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A. Mixing Properties of Probabilistic Automata
Lemma 2 (⌘-mixing for PFA) Let A be PFA and assume that it is (C, ✓)-geometrically mixing in the sense that for some
constants C > 0, ✓ 2 (0, 1) we have
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where the supremum is over all probability vectors. Then we have ⌘
⇢A 6 C/(✓(1� ✓)).

Proof of Lemma 2:

We start by controlling the term ⌘, defined by
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We proceed similarly to Lemma 7 of (Kontorovich & Weiss, 2014). By definition of the total variation
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. At this point, it is convenient to introduce the vector ↵>
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Indeed, we then have the rewriting
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where we used a simple application of Hölder inequality. Since A is a PFA, we note that kA
Z

�k1 6
1 because kP|z|=t�j+1 Az

�k1 = 1 and all the entries are non-negative. Also note that ↵>
u,�
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0k 6 2. We deduce from these steps that
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where the supremum is taken over all ↵,↵0 that are probability vectors. We note that the later quantity
is precisely the definition of the coefficient µA

j�i�1. Assuming (C, ✓)-geometrically mixing, that is
µA
j

6 C✓j for all j, this implies that
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We then deduce that

⌘
⇢A 6 1 + C max
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✓
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The following result provides a control of the ⌘
⇢A coefficients, and shows this can be made explicit in specific cases.

Corollary 1 Let A be PFA with n states and assume that its matrix A has a spectral gap, that is |�2(A)| < 1. then there
exists C such that ⌘

⇢A 6 C

|�2(A)|(1�|�2(A)|) . When the corresponding chain is further aperiodic, irreducible and reversible,
we further have C 6 p

n.

Proof of Corollary 1:

The first part of the result is folklore, and can be proven using some tedious steps involving the Jordan
decomposition of the matrix see e.g. Fact 3 in (Rosenthal, 1995).

When the chain is irreducible, aperiodic and more importantly reversible, the spectral gap admits the
following characterization, see Lemma 2.2 from (Kontoyiannis & Meyn, 2012):

�2(A) = �2(A) = sup

⇢kA⌫k2
k⌫k2 : ⌫ s.t. k⌫k2 6= 0, ⌫>1 = 0

�
.

Thus, from �2(A) < 1 together with a change of norm from k · k1 to k · k2 and a standard argument
(closely following that of Lemma 7), we obtain that

µA
j

6 C|�2|j ,
where C = max

x2Rn
||x||1
||x||2 =

p
n. ⇤

We end this section with a more technical lemma, that is useful to decompose terms in the proof of Theorem 3.

Lemma 6 (Mixing times of PFA) Let A = h↵,�, {A
�

}i be a PFA. Then, for any s > s0 2 N it holds
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0 .

Proof of Lemma 6:

Let denote ↵>
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again a distribution over states. Therefore we obtain the desired bound, since:
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B. Geometry of Stochastic Weighted Automata
Lemma 3 (claim (i)) For any w 2 ⌃

? we have kA
w

�k
�

6 1.

Proof of Lemma 3 (claim (i)):

We shall use the cone monotonicity property of k · k
�

, which says that 0 6K u 6K v implies
kuk

�

6 kvk
�

. First note that by construction of K we have 0 6K A
w

�. If we show that A
w

� 6K �
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6 k�k
�

= 1.

To prove the claim note that because � is an eigenvector of A of eigenvalue 1 we have � = At� =P
|w|=t

A
w

�. Therefore, � �A
w

� =

P
|w0|=|w|,w0 6=w
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w

0� which is a vector in K because convex
cones are closed under non-negative linear combinations, and we conclude that A

w

� 6K �. ⇤

Lemma 3 (claim (ii)) For any w 2 ⌃

? we have k↵>A
w

k
�,⇤ = ↵>A

w

�.

Proof of Lemma 3 (claim (ii)):

By unrolling the definitions of the dual norm and B
�

we get
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Now note that for any v such that � � v 2 K we have
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w
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� ,

where we used that � � v 2 K implies A
w

(� � v) 2 K implies ↵>A
w

(� � v) > 0. Since �� 6K
� 6K �, the supremum in the definition of k↵>A

w

k
�,⇤ is attained at v = � and the result follows. ⇤

C. Mixing Properties of Stochastic Weighted Automata
Lemma 4 (⌘-mixing for SWFA) Let A be SWFA and assume that it is (C, ✓)-geometrically mixing in the sense that for
some C > 0, ✓ 2 (0, 1),

µA
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Then the ⌘-mixing coefficient satisfies

⌘
⇢A 6 C

✓(1� ✓)
.

Proof of Lemma 4:
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The proof follows the same initial steps as for Lemma 2. Introducing the vector ↵>
u,�

=

↵

>
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,
we then have the rewriting
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where we used a simple application of Hölder inequality and the norm induced by �. Since A is a
SWFA, the same argument in the proof of Lemma 3 (i) can be used to show that kA

Z

�k
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6 1 for
any Z ✓ ⌃

t�j+1. On the other hand, from Lemma 3 (ii) we have 1 = ↵>
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where the supremum is taken over all ↵,↵0 that satisfy ↵>� = 1 We note that the later quantity
is precisely the definition of the coefficient µA

j�i�1. We then conclude similarly to the proof of
Lemma 2. ⇤

Lemma 7 (Geometrical mixing of weighted automata) Let A = h↵,�, {A
�

}i be a stochastic WFA, A =

P
�

A
�

, and
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�
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�
.

be its spectral gap with respect to �. It holds that
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Proof of Lemma 7:

To this end, note that if ↵0,↵1 are are such that ↵>
0 � = ↵>

1 � = 1, then v = ↵0 � ↵1 is such that
v>� = 0. A crucial remark is that since A is a weighted automaton matrix, ↵>

0 A� = ↵>
1 A� = 1

and thus w = A(↵0 � ↵1) also satisfies w>� = 0. Likewise, (↵0 � ↵1)
>At� = 0 for all t 2 N.

