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Abstract
In this paper, we demonstrate how to learn the
objective function of a decision maker while only
observing the problem input data and the deci-
sion maker’s corresponding decisions over mul-
tiple rounds. Our approach is based on online
learning techniques and works for linear objec-
tives over arbitrary sets for which we have a lin-
ear optimization oracle and as such generalizes
previous work based on KKT-system decompo-
sition and dualization approaches. The applica-
bility of our framework for learning linear con-
straints is also discussed briefly. Our algorithm
converges at a rate of O(

1p
T

), and we demon-
strate its effectiveness and applications in prelim-
inary computational results.

1. Introduction
Human decision makers are very good at making decisions
under rather imprecise specification of the decision-making
problem both in terms of constraints as well as objective.
One might argue that the human decision maker can pretty
reliably learn from observed previous decisions – a tradi-
tional learning-by-example setup. At the same time, when
we try to turn these decision-making problems into actual
optimization problems, we often run into all types of issues
in terms of specifying the model. In an optimal world, we
would be able to infer or learn the optimization problem
from previously observed decisions taken by an expert.

This problem naturally occurs in many settings where we
do not have direct access to the decision maker’s preference
or objective function but we can observe her behaviour and
the learner as well as the decision maker have access to
the same information. Natural examples are as diverse as
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making recommendations based on user history and strate-
gic planning problems, where the agent’s preferences are
unknown but the system is observable. Other examples
include knowledge transfer from a human planner into a
decision-support system: often human operators have ar-
rived at finely-tuned ‘objective functions’ through many
years of experience, and in many cases it is desirable to
replicate the decision-making process both for scaling up
and also for potentially including it in large-scale scenario
analysis and simulation to explore responses under varying
conditions.

Here we consider the learning of preferences or objectives
from an expert by means of observing her actions. More
precisely, we observe a set of input parameters and corre-
sponding decisions of the form {(p1, x1), . . . , (pT , xT

)}.
They are such that p

t

2 P with t = 1, . . . , T is a certain
realization of problem parameters from a given set P ✓ k

and x

t

is an optimal solution to the optimization problem

max c

T

truex

s.t. x 2 X(p

t

),

where ctrue 2 n is the expert’s true but unknown objective
and X(p

t

) ✓ n for some (fixed) n. We assume that we
have full information on the feasible set X(p

t

) and that we
can compute argmax {cTx | x 2 X(p

t

)} for any candidate
objective c 2 n and t = 1, . . . , T . We present an online
learning algorithm based on the multiplicative weights up-
date method that allows us to learn a strategy (c1, . . . , cT )

of subsequent objective function choices with the follow-
ing guarantee: if we optimize according to the surrogate
objective function c

t

instead of the actual unknown objec-
tive function ctrue in response to parameter realization p

t

,
we obtain a sequence of optimal decisions (w.r.t. to each c

t

)
given by

x̄

t

= argmax {cT
t

x | x 2 X(p

t

)},

that are essentially as good as the decisions x
t

taken by the
expert on average. To this end, we interpret the observa-
tions of parameters and expert solutions as revealed over
multiple rounds such that in each round t we are shown the
parameters p

t

first, then take our optimal decision x̄

t

ac-
cording to our objective function c

t

, then we are shown the
solution x

t

chosen by the expert and finally we are allowed
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to update c

t

for the next round. For this setup, we will be
able to show that our algorithm attains an error bound of

0  1

T

TX

t=1

(c

t

� ctrue)
T

(x̄

t

� x

t

)  2K

r
lnn

T

,

where K � 0 is an upper bound on the `1-diameter of the
feasible regions X(p

t

) with t = 1, . . . , T . This implies that
both the deviations in true cost cTtrue(xt

� x̄

t

) � 0 as well
as the deviations in surrogate cost cT

t

(x̄

t

� x

t

) � 0 can be
made arbitrarily small on average. In other words, the av-
erage regret for having decided optimally according to the
surrogate objectives c

t

vs. having decided optimally for the
true objective ctrue vanishes at a rate of O(

1p
T

). This re-
sult shows that linear objective functions over general fea-
sible sets can be learned from relatively few observations of
historical optimal parameter-solutions pairs. We will also
briefly discuss the case where the objective ctrue is known,
but some linear constraints are unknown in this paper.

