s=1 s'=s+1

So in this case we again see that ),y |w
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Now note that ZZ,:S_H I{s'—s < 1} = min{l—1,¢—s} < [— 1. Furthermore, using that y%* < C¢?
we get

t
Sopho s —s>1 = t=s+1} Y

s'=s+1 k=0
_ etfsflJrl C
< .
1-60  ~1-96

CLt > s+ 1)

N

In conclusion, we get

Z ifs(m’ [ Z 2Ms/ s —s >} +1{s —s <}

weU,veV:|uv|=1l s=1 s'=s+1

< <11+209) > tifs(uv)

wEU,wEV:|uv|=l s=1

< (z-1+12_09> > flw) .

ueU,vEV:|uv|=l

Finally, putting all the pieces together and introducing L = maxy¢cy.v |w|, we get from equations

(6), (1), (8),

L D D (T (R ec

1-6
=0 ueld ,veV:|uv|=l

4C ] Zueu,uev fi(uv)
1-6 t '

< [2L1+

Step 3. Application of Theorem 1. It remains to apply Theorem 1 with

L -
lgllzip < ;\/mm{\UHVL 2nyny},

E[|ANY — V)] < <\f JTCe) \/QZUEU’T”JC““”),

for some constant C. After some rewriting, it comes

X : i
P - H“"|2><f+ 1209>\/ > ctimey Joluv)

t

_|_

(ILCG)\/<1 N Lt— 1)min{|U||V|,2;1tuny}ln(l/6)> <5

E. Single-Trajectory Hankel Concentration Inequalities with Finite-State Control

Lemma 5 The Hankel matrix H = flﬁ'{gv computed in Algorithm 3 satisfies E[ﬁu’v] = Hu,v , where ﬁu,v ]
a block of the Hankel matrlx corresponding to the stochastic WFA A, = (&, 3, {As }) where we introduced the modified

ar=(1/%) ZS oo (A/K)S.  We denote by f the function computed by A,.

10
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Proof of Lemma 5:

For any ¢t > 0 and w € X* let us define the function ¢, : ¥ — R given by

H{Os+1as+1 e Os+\uv|as+|uv| = w}
KETT(@1 - Q|01+ Ospw])

Ps,w(T) =

where z = (01, a1)(02,a2) - - Thus the entries of the Hankel matrix computed in Algorithm 3 can
be written as H (u,v) = (1/t) Zg 0 Ps,uv(§). Now note that the expectation E[¢p, ,,] with respect to
a trajectory £ ~ pp can be written as

Z P[¢ € wwX?] Z _fe(w'w)
KSTT ( /Aw.A|w/(9wO sz

w/'exs w!' €Xs
Z fa(w'w) al ASA,B
s - s !
w’' €N k

Therefore, the Hankel matrix H = ﬁ M’V computed in Algorithm 3 satisfies E[ﬁ u,v] = H ,Zf "V, where

fIf{{ ’¥ 1is a block of the Hankel matrlx correspondmg to the stochastic WFA A, = (s, B, {As}) with
modified vector & = (1/t) ZS —oa' (A/K)®. We denote by f; the function computed by A.;. O

Theorem 6 (Controlled case, single-trajectory, matrix-wise) Let A = (o, 3,{A,}) be a stochastic environment and
7 a stochastic policy induced by a probabilistic automaton A, both over ¥ = A x O. Let B = A ® A be the stochastic
WFA obtained by coupling the environment and the policy and pg € P(X%) the corresponding stochastic process. Suppose
that B is (C, 0)-geometrically mixing. Suppose T satisfies the exploration Assumption 1 with parameter . Suppose the
importance sampling constant k in Algorithm 3 satisﬁes ke > 1. Let Ay = (a4, B,{As}) be the WFA defined in Section 5,
where the initial vector is &y = (1/t) ZS Oa T(A/K)® . Let A = A ® Aypniy be the stochastic WFA (o, 3, A, /| Al)
obtained by coupling the environment A with the uniform random policy. Suppose A is (C, 9) -geometrically mixing. Let