A second remark is that if kAsvk
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For the last inequality, we used the fact that since A is a weighted automaton matrix, and v = ↵0�↵1,
then v>As� = 0 for all s. This guarantees that indeed kAA

s
⌫k�,⇤
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6 �
�
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Lemma 8 (Mixing times of SWA) Let A = h↵,�, {A
�

}i be a SWFA. Then, for all s > s0 2 N it holds
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Proof of Lemma 8:

Let ↵>
s

= ↵>As. To prove this we proceed as follows:
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Next we note that for any u such that kuk
�,⇤ 6 1 we have |u>�| 6 1, so:
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Furthermore, the same argument we used to show that k↵>A
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D. Single-Trajectory Concentration Inequalities for Probabilistic Automata
Theorem 2 (Single-trajectory, entry-wise concentration) Let A be a PFA that is (C, ✓)-geometrically mixing, and
⇠ ⇠ ⇢A 2 P(⌃

!

) a trajectory of observations. Then for any u 2 U , v 2 V and � 2 (0, 1) it holds

P
✓
bHU,V
t,⇠

(u, v)� ¯HU,V
t

)u, v) >
|uv|C

✓(1� ✓)

r⇣
1 +

|uv|� 1

t

⌘
ln(1/�)

2t

◆
6 � .

Proof of Theorem 2:

We control ⌘
⇢A by a direct application of Lemma 2.

Control of kgk
Lip

: Let us fix u 2 U , v 2 V define g(⇠) = t bHU,V
t,⇠

(u, v). We first control the
regularity of f .

To this end, let ⇠0 be a trajectory ⇠0 = x1, . . . , xk�1, x0
k

, x
k+1, . . . , x`

that only differs by one element
from ⇠, say at position k. Then, we get for any u, v

g(⇠)� g(⇠0) =

tX

s=1

(I{x
s

. . . x
s+|uv|�1 = uv}� I{x

s

. . . x0
k

. . . x
s+|uv|�1 = uv})

6 |{s 2 [1, t] : k 2 [s : s+ |uv|� 1]}| .
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Now, in order to bound |{s 2 [1, t] : k 2 [s : s + |uv| � 1]}| note that k 2 [s : s + |uv| � 1] if and
only if s 6 k 6 s + |uv| � 1. From the first inequality we see that s 6 k, and from the second one
s > k � |uv|+ 1. Combined with the restrictions on s, this means that

|{s 2 [1, t] : k 2 [s : s+ |uv|� 1]}| = |[max{1, k � |uv|+ 1},min{k, t}]| 6 |uv| ,

which show that kgk
Lip

6 |uv|.
Combining the two quantities Combining these two results, and noting that t + |uv| � 1 symbols
appears in g(⇠), we deduce that 8" > 0,

P
✓
t( bHU,V

t,⇠

(u, v)� ¯HU,V
t

(u, v)) > |uv|(t+ |uv|� 1)"

◆
6 exp

✓
� 2(t+ |uv|� 1)✓2(1� ✓)2"2

C2

◆
,

or equivalently, for all � 2 (0, 1),

P
✓
bHU,V
t,⇠

(u, v)� ¯HU,V
t

(u, v) >

p
t+ |uv|� 1|uv|

t

C

✓(1� ✓)

r
ln(1/�)

2t

◆
6 � .

⇤

The proof of following result is more challenging.

Theorem 3 (Single-trajectory, matrix-wise) Let ⇢A 2 P(⌃

!

) be as in Theorem 2 and define the probability mass
mU,V

=

P
u2U,v2V ¯f

t

(uv). Then, for all � 2 (0, 1),

P
✓
k bHU,V

t

� ¯HU,V
t

k2 >
 p

L+

r
2C

1� ✓

!r
2mU,V

t

+

2LC

✓(1�✓)

r⇣
1+

L�1

t

⌘
min{|U||V|, 2nUnV} ln(1/�)

2t

◆
6 � .

Proof of Theorem 3:

Let us introduce the function g(⇠) = k bHU,V
t

� ¯HU,V
t

k2. We first control kgk
Lip

then E[g(⇠)], before
applying Theorem 1.

Step 1: Control of kgk
Lip

. In this step, we show that

kgk
Lip

6 L

t

p
min{|U||V|, 2nUnV}

where L = max

u2U,v2V |uv| denote the maximal length of words in U · V and nU = |` 2 [0, L] :
|U

`

| > 0|, nV = |` 2 [0, L] : |V
`

| > 0|, denote the number lengths such that the set U
`

= {u 2
U : |u| = `} (respectively V

`

= {v 2 V : |v| = `}) is non empty. Note that the second term in
the min can be exponentially smaller than the first. For example, taking U = V = ⌃

6L/2 we have
|U ||V | = ⇥(|⌃|L) while nUnV = ⇥(L2

).