Literature Overview

The idea of learning or inferring parts of an optimization
model from data is a reasonably well-studied problem un-
der many different assumptions and applications and has
gained significant attention in the optimization commu-
nity over the last few years, as discussed for example in
(den Hertog & Postek, 2016), (Lodi, 2016), (Simchi-Levi,
2014). These papers argue that there would be significant
benefits in combining traditional optimization models with
data-derived components. Most approaches in the liter-
ature focus on deriving the objective function of an ex-
pert decision maker based on past observations of input
data and the decisions she took in each instance. In al-
most all cases, the objective functions are learned by con-
sidering the KKT-conditions or the dual of the (parame-
terized) optimization problem, and as such convexity for
both the feasible region and the objective function is in-
herently assumed. Examples of this approach include (Ke-
shavarz et al., 2011), (Li, 2016) and (Thai & Bayen, 2016),
where the latter also consider the derivation of variational
inequalities from data. Sometimes also distributional as-
sumptions regarding the observations are made. Applica-
tions of such approaches have been heavily studied in the
context of energy systems (Ratliff et al., 2014; Konstanta-
kopoulos et al., 2016), robot motion (Papadopoulos et al.,
2016), (Yang et al., 2014), medicine (Sayre & Ruan, 2014)
and revenue management (Kallus & Udell, 2015; Qiang
& Bayati, 2016; Chen et al., 2015; Kallus & Udell, 2016;
Bertsimas & Kallus, 2016); also in the situation where the
observed decisions were not necessarily optimal (Nielsen
& Jensen, 2004). Very closely related to our learning ap-
proach in terms of the problem formulation is (Troutt et al.,
2005) which was later extended in (Troutt et al., 2006),
where an optimization model is defined that searches for

a linear optimization problem that minimizes the total dif-
ference between the observed solutions and solutions found
by optimizing according to that optimization problem. In
the latter case, the models are solved using LP duality and
cutting planes respectively. In their follow-up work (Troutt
et al., 2008), a genetic algorithm is used to solve the prob-
lem heuristically under rather general assumptions, but in-
herently without any quality guarantees, and (Troutt et al.,
2011) study experimental setups for learning objectives un-
der various stochastic assumptions, focussing on maximal
likelihood estimation, which is generally the case for their
line of work; we make no such assumptions.

Closely related to learning optimization models from ob-
served data is the subject of inverse optimization. Here
the goal is to find an objective function that renders the
observed solutions optimal with respect to the concur-
rently observed parameter realizations. Here approaches
mostly from convex optimization are used for inverse op-
timal control (Iyengar & Kang, 2005; Panchea & Ram-
dani, 2015; Molloy et al., 2016), inverse combinatorial op-
timization (D. Burton, 1997; Burton & Toint, 1994; 1992;
Sokkalingam et al., 1999; Ahuja & Orlin, 2000), integer in-
verse optimization (Schaefer, 2009) and inverse optimiza-
tion in the presence of noisy data, such as observed de-
cisions that were suboptimal (Aswani et al., 2016; Chan
et al., 2015).

All these approaches heavily rely on duality and thus re-
quire convexity assumptions both for the feasible region as
well as the objectives. As such, they cannot deal with more
complex, possibly non-convex decision domains. This in
particular includes the important case of integer-valued de-
cisions (such as ‘yes/no’-decisions) and also many other
non-convex setups (several of which admit efficient linear
optimization algorithms). Previously, this was only possi-
ble when the structure of the feasible set could be benef-
ically exploited. In contrast, our approach does not make
any such assumptions and only requires access to a linear
optimization oracle (in short: LP oracle) for the feasible
region.

Also related to our work is inverse reinforcement learning
and apprenticeship learning, where the reward function is
the target to be learned. However, in this case the under-
lying problem is modeled as a Markov decision process
(MDP); see e.g. (Syed & Schapire, 2007) and (Ratia et al.,
2012). Typically, the guarantees are of a different form
though. Similarly, our work is not to be confused with that
of (Taskar et al., 2005) and (III et al., 2005), who develop
online algorithms for learning aggregation vectors for edge
features in graphs that use inverse optimization as a sub-
routine to define the update rule. In contrast, we do inverse
optimization by means of an online learning algorithm; ba-
sically the reverse setup.
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Our approach is based on online learning, and we use the
simple EXP algorithm here to attain the stated regret bound.
The EXP algorithm is commonly also called Multiplicative
Weights Update (MWU) algorithm and was developed in
the works of (Littlestone & Warmuth, 1994), (Vovk, 1990)
and (Freund & Schapire, 1997) (see (Arora et al., 2012;
Hazan, 2016) for a comprehensive introduction; see also
(Audibert et al., 2013)). A similar algorithm was used by
(Plotkin et al., 1995) for solving fractional packing and
covering problems. We also note that our feedback is
stronger than bandit feedback. This requirement is not un-
expected as the costs chosen by the ‘adversary’ depend on
our decision; as such the bandit model (see e.g. (Dani et al.,
2008), (Abbasi-Yadkori et al., 2011)) does not readily ap-
ply.