L = maxyey-y [wl, m = 3, ciy ey fe(uwv), and m = Douctvey Fimid (), where f = fz, and Frmit s the function
computed by the stochastic WFA obtained by Césaro averaging A over t steps. Letd = Y .\, |wly,v. Then for any
d € (0,1) we have

~ - 7 2m C C 2d1n(1/9)
p [ 1YY — gV m L _ <9 .
<| t,€ ¢ 2> tel(1 — k™ 2e72) + te2l * 1-46 + 6(1—0)et t 0

Proof of Theorem 6:

Let us introduce the function g(¢) = || HYY — B ||,. We first control llg|| Lip then E[g(£)], before
applying Theorem 1.

Step 1: Control of ||g||z:p-

Let £,&' € ¥ be trajectories § = x125--- and & = z)af - - differing by one element, say at

11
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position £. That is, zs = , for all s # ¢. We note that

SUV UV SUV UV SUV UV
VA = 7Y e = 18 = Y | < VA~ B e

< 0D Jreluw) = frer (wo))?

uelU veV
1 t—1 2
ST —
uelU veV \s=0

Next we take any w € U - V and use x; = (0;, a;) to write

’ / / ’ —
Host1as41- - Os+|uv|Cs+|uv] = w} ]I{OS+1CLS+1 © Ospjuw| Vst uv| = w}

RO (a1 -+ G fuwl|01°+ Ostjw)) RO (A - @y 101 O )

lps,w(E) — @S,w(f/” =

1 1 1
< — +
S (ﬂ(a1-~a5+w||01-~-05+w) 77(“/1"'6‘;+w||0'1"'0§+|w)>
2

= Krsestlw|

where we used the exploration assumption 7(u|u®) > el for all u € ¥*.

From the expression above we see that for any w € U - VV we have

t—1 / 2
;sas,w(é“) — psw(€) < A= 1/(re))el

where we used that ke > 1. Thus, we can conclude that

2 |w|u i 2
lgllLip < —— ] > el S T > wly -
tL=1/(e)\| Sy € lwl = tel(1 —1/(ke)) S

Note that d = ) ;.\, |wly,v is the quantity defined in the statement of Theorem 3.

Step 2: Control of E[g(£)]. We now want to control the following quantity E[||f[f)’€’v — HYYly).
We start in the same way as in the proof of Theorem 3.

Step 2.1. By Jensen’s inequality, the norm of H tu Y _ Hf’ "V is controlled by its Frobenius norm

BIAY - V1P < 3 S | (Felu) - frtun))|

ueU vey

=¥ |w|u,V]E[(fAt,g(w)—ﬁ(w))1

weu-v

Recall that in Section 5 we showed that ]E[ﬁg (w)] = f;(w) for any w € £*. Hence the expression
above is a sum of variances, each of which can be written as

| (Fustw) = ow) | =B [Fre(w?] - fiwp? - ®

12
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Now we recall the definitions of the quantities appearing in this expression:

R 1 t—1
ft,f(w) = ; @s,w(f)

t—1
N 1 Z H{Os-l-las—i-l P Os4|w|As4|w| = w}

t ——0 'as+|w|‘01 "'Os+\w|)

f =1y Lf:w)
s=0

1 t—1 A s
=y al (ﬁ) Auf .
s=0

Therefore, we can expand the squares in (8) as follows:

v
| =

~

E[ficw?] =5 [ X E[au(@]+2 Y Elpeu@pon©l]

s=0 0<s<s/<t—1

Rlwp =& (S LEW 5 LEWAEY

s=0 0<s<s/<t—1
Using these expression we now bound the difference in (8) by considering the “squared” and the

“cross” terms separately.