Step 1.1. Let ⇠0 ⇠ p be a trajectory ⇠0 = x1, . . . , xk�1, x0
k

, x
k+1, . . . , x`

that only differs by one
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element from ⇠, say at position k. We note that
���k bHU,V

t,⇠

� ¯HU,V
t

k2 � k bHU,V
t,⇠

0 � ¯HU,V
t

k2
��� 6 k bHU,V

t,⇠

� bHU,V
t,⇠

0 k2

= sup

q2RV

1

tkqk2

vuutX

u2U

⇣X

v2V

tX

s=1

�
I{x

s

. . . x
s+|uv|�1 = uv}� I{x

s

. . . x0
k

. . . x
s+|uv|�1 = uv}�q

v

⌘2

6 sup

q2RV

1

tkqk2

sX

u2U

⇣X

v2V
|uv|q

v

⌘2
6 sup

q2RV

1

tkqk2

sX

u2U

X

v2V
|uv|2

sX

v2V
q2
v

.

Let L = max

u2U ,v2V |uv|. A simple bound is then kgk
Lip

6 L

t

p|U||V|, which is essentially
optimal if all words uv, u 2 U , v 2 V have same length.

Step 1.2. A more refined bound may be helpful in case many words have length |uv| much smaller
than L. To his end, let us write bHU,V

t

=

1
t

P
t

s=1 Ms

with M
s

(u, v) = b
s,uv

= I{x
s

. . . x
s+|uv|�1 =

uv}. Similarly, let HU,V
t,⇠

0 =

1
t

P
t

s=1 M
0
s

with the obvious definition. Now, by the same argument we
used to bound kgk

Lip

in the entry-wise case, we have

t
⇣
bHU,V
t,⇠

� bHU,V
t,⇠

0

⌘
=

kX

s=k�L+1

M
s

�M 0
s

=

kX

s=k�L+1

�

s

,

since for s < k � L+ 1 or s > k we must have M
s

= M 0
s

.

Now let us partition the sets U and V as disjoint unions of sets with strings of the same length. That is,
we write U = [L

`=0U`

with U
`

= U \ ⌃

`, and V = [L

`=0V`

with analogous definitions. This allows
us to write M

s

2 {0, 1}U⇥V as a block matrix M
s

= (M i,j

s

)06i,j6L

with M i,j

s

2 {0, 1}Ui⇥Vj .

For simplicity of notation, in the sequel we are assuming that U
`

, V
`

6= ; for all 0 6 ` 6 L, but
the argument remains the same after we remove the empty sets of rows and columns. Note that by
definition we have M i,j

s

(u, v) = I{x
s

. . . x
s+i+j�1 = uv} for any u 2 U

i

and v 2 V
j

. This implies
that each of the block matrices M i,j

s

contains at most one non-zero entry.

If we make analogous definitions and write M 0
s

= (M 0
s

i,j

)06i,j6L

, then we obtain a block decompo-
sition for �

s

= M
s

�M 0
s

= (�

i,j

s

)06i,j6L

where each block is either:

1. zero,
2. a {0, 1}-matrix with a single 1,
3. a {0,�1}-matrix with a single �1,
4. a {0, 1,�1}-matrix with a single 1 and a single �1.

In any of these cases one can see that the bound k�i,j

s

k2 6 k�i,j

s

k
F

6
p
2 is always satisfied.

Therefore, we have k�
s

k22 6 k�
s

k2
F

=

P
i,j

k�i,j

s

k2
F

6 2nUnV , where

nU = |` 2 [0, L] : |U
`

| > 0| ,
nV = |` 2 [0, L] : |V

`

| > 0| .

By plugging these estimates into bHU,V
t,⇠

� bHU,V
t,⇠

0 we finally get

k bHU,V
t,⇠

� bHU,V
t,⇠

0 k2 6 L
p
2nUnV
t

.

Therefore we obtain the bound kgk
Lip

6 (L
p
2nUnV)/t.
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Control of E[g(⇠)]. We now want to control the following quantity E[k bHU,V
t

� ¯HU,V
t

k2]. More
precisely, we show in this step that

E[k bHU,V
t

� ¯HU,V
t

k2]2 6
O
⇣
L2

+

1
1�✓

⌘⇣P
u2U,v2V ¯f

t

(uv)
⌘

t
,

where L = max

w2U·V |w|, and ¯f
t

(w) = 1
t

P
t

s=1 fs(w), where f
s

(w) = P[⇠ 2 ⌃

s�1w⌃!

].

Step 2.1. Let q 2 RV be a unit vector (kqk2 = 1.) Then, by Jensen’s inequality, the norm of
bHU,V
t

� ¯HU,V
t

is controlled by its Frobenius norm

E[k bHU,V
t

� ¯HU,V
t

k2]2 6 E[k bHU,V
t

� ¯HU,V
t

k22]
6 E[

X

u2U

⇣X

v2V
(

bHU,V
t

(u, v)� ¯HU,V
t

(u, v))q
v

⌘2
]

6
X

u2U

X

v2V
E[( bHU,V

t

(u, v)� ¯HU,V
t

(u, v))2]

=

X

w2U·V
|w|U,VE[( bft(w)� ¯f

t

(w))2] ,

where U · V is the set of all words of the form u · v with u 2 U and v 2 V; |w|U,V = |(u, v) 2
U ⇥ V : u · v = w|, and bf

t

(w) =

1
t

P
t

s=1 bs,w with the notation defined above. We also use
¯f
t

(w) = E[ bf
t

(w)] = 1
t

P
t

s=1 fs(w), where f
s

(w) = P[⇠ 2 ⌃

s�1w⌃!

]. This implies that we have a
sum of variances, and each of them can be written as

E[( bf
t

(w)� ¯f
t

(w))2] = E[ bf
t

(w)2]� ¯f
t

(w)2 .