Contribution

To the best of the authors’ knowledge, this paper makes the
first attempt to learn the objective function of an optimiza-
tion model from data using an online learning approach.

Online learning of optimization problems. Based on sam-
ples for the input-output relationship of an optimization
problem solved by a decision maker, our aim is to learn
an objective function which is consistent with the observed
input-output relationship; this is the best one can hope for.
In our setup, the expert solves the decision-making prob-
lem repeatedly for different input parameter realizations.
From these observations, we are able to learn a strategy of
objective functions that emulate the expert’s unknown ob-
jective function such that the difference in solution quality
between the solutions converges to zero on average.

While previous methods based on dualization or KKT-
system-based approaches can lead to similar or even
stronger results in the continuous/convex case, online
learning allows us to relax this convexity requirement and
to work with arbitrary decision domains as long as we are
able to optimize a linear function over them. Thus, we do
not explicitly analyze the KKT-system or the dual program
(in the case of LPs; see Remark 3.1). In particular, one
might consider our algorithm as an algorithmic analogue
of the KKT-system (or dual program) in the convex case.

To summarize, we stress that (a) we do not make any
assumptions regarding distribution of the observations,
(b) the observations can be chosen by a fully-adaptive ad-
versary, and (c) we do not require any convexity assump-
tions regarding the feasible regions and only rely on ac-
cess to an LP oracle. We would also like to mention that
our approach can be extended to work with slowly chang-
ing objectives using appropriate online learning algorithms
such as, for example, (Jadbabaie et al., 2015) or (Zinkevich,
2003); the regret bounds will depend on the rate of change.

Preliminary Computational Tests. While a full computa-
tional study is beyond the scope of this paper and left for
future work, we implemented a first preliminary version of
our algorithm, and we report computational results for a
few select problems.

2. Problem Setting
We consider the following family of optimization prob-
lems (OPT(p))

p

, which depend on a parameter p 2 P ✓
k for some k 2 :

max c

T

truex

s.t. x 2 X(p),

where ctrue 2 n is the objective function and X(p) ✓
n is the feasible region, where the latter depends on the

parameter p. Of particular interest to us will be feasible
regions that arise as polyhedra defined by linear constraints
and their intersections with integer lattices:

X(p) = {x 2 n�l ⇥ l | A(p)x  b(p)}
with A(p) 2 m⇥n and b(p) 2 m. However, our ap-
proach can also readily by applied in the case of more com-
plex feasible regions, such as mixed-integer sets bounded
by convex functions:

X(p) = {x 2 n�l ⇥ l | G(p, x)  0}
with G : P ⇥ n�l ⇥ l ! convex – or even more
general settings. In fact, for any possible choice of model
for the set of feasible decisions, we only require the avail-
ability of a linear optimization oracle capable of optimizing
linear functions over X(p) for any p 2 P . We call a de-
cision x 2 n optimal for p if it is an optimal solution to
OPT(p).

We assume that Problem OPT(p) models a parameterized
optimization problem which has to be solved repeatedly for
various input parameters p. Our task is to learn the fixed ob-
jective function ctrue from given observations of the param-
eter p and a corresponding optimal solution x to OPT(p).
To this end, we further assume that we are given a series of
observations ((p

t

, x

t

))

t

of parameter realizations p

t

2 P

together with an optimal solution x

t

to OPT(p
t

) computed
by the expert for t = 1, . . . , T ; these observations are re-
vealed over time in an online fashion: in round t, we ob-
tain a parameter setting p

t

and compute an optimal solu-
tion x̄

t

2 X(p

t

) with respect to an objective function c

t

based on what we have learned about ctrue so far. Then
we are shown the solution x

t

the expert with knowledge of
ctrue would have taken and can use this information to up-
date our inferred objective function for the next round. In
the end, we would like to be able to use our inferred objec-
tive function to take decisions that are essentially as good
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as those chosen by the expert in an appropriate aggregation
measure such as, for example, ‘on average’ or ‘with high
probability’. The quality of the inferred objective is mea-
sured in terms of cost deviation between our solutions x̄

t

and the solutions x

t

obtained by the expert. Details will
be given in the next section, where we will derive an algo-
rithm based on multiplicative weights updates (MWU) to
solve the above task.