Step 2.2. We start with the “squared” terms and note that forany 0 < s <t —landw € U -V we
have

f /
E[‘Ps,w(f)z] = Z Kgsw(w/f;ﬁrw)/owoy

w'exs
fa(w'w)

- Z 251 (/' AwA W' Ow®
e s (w' AwA | wCwO)

fA(st)

= K28gs+|w]

fA(st)

K5 (ke)selvl

Using Cauchy—Schwartz to sum these terms over ¢ we obtain:
t—1

fa(E5w)
> E [paul ;) TP

1 — fu(Zw)?
< (1 — 1/(r2e2))elv] (;} 128 )

Using this bound we can now see that the contribution of the “squared” terms to (8) is at most

1 t—1 f ES 1 1 f ES
’TQ <Z=;)E prlé Z . ) ((1—1/(,@252 ETi )(Z g >
1 fA(ZS’w)
S B 1/ () (; >

13
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This expression can be further simplified by noting that e < 1/|.A| implies x > |.A| and therefore
fa(Z%w) /K < fa(Z%w)/|A]* < 1 since this corresponds to the probability of observing w® when
taking the actions in w after the first s actions have been chosen by a uniform random policy. Thus,
we get

i ) t—1 fa(D5w)? 1 — fa(EPw)
2 <§]E [@s,w(@ ] - ; 125 < 12(1 — 1/(Kk2e2))ell ;) K*

W)
11— 1/(r2e2))elel

To complete this step we sum this bound for all w € U -V to control the contribution of the “squared”
terms in (8):

Ji(w) 1 P
2 Nwhev i e < ey 2 Muvhiw)

weu-v weU-V

aEeEsvr=s = SRICR

ueU,veV

where L = max,,ecy.p |w|-

Step 2.3. We now focus on controlling the “cross” terms in (8) of the form

E [puu(@)pw w(@)] - 2EIETD) ©

Using the same notation Zf,;_s = wY* =5 N X ~Sw as in the proof of Theorem 3, we first note that

fe()

A o A (@]
‘rlzs+|w| ‘$1:s+|w\)7r(x1:s’+|w| “rlzs’+\w|)

E [90<97U1(£)¢8/,U1(£)] = Z

zEDS RS ~F

= Z Hs+s’7.r(z.»;lfA(x)

[@)
pexsns o 1:s+|w| ‘x1:s+|w\)
< Y ks
~ , Hs+s’5s+\w|
TEXSN,, ~°

’
s
KSts gst|wl
T As ps' —s
_«a ASAS 50
Ks+s’gs+\w|

kSt (

)

where we used the notation A% ~% = 3 A,. We also define A = A/k and o] = a7 A®.

. zeRy ~°
Then we can write (9) as

KSts gstlwl rsts’ K8 estlwl o

T As ps' —s T As T ygs’ s'—s
o Ay f_lo Adua A" AuP) :J( = AwﬁaZAw>ﬁ a0

To bound this quantity we proceed by considering two cases.

Step 2.4. First suppose that s’ — s > | = |w|. In this case we have A%, % = A, A% ~5~'A,, and (10)
equals to

T A3 el T T As e T js'—s—l
Qg A’LU 7_ﬁas/ Awﬁ:as Aw W_/Bas+lj4 Aw/B .

IQS/ES'H

14
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Now we apply the same argument we used to bound the “cross” terms in the case of stochastic
WFA using cone norms. In particular, we consider the stochastic WFA A = (o, B, /L>, where
A, = A, /| Al. Note this is the stochastic WFA obtained by coupling environment A with the random
policy that at each step chooses each action independently with probability 1/|.A|. Now we let || - ||
and || - ||5,+ denote the cone norms corresponding to A. Using Lemma 3 we see that the following

hold for all w € >*:

[ AwBlls

llod Awllg e =

A AuBlls < A"

|A|s+l
K;S

HOZTASAw”ﬂ,* = OZTASAwﬂ s

|A‘s+l
KS
where we used the notation A = A/|.A|. We also note that for any vector satisfying ||u[|s . < 1 we
have
_ AP A

T T T T3 |° 1
[T B llaw < llad e = 2 lla™ A5, < 20 <

This last bound can now be combined with the argument used in the case of stochastic WFA to show
that