An important first observation is that we can write f
s

(w) = ↵>As�1A
w

�. Furthermore, it follows
from A being a probabilistic automaton that

P
|w|=l

f
s

(w) = 1 for all s and l. This suggests that
we group the terms in the sum over W = U · V by length, so we write W

l

= W \ ⌃

l and define
L
l

= max

w2Wl |w|U,V the maximum number of ways to write a string of length l in W as a product
of a prefix in U and a suffix in V . Note that we always have L

l

6 l + 1. Henceforth, we want to
control the following terms for all possible values of l:

X

w2Wl

|w|U,V
⇣
E[ bf

t

(w)2]� ¯f
t

(w)2
⌘
=

1

t2

X

w2Wl

|w|U,V


E

2

4
 

tX

s=1

b
s,w

!2
3

5�
 

tX

s=1

f
s

(w)

!2 �
.

Step 2.2. Let us focus on each of the quadratic terms. On the one hand, it holds
 

tX

s=1

f
s

(w)

!2

=

tX

s=1

f
s

(w)2 + 2

X

16s<s

06t

f
s

(w)f
s

0
(w) ,

while other on the other hand, we get

E

2

4
 

tX

s=1

b
s,w

!2
3

5
=

tX

s=1

E[b2
s,w

] + 2

X

16s<s

06t

E[b
s,w

b
s

0
,w

] .

Hence this enables to derive the following bound

E[k bHU,V
t

� ¯HU,V
t

k2]2 6 1

t2

1X

l=0

X

w2Wl

|w|U,V


tX

s=1

(1� f
s

(w))f
s

(w)

+2

X

16s<s

06t

⇣
E[b

s,w

b
s

0
,w

]� f
s

(w)f
s

0
(w)
⌘�

. (6)

8
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Step 2.3. In order to control the first term in (6), we remark that

1X

l=0

X

w2Wl

|w|U,V
tX

s=1

(1� f
s

(w))f
s

(w) =

X

u2U,v2V

tX

s=1

(1� f
s

(uv))f
s

(uv)

6
X

u2U,v2V

tX

s=1

f
s

(uv)

= t
X

u2U,v2V
¯f
t

(uv) . (7)

Step 2.4. We thus focus on controlling the remaining ”cross”-term in (6) and to this end we study, for
w 2 W

l

, the quantity

E[b
s,w

b
s

0
,w

]� f
s

(w)f
s

0
(w) = P[⇠ 2 ⌃

s�1
⌃

s

0�s

w

⌃

!

]� (↵>As�1A
w

�)(↵>As

0�1A
w

�) ,

where we introduced for convenience the set ⌃s

0�s

w

= w⌃s

0�s \ ⌃

s

0�sw. Introducing as well the
vectors ↵>

s�1 = ↵>As�1, ↵>
s

0�1 = ↵>As

0�1 and the transition matrix As

0�s

w

=

P
x2⌃s0�s

w
A

x

corresponding to the “event” ⌃

s

0�s

w

, it comes

E[b
s,w

b
s

0
,w

]� f
s

(w)f
s

0
(w) = ↵>

s�1

⇣
As

0�s

w

�A
w

�↵>
s

0�1Aw

⌘
� .

We now discuss two cases. First the case when s0 � s > l, then the case when s0 � s < l.

Note that if s0 � s > |w| = l, then ⌃

s

0�s

w

simplifies to ⌃

s

0�s

w

= w⌃s

0�s�lw and thus As

0�s

w

=

A
w

As

0�s�lA
w

. For such words, we thus obtain

↵>
s�1

⇣
As

0�s

w

�A
w

�↵>
s

0�1Aw

⌘
� = ↵>

s�1Aw

⇣
As

0�s�l � �↵>
s

0�1

⌘
A

w

�

6 k↵>
s�1Aw

k1kAs

0�s�l � �↵>
s

0�1k1kA
w

�k1 .

Moreover, from Lemma 6, it holds kAs

0�s�l � �↵>
s

0�1k1 6 2µA
s

0�s�l

. Also, it holds that
kA

w

�k1 6 1. Finally, since ↵>
s�1Aw

is a sub-distribution over states, we have
X

w2Wl

|w|U,Vk↵>
s�1Aw

k1 =

X

w2Wl

|w|U,V↵>
s�1Aw

�

=

X

w2Wl

|w|U,Vfs(w) =
X

u2U,v2V:uv2Wl

f
s

(uv) .

Now, on the other hand if s0 � s < l, using the fact that ⌃s

0�s

w

⇢ w⌃s

0�s, then

↵>
s�1

⇣
As

0�s

w

�A
w

�↵>
s

0�1Aw

⌘
� 6 ↵>

s�1Aw

⇣
As

0�s � �↵>
s

0�1Aw

⌘
�

= f
s

(w)(1� f
s

0
(w)) 6 f

s

(w) .

So in this case we again see that
P

w2Wl
|w|U,Vfs(w) =

P
u2U,v2V:uv2Wl

f
s

(uv).

Step 2.5. Therefore, combining the above steps, so far we have seen that for a fixed l > 0, the sumP
w2Wl

|w|U,V
P

16s<s

06t

(E[b
s,w

b
s

0
,w

]� f
s

(w)f
s

0
(w)) is upper bounded by:

X

16s<s

06t

X

u2U,v2V:|uv|=l

f
s

(uv)(2µA
s

0�s�l

I{s0 � s > l}+ I{s0 � s < l})

=

X

u2U,v2V:|uv|=l

t�1X

s=1

f
s

(uv)


tX

s

0=s+1

2µA
s

0�s�l

I{s0 � s > l}+ I{s0 � s < l}
�

.