To fix some useful notations, let v(i) denote the i-th com-
ponent of a vector v throughout and let [n] := {1, . . . , n}
for any natural number n. Further, let n

:

= (1, . . . , 1)

denote the all-ones vector in n.

As a technical assumption, we further demand kctruek1 =

1 and ctrue � 0. Both requirements are without loss of
generality and are motivated by our choice of MWU as the
online learning algorithm to simplify the exposition. We
can drop these assumptions by employing, for example, the
Online Gradient Descent algorithm of (Zinkevich, 2003),
which requires an explicit projection step.

3. Learning Objectives
Ideally, we would like to find the true objective func-
tion ctrue as a solution to the following optimization prob-
lem:

min

c2 n
+ :

kck1=1

X

t2[T ]

✓✓
max

x2X(pt)
c

T

x

◆
� c

T

x

t

◆
, (1)

where x

t

2 X(p) is the optimal decision taken by the
expert in round t. The (normalized) true objective func-
tion ctrue � 0 is an optimal solution to Problem (1) with
objective value 0. This is because any solution ĉ with
kĉk1 = 1 is feasible and produces non-negative summands

✓
max

x2X(pt)
ĉ

T

x

◆
� ĉ

T

x

t

, t 2 [T ],

as we assume x

t

2 X(p

t

) to be optimal for p
t

with respect
to ctrue. Thus, the optimal value of (1) is bounded from
below by 0.

When solving Problem (1) we are interested in an objective
function vector c 2 n that delivers a consistent explana-
tion for why the expert chose x

t

as his response to the pa-
rameters p

t

in round t = 1, . . . , T . To be more precise, we
want to minimize the deviation between the optimal value
obtained when optimizing over X(p

t

) with our guess for
the objective function c and the value of the expert’s deci-
sion evaluated according to our guess c, averaged over all
observations. Our algorithm presented here will provide
even stronger guarantees in some cases, such as the one de-
scribed in Section 3.1, showing that we can replicate the
decision-making behavior of the expert.

Problem (1) contains T instances of the following maxi-
mization subproblem:

max c

T

x (2a)
s.t. x 2 X(p

t

) (2b)

For each t = 1, . . . , T , the corresponding Subproblem (2)
asks for an optimal solution x̄

t

when optimizing over the
feasible set X(p

t

) with our guess c as the objective func-
tion.

Remark 3.1. Note that in the case of polyhedral feasible
regions, i.e. p

t

= (A

t

, b

t

) 2 m⇥n ⇥ m and X(p

t

) =

{x 2 n

+ | A

t

x  b

t

} for t = 1, . . . , T , Problem (1)
can be reformulated as a linear program by dualizing the
T instances of Subproblem (2). This yields

min

TX

t=1

(b

T

t

y

t

� c

T

x

t

)

s.t. A

T

t

y

t

� c

(8t = 1, . . . , T )

y

t

� 0

(8t = 1, . . . , T )

nX

i=1

c

i

= 1

c � 0,

where the y

t

are the corresponding dual variables and the
x

t

are the observed decisions from the expert (i.e. the latter
are part of the input data). This problem asks for a primal
objective function vector c that minimizes the total dual-
ity gap summed over all primal-dual pairs (x

t

, y

t

) while
all y

t

’s shall be dual feasible, which makes the x

t

’s the re-
spective primal optimal solutions. Thus, Problem (1) can
be seen as a direct generalization of the linear primal-dual
optimization problem. In fact, our approach also covers
non-convex cases, e.g. mixed-integer linear programs.

Problem (1) can be interpreted as a game over T rounds
between a player who chooses an objective function c

t

in
round t 2 [T ] and a player who knows the true objective
function ctrue and chooses the observations (p

t

, x

t

) in a po-
tentially adversarial way. The payoff of the latter player in
each round t is equal to c

T

t

(x̄

t

� x

t

) � 0, i.e. the differ-
ence in cost between our solution and the expert’s solution
as given by our guessed objective function c

t

.

As Problem (1) is hard to solve in general, we will
design an algorithm that, rather than finding an op-
timal objective c, finds a strategy of objective func-
tions (c1, c2, . . . , cT ) to play in each round whose error in
solution quality as compared to the true objective function
is as small as possible. Our aim will then be to give a qual-
ity guarantee for this strategy in terms of the number of
observations.
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To allow for approximation guarantees, it is necessary that
the observed feasible sets have a common upper bound on
their `1-diameter.