As et T Gs—s—l T+ As et Ta T js—s—1
s’ —s— _ _ s'—s—
(s tHlgstl Pog A = ”uﬁ;lpﬂ ostlgstl ¢ Bag A
B T Byx
TIZP'fsfl T1215’7571
< sup sup U —u
~ 1 s+l-s+l 2 s+l-s+l
lluallg,« <1 fluzllg,«<1 S ke Box
’
As—s-‘rl L L
= AP~ l, o sup sup Hu?A“’ STy A5 lH
k= e lluillg,« <1 lJuzllg,«<1 By

’
A s'—s+l  _
g ‘ |/ /‘LA’f —1 >
kS gstl TS

where we used the definition of the mixing coefficient u‘;&_k ; for stochastic WFA A.

We now observe that | A| < 1/ < r implies |A|¥+ /x5t &5t < 1 /5552 Finally, by plugging
all these bounds together on an application of Holder’s inequality yields:

A
Hgr—s—1

< Es€s+2l

at 454,58 .

T As'fsfl T
Qg Aw 58'584‘1 - BOZS/ Awﬁ

Step 2.5. Now we consider the case ' — s < | = |w|. Using the fact that this implies X5~ C
wx® %, then

al A58 <al 4,45 78 = |A]F Pl A, A28 = |A a] AuB

where we used A3 = 3. Therefore, we can bound the expression in (10) as

/{5/55+l Iis/{_:erl HS,ESJrl

AS/—s s'—s §'—s
a;F (w — Awﬁa:’Aw> B < aSTAwﬁ <|A| — a;r,Aw5> < Al aIAwﬁ

|A‘s,+l

= Ks’+sé—s+l

1

T As A T As g

Step 2.6. Finally, we can combine the bounds above by summing over allw € U -V and all 0 < s <
s’ < t — 1 in the same way we did for PFA. We first note that from Steps 2.4 and 2.5 we obtain the
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following bound for (10):

ks estlwl KSest2|w|

As/—s 7, _
of (ﬁ” - AwﬁazAw> Ll (S = e} + T — s < ful})

Now let ! = |w| and note that u‘;*_k LS C6%'~5~!, where C and 6 are the geometric mixing constants

for stochastic WFA A. Thus, summing first over s’ we get

— i c
D Wl s e} A I s < ol <1
s'=s+1

Therefore, writing W, for all words of length l in W = U - V we get:

t% Z |w|u,v Z (IE [‘Ps,w(f)<ﬁs',w(§)] - fA(qu;szA;,(Zs w))

weU-V 0<s<s/'<t—1
\w|uv >
< QZ . Z . 55
1=0 weWw,
2= 1 fs(w
<72 (145 ) 3 oy 3 20
=0 weEW,
2 unzf
< (1r15g) X A
ueU,veY

where we used that ke > 1 and fi"" (w) = (1/t) S f(w).

Step 2.7. Our final bound for E[||I?Itugv — H™Y||] is now obtained by combining the results from
Step 2.2 and 2.6:

[||H”V ﬁtM’VHQF S tel (1 - 1/ Ke)? Z ft uv) ( ) Z unlf

ueu veY weU,vEY

Note that m = =, <1/ vey fe(w) and m = 3", ) ocy frmif (4v) are the quantities defined in the
statement of Theorem 6.

Step 3. Application of Theorem 1 It follows directly from Theorem 1 that with probability at least
1 — 9 we have

t1n(1/90)

SUY ULV SUY FULY
[Hy " — HY VMl SE[[Hyg™ — Hy 7 ll2] + mps |9l 2ip 5

Using that pg is (C, §)-geometrically mixing and Lemma 4 we can bound the n-mixing coefficient as

Nps < C/(0(1—0)). Thus, by plugging our estimates for ||g|| i, and E[”ﬁtugv — H"Y||5] we obtain
that with probability at least 1 — 4:

- . 7 27 c c 2d1n(1/9)
WY _FYV), < m L _ )
[ Hy ¢ i N2 tel(1—Kk=2e72) + te2l * 1-6 * 0(1—0)e™ t
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