9
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Now note that
P

t

s

0=s+1 I{s0�s < l} = min{l�1, t�s} 6 l�1. Furthermore, using that µA
t

6 C✓t

we get

tX

s

0=s+1

µA
s

0�s�l

I{s0 � s > l} = I{t > s+ l}
t�s�lX

k=0

µA
k

6 CI{t > s+ l}1� ✓t�s�l+1

1� ✓
6 C

1� ✓
.

In conclusion, we get

X

u2U,v2V:|uv|=l

t�1X

s=1

f
s

(uv)


tX

s

0=s+1

2µA
s

0�s�l

I{s0 � s > l}+ I{s0 � s < l}
�

6
✓
l � 1 +

2C

1� ✓

◆ X

u2U ,v2V:|uv|=l

t�1X

s=1

f
s

(uv)

6 t

✓
l � 1 +

2C

1� ✓

◆ X

u2U ,v2V:|uv|=l

¯f
t

(uv) .

Finally, putting all the pieces together and introducing L = max

w2U·V |w|, we get from equations
(6), (7), (8),

E[k bHU,V
t

� ¯HU,V
t

k2]2 6
P

u2U,v2V ¯f
t

(uv)

t
+

2

t

1X

l=0

X

u2U ,v2V:|uv|=l

¯f
t

(uv)(l � 1 +

2C

1� ✓
)

6

2L� 1 +

4C

1� ✓

�P
u2U ,v2V ¯f

t

(uv)

t
.

Step 3. Application of Theorem 1. It remains to apply Theorem 1 with

kgk
Lip

6 L

t

p
min{|U||V|, 2nUnV} ,

E[k bHU,V
t

� ¯HU,V
t

k2] 6
 p

L+

r
2C

1� ✓

!s
2

P
u2U ,v2V ¯f

t

(uv)

t
,

for some constant C. After some rewriting, it comes

P
✓
k bHU,V

t

� ¯HU,V
t

k2 >

 p
L+

r
2C

1� ✓

!s
2

P
u2U,v2V ¯f

t

(uv)

t

+

LC

(1� ✓)

r⇣
1 +

L� 1

t

⌘
min{|U||V|, 2nUnV} ln(1/�)

2t

◆
6 � . ⇤

E. Single-Trajectory Hankel Concentration Inequalities with Finite-State Control

Lemma 5 The Hankel matrix bH =

bHU,V
t,⇠

computed in Algorithm 3 satisfies E[ bHU,V
t,⇠

] =

˜HU,V
t

, where ˜HU,V
t

is
a block of the Hankel matrix corresponding to the stochastic WFA ˜A

t

= h↵̃
t

,�, {A
�

}i where we introduced the modified
vector ↵̃

t

=(1/t)
P

t�1
s=0 ↵

>
(A/)s. We denote by ˜f

t

the function computed by ˜A
t

.

10
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Proof of Lemma 5:

For any t > 0 and w 2 ⌃

? let us define the function '
s,w

: ⌃

! ! R given by

'
s,w

(x) =
I{o

s+1as+1 · · · o
s+|uv|as+|uv| = w}

s⇡(a1 · · · a
s+|w||o1 · · · os+|w|)

,

where x = (o1, a1)(o2, a2) · · · . Thus, the entries of the Hankel matrix computed in Algorithm 3 can
be written as bH(u, v) = (1/t)

P
t�1
s=0 's,uv

(⇠). Now note that the expectation E['
s,w

] with respect to
a trajectory ⇠ ⇠ ⇢B can be written as

X

w

02⌃s

P[⇠ 2 w0w⌃!

]

s⇡(w0AwA|w0OwO
)

=

X

w

02⌃s

fB(w0w)
sfA⇡ (w

0w)

=

X

w

02⌃s

fA(w0w)
s

=

↵>AsA
w

�

s

.

Therefore, the Hankel matrix bH =

bHU,V
t,⇠

computed in Algorithm 3 satisfies E[ bHU,V
t,⇠

] =

˜HU,V
t

, where
˜HU,V
t

is a block of the Hankel matrix corresponding to the stochastic WFA ˜A
t

= h↵̃
t

,�, {A
�

}i with
modified vector ↵̃

t

= (1/t)
P

t�1
s=0 ↵

>
(A/)s. We denote by ˜f

t

the function computed by ˜A
t

. ⇤

Theorem 6 (Controlled case, single-trajectory, matrix-wise) Let A = h↵,�, {A
�

}i be a stochastic environment and
⇡ a stochastic policy induced by a probabilistic automaton A

⇡

, both over ⌃ = A⇥O. Let B = A⌦ A
⇡

be the stochastic
WFA obtained by coupling the environment and the policy and ⇢B 2 P(⌃

!

) the corresponding stochastic process. Suppose
that B is (C, ✓)-geometrically mixing. Suppose ⇡ satisfies the exploration Assumption 1 with parameter ". Suppose the
importance sampling constant  in Algorithm 3 satisfies " > 1. Let ˜A

t

= h↵̃
t

,�, {A
�

}i be the WFA defined in Section 5,
where the initial vector is ↵̃

t

= (1/t)
P

t�1
s=0 ↵

>
(A/)s . Let ¯A = A ⌦ A

unif

be the stochastic WFA h↵,�, A
�

/|A|i
obtained by coupling the environment A with the uniform random policy. Suppose ¯A is ( ¯C, ¯✓)-geometrically mixing. Let
L = max

w2U·V |w|, m̃ =

P
u2U ,v2V ˜f

t

(uv), and m̄ =

P
u2U ,v2V ˜funif

t

(uv), where ˜f
t

= fÃt
and ˜funif

t

is the function
computed by the stochastic WFA obtained by Césaro averaging ¯A over t steps. Let d =

P
w2U·V |w|U,V . Then for any

� 2 (0, 1) we have

P
 
k bHU,V

t,⇠

� ˜HU,V
t

k2 >

s
m̃

t"L(1� �2"�2
)

+

s
2m̄

t"2L

✓
L+

¯C

1� ¯✓

◆
+

C

✓(1� ✓)"L

r
2d ln(1/�)

t

!
6 � .