Definition 3.2. The `1-diameter of a set S ✓ n, de-
noted by diam1(S) is the largest distance between any
two points x1, x2 2 S, measured in the infinity-norm, i.e.
diam1(S)

:

= max

x1,x22S

kx1 � x2k1.

In the following, we assume that there exists a K � 0 with
diam1(X(p

t

))  K for all t = 1, . . . , T . With these
prerequisites, our application of multiplicative weights up-
dates (MWU) to learn the objective function of an opti-
mization problem proceeds as outlined in Algorithm 1.

Algorithm 1 Online Objective Function Learning

input observations (p
t

, x

t

) for t = 1, . . . , T

output sequence of objectives c1, c2, . . . , cT
1: ⌘  

q
lnn

T

{set learning rate}
2: w1  n {initialize weights}
3: for t = 1, . . . , T do
4: c

t

 wt
kwtk1

{normalize weights}
5: x̄

t

 argmax {cT
t

x | X(p

t

)} {solve Subprob-
lem (2)}

6: if x̄
t

= x

t

then
7: y

t

 0

8: else
9: y

t

 x̄t�xt
kx̄t�xtk1

10: end if
11: w

t+1(i) w

t

(i)(1� ⌘y

t

(i)) {update weights}
12: end for
13: return (c1, c2, . . . , cT ).

For the series of objectives functions (c

t

)

t

that our algo-
rithm produces over rounds t = 1, . . . , T , we can establish
the following guarantee:

Theorem 3.3. Let K � 0 with diam1 X(p

t

)  K for all
t = 1, . . . , T . Then we have

0  1

T

TX

t=1

(c

t

� ctrue)
T

(x̄

t

� x

t

)  2K

r
lnn

T

,

and in particular it also holds:

1. 0  1
T

P
T

t=1 c
T

t

(x̄

t

� x

t

)  2K

q
lnn

T

,

2. 0  1
T

P
T

t=1 c
T

true(xt

� x̄

t

)  2K

q
lnn

T

.

Proof. According to the standard performance guarantee
of MWU (see, e.g., (Arora et al., 2012), Corollary 2.2),
Algorithm 1 attains the following solution quality for the

comparison between the objective function c

t

chosen in
each round t with the unknown true objective function ctrue:

TX

t=1

c

T

t

y

t


TX

t=1

c

T

true(yt + ⌘|y
t

|) + lnn

⌘

,

where the |y
t

| is to be understood component-wise. Using
that each each entry of |y

t

| is at most 1 and dividing by T ,
we can conclude

1

T

TX

t=1

c

T

t

y

t

� 1

T

TX

t=1

c

T

trueyt  ⌘

nX

i=1

ctrue(i) +
lnn

⌘T

and further

1

T

TX

t=1

c

T

t

y

t

� 1

T

TX

t=1

c

T

trueyt = ⌘ +

lnn

⌘T

.

The right-hand side attains its minimum for ⌘ =

q
lnn

T

,
which yields the bound

1

T

TX

t=1

c

T

t

y

t

� 1

T

TX

t=1

c

T

trueyt  2

r
lnn

T

.

Substituting back for the y

t

’s and using

max

t=1,...,T
kx̄

t

� x

t

k1  max

t=1,...,T
diam1(X(p

t

))  K,

we obtain

1

T

TX

t=1

c

T

t

(x̄

t

� x

t

) +

1

T

TX

t=1

c

T

true(xt

� x̄

t

)  2K

r
lnn

T

.

Observe that for each summand t 2 [T ] we have c

T

t

(x̄

t

�
x

t

) � 0 as x̄
t

, x

t

2 X(p

t

) and x̄

t

is the maximum over this
set with respect to c

t

. With a similar argument, we see that
c

T

true(xt

� x̄

t

) � 0 for all t 2 [T ]. Thus, we have

0  1

T

TX

t=1

(c

t

� ctrue)
T

(x̄

t

� x

t

)  2K

r
lnn

T

, (3)

and similarly for the separate terms with analogue argu-
mentation. This establishes the claim.

Note that by using exponential updates of the form

w

t+1(i) w

t

(i)e

�⌘yt(i)

in line 11 of the algorithm, we could attain the same bound,
cf. (Arora et al., 2012, Theorem 2.3). Secondly, we remark
that our choice of the learning rate ⌘ requires the number
of rounds T to be known beforehand.

From the above theorem, we can conclude that the average
error over all observations (p

t

, x

t

) for t = 1, . . . , T when
choosing objective function c

t

in iteration t of Algorithm 1
instead of ctrue converges to 0 with an increasing number of
observations T at a rate of roughly O(

1p
T

):



Emulating the Expert: Inverse Optimization through Online Learning

Corollary 3.4. Let K � 0 with diam1 X(p

t

)  K for all
t = 1, . . . , T . Then we have

1. lim

T!1
1
T

P
T

t=1 c
T

t

(x̄

t

� x

t

) = 0 and

2. lim

T!1
1
T

P
T

t=1 c
T

true(xt

� x̄

t

) = 0.

In other words, both the average error incurred from replac-
ing the actual objective function ctrue by the estimation c

t

as well as the average error in solution quality with respect
to ctrue tend to 0 as T grows.

Moreover, using Markov’s inequality we also obtain the
following quantitative bound on the deviation by more than
" > 0 from the average cost:

Corollary 3.5. Let " > 0. Then the fraction of observa-

tions x

t

with c

T

true(xt

� x̄

t

) � 2K

q
lnn

T

+ " is at most
1 � "

2K
p

lnn
T +"

. In particular, for any 0 < p < 1 after

T � lnn

⇣
(1�p)2K

p"

⌘2
observations the fraction of obser-

vations x
t

with cost cTtrue(xt

� x̄

t

) � "

1�p

� 2K

q
lnn

T

+ "

is at most p.

Proof. The first part is an obvious application of Markov’s
inequality. The second part follows from solving 1 �

"

2K
p

lnn
T +"

 p for T and plugging in values.

3.1. The Stable Case

Note that lim

T!1(c

t

� ctrue)
T

(x̄

t

� x

t

) = 0, as de-
rived from Equation (3) does not necessarily imply that we
can approximate ctrue itself. A counterexample is the case
where X(p

t

) ✓ {x 2 n | x(1) = 0}, which means that
any two objective functions c1, c2 6= 0 with c2(i) = c1(i)

for i = 2, . . . , n and 0 <   1 are equivalent if
c1(1), c2(1) are chosen such that kc1k1 = kc2k1 = 1.
Using this construction, we can easily find examples for
which kc1 � c2k1 = 2(1� ), but where the two objective
functions are equivalent in terms of optimal solutions.

While in most applications it is sufficient to be able to pro-
duce solutions via the surrogate objectives that are essen-
tially equivalent to those for the true objective, we will
show now that under slightly strengthened assumptions we
can obtain significantly stronger guarantees for the conver-
gence of the solutions: we will show that in the long run
we learn to emulate the true optimal solutions provided that
the problems have unique solutions as we will make precise
now.

We say that the sequence of feasible regions (X(p

t

))

t

is �-stable for ctrue for some � > 0 if for any t 2
[T ], c 2 n with kck1 = 1, c 6= ctrue and x̄

t

:

=

argmin {cTx | x 2 X(p

t

)} so that for x
t

6= x̄ we have

c

T

true(xt

� x̄

t

) � �,

i.e. either the two optimal solutions coincide or they differ
by at least � with respect to ctrue. In particular, optimizing
ctrue over X(p

t

) leads to a unique optimal solution for all
p

t

with t 2 [T ]. While this condition sounds unnatural at
first, for example it is trivially satisfied for the important
case where X(p

t

) with t 2 [T ] is a polytope with ver-
tices in {0, 1} and ctrue is a rational vector. In this case,
write ctrue =

d

kdk1
with d 2 n

+ and observe that the min-
imum change in objective value between any two vertices
x, y of the 0/1-polytope with c

T

truex 6= c

T

truey is bounded by
|cTtrue(x � y)| � 1

kdk1
, so that �-stability with �

:

=

1
kdk1

holds in this case. The same argument works for more gen-
eral polytopes via bounding the minimum non-zero change
in objective function value via the encoding length.

We obtain the following simple corollary of Theorem 3.3.

Corollary 3.6. Let K � 0 with diam1 X(p

t

)  K for all
t = 1, . . . , T , let (X(p

t

))

t

be �-stable for some � > 0,
and let N

T

:

= {t 2 [T ] | x̄
t

6= x

t

}. Then

|N
T

|  2K

r
T lnn

�

.