Proof of Theorem 6:

Let us introduce the function g(⇠) = k bHU,V
t

� ˜HU,V
t

k2. We first control kgk
Lip

then E[g(⇠)], before
applying Theorem 1.

Step 1: Control of kgk
Lip

.

Let ⇠, ⇠0 2 ⌃

! be trajectories ⇠ = x1x2 · · · and ⇠0 = x0
1x

0
2 · · · differing by one element, say at

11
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position `. That is, x
s

= x0
s

for all s 6= `. We note that
���k bHU,V

t,⇠

� ˜HU,V

t

k2 � k bHU,V

t,⇠

0 � ˜HU,V

t

k2
��� 6 k bHU,V

t,⇠

� bHU,V

t,⇠

0 k2

6
sX

u2U

X

v2V

(

bf
t,⇠

(uv)� bf
t,⇠

0
(uv))2

=

1

t

vuutX

u2U

X

v2V

 
t�1X

s=0

'
s,uv

(⇠)� '
s,uv

(⇠0)

!2

.

Next we take any w 2 U · V and use x
i

= (o
i

, a
i

) to write

|'
s,w

(⇠)� '
s,w

(⇠0)| =
�����
I{o

s+1as+1 · · · o
s+|uv|as+|uv| = w}

s⇡(a1 · · · a
s+|w||o1 · · · os+|w|)

�
I{o0

s+1a
0
s+1 · · · o0

s+|uv|a
0
s+|uv| = w}

s⇡(a01 · · · a0
s+|w||o01 · · · o0s+|w|)

�����

6 1

s

 
1

⇡(a1 · · · a
s+|w||o1 · · · os+|w|)

+

1

⇡(a01 · · · a0
s+|w||o01 · · · o0s+|w|)

!

6 2

s"s+|w| ,

where we used the exploration assumption ⇡(uA|uO
) > "|u| for all u 2 ⌃

?.

From the expression above we see that for any w 2 U · V we have

t�1X

s=0

'
s,w

(⇠)� '
s,w

(⇠0) 6 2

(1� 1/("))"|w| ,

where we used that " > 1. Thus, we can conclude that

kgk
Lip

6 2

t(1� 1/("))

s X

w2U·V

|w|U,V
"2|w| 6 2

t"L(1� 1/("))

s X

w2U·V
|w|U,V .

Note that d =

P
w2U·V |w|U,V is the quantity defined in the statement of Theorem 3.

Step 2: Control of E[g(⇠)]. We now want to control the following quantity E[k bHU,V
t,⇠

� ˜HU,V
t

k2].
We start in the same way as in the proof of Theorem 3.

Step 2.1. By Jensen’s inequality, the norm of bHU,V
t

� ˜HU,V
t

is controlled by its Frobenius norm

E[k bHU,V
t,⇠

� ˜HU,V
t

k2]2 6
X

u2U

X

v2V
E
⇣
bf
t,⇠

(uv)� ˜f
t

(uv)
⌘2�

=

X

w2U·V
|w|U,VE

⇣
bf
t,⇠

(w)� ˜f
t

(w)
⌘2�

.

Recall that in Section 5 we showed that E[ bf
t,⇠

(w)] = ˜f
t

(w) for any w 2 ⌃

?. Hence the expression
above is a sum of variances, each of which can be written as

E
⇣
bf
t,⇠

(w)� ˜f
t

(w)
⌘2�

= E
h
bf
t,⇠

(w)2
i
� ˜f

t

(w)2 . (8)

12
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Now we recall the definitions of the quantities appearing in this expression:

bf
t,⇠

(w) =
1

t

t�1X

s=0

'
s,w

(⇠)

=

1

t

t�1X

s=0

I{o
s+1as+1 · · · o

s+|w|as+|w| = w}
s⇡(a1 · · · a

s+|w||o1 · · · os+|w|)
,

˜f
t

(w) =
1

t

t�1X

s=0

fA(⌃sw)

s

=

1

t

t�1X

s=0

↵>
✓
A



◆
s

A
w

� .

Therefore, we can expand the squares in (8) as follows:

E
h
bf
t,⇠

(w)2
i
=

1

t2

0

@
t�1X

s=0

E
⇥
'
s,w

(⇠)2
⇤
+ 2

X

06s<s

06t�1

E ['
s,w

(⇠)'
s

0
,w

(⇠)]

1

A ,

˜f
t

(w)2 =

1

t2

0

@
t�1X

s=0

fA(⌃sw)2

2s
+ 2

X

06s<s

06t�1

fA(⌃sw)fA(⌃s

0
w)

s+s

0

1

A .

Using these expression we now bound the difference in (8) by considering the “squared” and the
“cross” terms separately.

Step 2.2. We start with the “squared” terms and note that for any 0 6 s 6 t � 1 and w 2 U · V we
have

E
⇥
'
s,w

(⇠)2
⇤
=

X

w

02⌃s

fB(w0w)
2s⇡(w0AwA|w0OwO

)

2

=

X

w

02⌃s

fA(w0w)
2s⇡(w0AwA|w0OwO

)

6 fA(⌃sw)

2s"s+|w|

=

fA(⌃sw)

s

(")s"|w| .