Proof. We start with the guarantee from the proof of Theo-
rem 3.3: 0  1

T

P
T

t=1 c
T

true(xt

� x̄

t

)  2K

q
lnn

T

. Now let
N

T

be as above so that 0  1
T

P
t2NT

c

T

true(xt

� x̄

t

) 
2K

q
lnn

T

. Observe that �  c

T

true(xt

� x̄

t

) as x

t

was
optimal for ctrue together with �-stability. We thus ob-
tain 1

T

|N
T

|�  2K

q
lnn

T

, which is equivalent to |N
T

| 
2K

q
T lnn

� .

From the above corollary, we obtain in particular that in
the �-stable case we have 1

T

|N
T

|  2K

q
lnn

T� , i.e. the
average number of times that x̄

t

deviates from x

t

tends to
0 in the long run. We hasten to stress, however, that the
convergence implied by this bound can potentially be slow
as it is exponential in the actual encoding length of ctrue;
this is to be expected given the convergence rates of our
algorithm and online learning algorithms in general.

3.2. Learning Constraints

We will only very briefly address the case of learning con-
straints due to space limitations. We consider the family of
optimization problems (OPT2(p))

p

, p 2 P ✓ k, given
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by

max c(p)

T

x

s.t. Ax  btrue

x � 0,

where c(p) 2 n is the objective function, A 2 m⇥n is
the constraint matrix and btrue 2 m is the right-hand side.

We assume that the c

t

’s are known to both the learner and
the expert. The same can be assumed for A without loss of
generality by standard arguments. The right-hand side btrue
is only known to the expert and to be learned from observ-
ing p

t

as well as an optimal solution x

t

for OPT2(p
t

) in
round t.

The most natural approach for solving this learning prob-
lem is to apply Algorithm 1 to the dual of OPT2(p

t

):

min b

T

truey

s.t. A

T

y � c(p

t

)

y � 0,

where y are the dual variables for the linear constraints. In
the dual problem, btrue is the unknown objective function
(btrue � 0 without loss of generality), while the constraints
to be optimized over in each round are known – the same
setting as before. It is important to note though that the
learner has to observe the dual optimal solutions y

t

and
the guarantee will be that the dual regret is tending to 0.
It remains open whether this can be also achieved when
receiving only the primal optimal solutions x

t

as feedback;
we suspect the answer to be in the negative in general.

4. Applications
We will now sketch two select applications of our frame-
work for learning objective functions. These are the learn-
ing of customer preferences from observed purchases and
the learning of travel times in a road network.

Our preliminary computational experiments have been ob-
tained on a Mac Book Pro (2016) with an Intel Core i5 CPU
with two 2.00 GHz cores. We have implemented our frame-
work using python and Gurobi 7.0.1 (Gurobi Optimization,
Inc., 2016).

4.1. Learning Customer Preferences

We consider a market, where different goods G can be
bought by its customers. The prices for the goods can vary
over different days t 2 [T ]. We assume that the goods are
chosen by the customer to maximize utility given their bud-
get constraints. Each sample (p

t

, x

t

) corresponds to a day
t 2 [T ] where p

t

= (p

t0, ptG) with p

t0 is the budget of
the buyer and p

G

t

contains the prices p

tg

for each good g

at time t. The customer solves the following optimization
problem OPT(p

t

) on day t:

max

X

g2G

u

g

x

g

s.t.

X

g2G

p

tg

x

g

 p

t0

x 2 {0, 1}|G|
,

where the utility u

g

of good g of the customer is unknown
(and kept constant over time).

We consider two different setups: in the first setup, we as-
sume that the goods are divisible, which means that the
condition x 2 {0, 1}|G| is relaxed to x 2 [0, 1]

|G|; this
is the Linear Knapsack Problem. In the second setup, the
goods are not divisible, so that we solve the problem with
the original constraint x 2 {0, 1}|G| as an integer program;
this is the Integer Knapsack Problem.

We generated random instances for our computational re-
sults, considering T = 1000 observations for a varying
number of goods n 2 {100, 500, 1000}. The customer’s
unknown utility vector is chosen at random as (arbitrary)
integer numbers from the interval [1, 1000] from a uniform
distribution and then normalized to have `1-norm 1. The
prices on day t are chosen to be p

tg

= u

g

+ 100 + r

tg

,
where r

tg

is an integer uniformly chosen at random from
the interval [�10, 10]. Choosing utilities and weights sim-
ilar to each other typically leads to harder (integer) knap-
sack problems, cf. (Pisinger, 2005). The right-hand side
p

t0 is then again an integer drawn uniformly from the in-
terval [1,

P
g2G

p

tg

� 1].

Table 1 Errors for Integer Knapsack with n = 1000 items
Error / T 10 100 1000
Average objective error 0.1511 0.0185 0.0036
Average solution error 0.0492 0.0087 0.0013
Average cumulative error 0.2003 0.0272 0.0049

In Table 1, we show the computational results for the Inte-
ger Knapsack Problem with n = 1000 items. We report
errors for 10, 100 and 1000 iterations of our algorithm.
The objective error for each round t 2 [T ] is defined by
c

T

t

(x̄

t

� x

t

) and describes the deviation between the solu-
tion x̄

t

found by the oracle in that round and the solution
x

t

observed from the expert as evaluated with our guess for
the objective function c

t

. Accordingly, the solution error
in each round t is defined as c

T

true(x̄t

� x

t

) and evaluates
the deviation between the two solutions in the true objec-
tive function. Together they yield the total error, given by
(c

t

� ctrue)
T

(x̄

t

� x

t

), which is the total deviation between
choosing c

t

and ctrue in Problem (1) in round t. Each of
these error types is shown in our plots over time, depict-
ing both the error in a given round t and the average error
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Figure 1. Linear Knapsack problem with n = 100 items over
T = 1000 iterations. We plot 1

T

PT
t=1(ct�ctrue)

T (x̄t�xt) over
T on the x-axis in blue. In red we plot the cost (ct � ctrue)

T (x̄t �
xT ) of round t. As can be seen, after few iterations most solutions
reside on the x-axis and only few deviate beyond the average.

over rounds t

0 2 [t]. We depict a representative knapsack
instance in Figure 1.

4.2. Learning Travel Times

While the first example explored learning over a temporal
horizon, in this example the various observations t 2 [T ]

arise from different drivers in a road network. More pre-
cisely, we consider a resource-constrained shortest path
problem, where we are given a graph G = (V,E), where
drivers have to find cost-minimal s-t-paths subject to a re-
source or budget constraint. For each arc e 2 E, we denote
the arc length with a

e

. The observations t 2 [T ] repre-
sent drivers in the network and each observation (p

t

, x

t

)

consists of p
t

= (p

1
t

, p

2
t

, p

3
t

), where p

1
t

is the starting point
and p

2
t

is the ending point of the journey of driver t. It
is assumed that driver t takes the path with the shortest
travel time with respect to the unknown travel times c

e

with
e 2 E while at the same time being subject to a limit p3

t

of
total distance that can be traveled. The values of x

t

indi-
cate the traversed edges of the graph that driver t takes. The
optimization problem OPT(p

t

) solved by driver t is then:

min

X

e2E

c

e

x

e

s.t.

X

e2�

�(v)

x

e

�
X

e2�

+(v)

x

e

=

8
<

:

�1, if v = p

1
t

1, if v = p

2
t

0, otherwise
(8v 2 V )

X

e2E

a

e

x

e

 p

3
t

x 2 {0, 1}|E|
,

Figure 2. Resource-constrained shortest path problem on a grid
graph with m = 15 rows and n = 30 columns as described above
for T = 1000 iterations. Total error as in Figure 1. Convergence
is slower here (although with an error that is several orders of
magnitude smaller) as the problem is much more complex. Still,
in most rounds we have an error close to 0.

and we want to learn the values c
e

for e 2 E corresponding
to the travel time to traverse arc e.

We created instances of the problem based on grid graphs
with m rows and n columns. The unknown driving times
vector of the network and the resource value for each arc
(in our case the length of the arc) were chosen at random
in the same fashion as for the knapsack problems. For each
sample, we chose a random pair of an origin and a destina-
tion node. The resource limit for the sample is calculated as
the length of the shortest path between the selected nodes
multiplied by 1.25. In other words: find the fastest path
while driving at most 25% more than length of the shortest
path. See Figure 2 for our result over T = 1000 samples.

Additional computations are included in the Appendix.

5. Final Remarks
In its current form, we explicitly use the optimality of the
observed actions to learn the objective function. While be-
yond the scope of this paper, it would be interesting to anal-
yse to what extent this optimality requirement can be re-
laxed to approximate solutions. Clearly, one can simply re-
define the underlying feasible regions X(p

t

) to correspond
to the approximate feasible regions, however this can lead
to unwanted effects of the summands in our regret bound
not being non-negative anymore if the solutions obtained
for the surrogate objective is better than the approximately
optimal observed solution. Another important question is
to what extent our framework can be extended to the learn-
ing of constraints (and objective functions simultaneously).
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