Using Cauchy–Schwartz to sum these terms over t we obtain:

t�1X

s=0

E
⇥
'
s,w

(⇠)2
⇤
6

t�1X

s=0

fA(⌃sw)

s

(")s"|w|

6 1

(1� 1/(2"2))"|w|

 
t�1X

s=0

fA(⌃sw)2

2s

!

Using this bound we can now see that the contribution of the “squared” terms to (8) is at most

1

t2

 
t�1X

s=0

E
⇥
'
s,w

(⇠)2
⇤�

t�1X

s=0

fA(⌃sw)2

2s

!
6 1

t2

✓
1

(1� 1/(2"2))"|w| � 1

◆ 
t�1X

s=0

fA(⌃sw)2

2s

!

6 1

t2(1� 1/(2"2))"|w|

 
t�1X

s=0

fA(⌃sw)2

2s

!
.

13
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This expression can be further simplified by noting that " 6 1/|A| implies  > |A| and therefore
fA(⌃sw)/s 6 fA(⌃sw)/|A|s 6 1 since this corresponds to the probability of observing wO when
taking the actions in wA after the first s actions have been chosen by a uniform random policy. Thus,
we get

1

t2

 
t�1X

s=0

E
⇥
'
s,w

(⇠)2
⇤�

t�1X

s=0

fA(⌃sw)2

2s

!
6 1

t2(1� 1/(2"2))"|w|

 
t�1X

s=0

fA(⌃sw)

s

!

=

˜f
t

(w)

t(1� 1/(2"2))"|w| .

To complete this step we sum this bound for all w 2 U ·V to control the contribution of the “squared”
terms in (8):

X

w2U·V
|w|U,V

˜f
t

(w)

t(1� 1/(2"2))"|w| 6
1

t(1� 1/(2"2))"L

X

w2U·V
|w|U,V ˜f

t

(w)

=

1

t(1� 1/(2"2))"L

X

u2U,v2V
˜f
t

(uv) ,

where L = max

w2U·V |w|.

Step 2.3. We now focus on controlling the “cross” terms in (8) of the form

E ['
s,w

(⇠)'
s

0
,w

(⇠)]� fA(⌃sw)fA(⌃s

0
w)

s+s

0 . (9)

Using the same notation ⌃

s

0�s

w

= w⌃s

0�s \ ⌃

s

0�sw as in the proof of Theorem 3, we first note that

E ['
s,w

(⇠)'
s

0
,w

(⇠)] =
X

x2⌃s⌃s0�s
w

fB(x)

s+s

0⇡(xA
1:s+|w||xO

1:s+|w|)⇡(x
A
1:s0+|w||xO

1:s0+|w|)

=

X

x2⌃s⌃s0�s
w

fA(x)

s+s

0⇡(xA
1:s+|w||xO

1:s+|w|)

6
X

x2⌃s⌃s0�s
w

fA(x)

s+s

0"s+|w|

=

fA(⌃s

⌃

s

0�s

w

)

s+s

0"s+|w|

=

↵>AsAs

0�s

w

�

s+s

0"s+|w| ,

where we used the notation As

0�s

w

=

P
x2⌃s0�s

w
A

x

. We also define ˜A = A/ and ↵>
s

= ↵>
˜As.

Then we can write (9) as

↵>AsAs

0�s

w

�

s+s

0"s+|w| � (↵>AsA
w

�)(↵>As

0
A

w

�)

s+s

0 = ↵>
s

 
As

0�s

w

s

0"s+|w| �A
w

�↵>
s

0A
w

!
� . (10)

To bound this quantity we proceed by considering two cases.

Step 2.4. First suppose that s0 � s > l = |w|. In this case we have As

0�s

w

= A
w

As

0�s�lA
w

and (10)
equals to

↵>
s

A
w

 
As

0�s�l

s

0"s+l

� �↵>
s

0

!
A

w

� = ↵>
s

A
w

 
˜As

0�s�l

s+l"s+l

� �↵>
s+l

˜As

0�s�l

!
A

w

� .
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Now we apply the same argument we used to bound the “cross” terms in the case of stochastic
WFA using cone norms. In particular, we consider the stochastic WFA ¯A = h↵,�, ¯A

�

i, where
¯A
�

= A
�

/|A|. Note this is the stochastic WFA obtained by coupling environment A with the random
policy that at each step chooses each action independently with probability 1/|A|. Now we let k · k

�

and k · k
�,?

denote the cone norms corresponding to ¯A. Using Lemma 3 we see that the following
hold for all w 2 ⌃

?:

kA
w

�k
�

= |A|lk ¯A
w

�k
�

6 |A|l

k↵>
s

A
w

k
�,?

=

|A|s+l

s

k↵>
¯As

¯A
w

k
�,?

=

|A|s+l

s

↵>
¯As

¯A
w

� ,

where we used the notation ¯A = A/|A|. We also note that for any vector satisfying kuk
�,?

6 1 we
have

ku>�↵>
s

k
�,?

6 k↵>
s

k
�,?

=

|A|s
s

k↵>
¯Ask

�,?

6 |A|s
s

6 1

s"s
.

This last bound can now be combined with the argument used in the case of stochastic WFA to show
that
�����

˜As

0�s�l

s+l"s+l

� �↵>
s+l

˜As

0�s�l

�����
�

= sup

kuk�,?61

�����u
> ˜As

0�s�l

s+l"s+l

� u>�↵>
s+l

˜As

0�s�l

�����
�,?

6 sup

ku1k�,?61
sup

ku2k�,?61

�����u
>
1

˜As

0�s�l

s+l"s+l

� u>
2

˜As

0�s�l

s+l"s+l

�����
�,?

=

|A|s0�s+l

s

0"s+l

sup

ku1k�,?61
sup

ku2k�,?61

���u>
1
¯As

0�s�l � u>
2
¯As

0�s�l

���
�,?

6 |A|s0�s+l

s

0"s+l

µĀ
s

0�s�l

,

where we used the definition of the mixing coefficient µĀ
s

0�s�l

for stochastic WFA ¯A.

We now observe that |A| 6 1/" <  implies |A|s0+l/s+s

0
"s+l 6 1/s"s+2l. Finally, by plugging

all these bounds together on an application of Hölder’s inequality yields:
�����↵

>
s

A
w

 
As

0�s�l

s

0"s+l

� �↵>
s

0

!
A

w

�

����� 6
µĀ
s

0�s�l

s"s+2l
↵>

¯As

¯A
w

� .

Step 2.5. Now we consider the case s0 � s < l = |w|. Using the fact that this implies ⌃

s

0�s

w

⇢
w⌃s

0�s, then

↵>
s

As

0�s

w

� 6 ↵>
s

A
w

As

0�s� = |A|s0�s↵>
s

A
w

¯As

0�s� = |A|s0�s↵>
s

A
w

� ,

where we used ¯A� = �. Therefore, we can bound the expression in (10) as

↵>
s

 
As

0�s

w

s

0"s+l

�A
w

�↵>
s

0A
w

!
� 6 ↵>

s

A
w

�

 
|A|s0�s

s

0"s+l

� ↵>
s

0A
w

�

!
6 |A|s0�s

s

0"s+l

↵>
s

A
w

�

=

|A|s0+l

s

0+s"s+l

↵>
¯As

¯A
w

� 6 1

s"s+2l
↵>

¯As

¯A
w

� .

Step 2.6. Finally, we can combine the bounds above by summing over all w 2 U · V and all 0 6 s <
s0 6 t � 1 in the same way we did for PFA. We first note that from Steps 2.4 and 2.5 we obtain the

15



Spectral Learning from a Single Trajectory under Finite-State Policies (Supplementary Material)

following bound for (10):

↵>
s

 
As

0�s

w

s

0"s+|w| �A
w

�↵>
s

0A
w

!
� 6

¯f
s

(w)

s"s+2|w|

⇣
µĀ
s

0�s�|w|I{s0 � s > |w|}+ I{s0 � s < |w|}
⌘

.

Now let l = |w| and note that µĀ
s

0�s�l

6 ¯C ¯✓s
0�s�l, where ¯C and ¯✓ are the geometric mixing constants

for stochastic WFA ¯A. Thus, summing first over s0 we get

t�1X

s

0=s+1

µĀ
s

0�s�|w|I{s0 � s > |w|}+ I{s0 � s < |w|} 6 l +
¯C

1� ¯✓
.

Therefore, writing W
l

for all words of length l in W = U · V we get:

2

t2

X

w2U·V
|w|U,V

X

06s<s

06t�1

 
E ['

s,w

(⇠)'
s

0
,w

(⇠)]� fA(⌃sw)fA(⌃s

0
w)

s+s

0

!

6 2

t2

1X

l=0

X

w2Wl

|w|U,V
"2l

✓
l +

¯C

1� ¯✓

◆
t�2X

s=0

¯f
s

(w)

s"s

6 2

t

1X

l=0

1

"2l

✓
l +

¯C

1� ¯✓

◆ X

w2Wl

|w|U,V
t�1X

s=0

¯f
s

(w)

t

6 2

t"2L

✓
L+

¯C

1� ¯✓

◆ X

u2U ,v2V
˜funif

t

(uv) ,

where we used that " > 1 and ˜funif

t

(w) = (1/t)
P

t�1
s=0

¯f
s

(w).

Step 2.7. Our final bound for E[k bHU,V
t,⇠

� ˜HU,V
t

k2] is now obtained by combining the results from
Step 2.2 and 2.6:

E[k bHU,V
t,⇠

� ˜HU,V
t

k2]2 6 1

t"L(1� 1/(")2)

X

u2U,v2V
˜f
t

(uv) +
2

t"2L

✓
L+

¯C

1� ¯✓

◆ X

u2U ,v2V
˜funif

t

(uv) .

Note that m̃ =

P
u2U ,v2V ˜f

t

(uv) and m̄ =

P
u2U ,v2V ˜funif

t

(uv) are the quantities defined in the
statement of Theorem 6.

Step 3. Application of Theorem 1 It follows directly from Theorem 1 that with probability at least
1� � we have

k bHU,V
t,⇠

� ˜HU,V
t

k2 6 E[k bHU,V
t,⇠

� ˜HU,V
t

k2] + ⌘
⇢BkgkLip

r
t ln(1/�)

2

.

Using that ⇢B is (C, ✓)-geometrically mixing and Lemma 4 we can bound the ⌘-mixing coefficient as
⌘
⇢B 6 C/(✓(1� ✓)). Thus, by plugging our estimates for kgk

Lip

and E[k bHU,V
t,⇠

� ˜HU,V
t

k2] we obtain
that with probability at least 1� �:

k bHU,V
t,⇠

� ˜HU,V
t

k2 6
s

m̃

t"L(1��2"�2
)

+

s
2m̄

t"2L

✓
L+

¯C

1�¯✓

◆
+

C

✓(1�✓)"L

r
2d ln(1/�)

t
.

⇤
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