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1. GIF algorithm
Figure 1 illustrates visually the inner loop of the GIF build-
ing algorithm: a subset of the candidates nodes is chosen
uniformely at random. The contribution of each node is
evaluated and the one which reduces the error the most is
added to the model. Its children are then built and added to
the candidate list.

2. Optimization problem
We are building an additive model by inserting progres-
sively nodes in the forest. At time t, we are trying to find
the best node j(t) from the candidate list Ct and its associ-
ated optimal weight w(t)

j :

j(t), w
(t)
j = arg min

j∈Ct,w∈RK

N∑
i=1

L
(
yi, ŷ

(t−1)(xi) + wzj(xi)
)

(1)

where (xi, yi)
N
i=1 is the learning sample, ŷ(t−1)() is the

model at time t − 1, zj() is the node indicator functions,
meaning that it is 1 if its argument reaches node j and 0
otherwise.

This problem is solved in two steps. First a node j is
selected from Ct and the corresponding optimal weight,
alongside the error reduction, are computed. This is re-
peated for all nodes and the one achieving the best improve-
ment is selected.

Regression For regression, we used the L2-norm:

w
(t)
j = arg min

w∈R

N∑
i=1

L
(
yi, ŷ

(t−1)(xi) + wzj(xi)
)2

(2)
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and the solution is given by

w
(t)
j =

1

|Zj |
∑
i∈Zj

r
(t−1)
i (3)

where r(t−1)i = yi − ŷ(t−1)(xi) is the residual at time
t − 1 for the ith training instance and Zj = {1 ≤ i ≤
N |zj(xi) = 1} is the subset of instances reaching node j.

Classification For classification we used the multi-
exponential loss (Zhu et al., 2009). First, we need to encode
the labels so that

y
(k)
i =

{
1, if the class of yi is k
− 1
K−1 , otherwise

(4)

where K is the number of classes. Notice that∑K
k=1 y

(k)
i = 0. The optimization then becomes

w
(t)
j = arg min

w∈RK

N∑
i=1

exp

(
−1

K
yTi

(
ŷ(t−1)(xi) + wzj(xi)

))
(5)

= arg min
w∈RK

F
(t−1)
j (w) (6)

Solving for∇F (t−1)
j (w) = 0 yields

α
(t−1,k)
j φ(k)(w) =

1

K

K∑
l=1

α
(t−1,l)
j φ(l)(w) (7)

for 1 ≤ k ≤ K, where

α
(t−1,k)
j ,

∑
i∈Z(k)

j

exp
(
−µ(t−1)

i

)
(8)

µ
(t−1)
i ,

1

K

K∑
k=1

yiŷ
(t−1,k)(xi) (9)

φ(k)(w) , exp

(
− 1

K
ψ(k)(w)

)
(10)

ψ(k)(w) , −w(k) +
1

K − 1

K∑
l=1,l 6=k

w(l) (11)
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where Z(k)
j = {1 ≤ i ≤ N |zi,j = 1 ∧ y(k)i = 1} is the

subset of learning instances of class k reaching node j. In
words, µ(t−1)

i is the hyper-margin of instance i at time t−1

and α(t−1,k)
j is the class error of label k for node j at time

t− 1.

Equation 7 is equivalent to

α
(t−1,k)
j φ(k)(w) = α

(t−1,l)
j φ(l)(w) 1 ≤ k, l ≤ K (12)

In keeping with the output representation (Equation 4), we
can impose a zero-sum constraint on the prediction to get
a unique solution for the kth component of w(t)

j . If it is
imposed at each stage, it means that

K∑
k=1

ŷ(t−1,k) =

K∑
k=1

ŷ(t,k) = 0 =

K∑
k=1

w(k) (13)

and this is not impacted by the learning rate.

The corresponding solution is

φ(k)(w) = exp

(
− 1

K − 1
w(k)

)
(14)

α
(t−1,k)
j =

∑
i∈Z(k)

j

exp

(
− 1

K − 1
ŷ(t−1,k)(xi)

)
(15)

w
(t,k)
j =

K − 1

K

K∑
l=1

log
α
(t−1,k)
j

α
(t−1,l)
j

(16)

3. Equivalence of GIF and the underlying tree
In the case of a single tree (T = 1) and a unit learning rate
(λ = 1), both the square loss in regression and the multi-
exponential loss in classification produce the same predic-
tions as the underlying tree. This is due to the fact that,
when examining the weight to give to node j at time t, the
prediction of time t − 1 relates to the parent node πj of
j. It is thus independent of t and is also the same for all
instances reaching that node.

Consequently, we will adopt the following slight change in
notation:

ŷj = ŷ(πj) + wj (17)

meaning that the prediction associated to any object reach-
ing node j is the weight of j plus the prediction associated
to its parent πj . With ŷ(π1) = 0, the prediction of the root’s
pseudo-parent.

3.1. Regression

In regression, the tree prediction Trj of any leaf j is the
average of the learning set’s outputs reaching that node:

Trj = 1
|Zj |

∑
i∈Zj

yi. We need to show that the GIF pre-
diction is:

ŷj =
1

|Zj |
∑
i∈Zj

yi (18)

The prediction of node j is

ŷj = ŷπj
+ wj (19)

= ŷπj
+

1

|Zj |
∑
i∈Zj

(
yi − ŷπj

)
(20)

= ŷπj +
1

|Zj |
∑
i∈Zj

(yi)− ŷπj (21)

=
1

|Zj |
∑
i∈Zj

yi (22)

The first step is how the additive model is built. The second
is the optimal weight value of node j derived in Equation
3, the third step is due to the fact that the prediction at πj is
constant since there is only one tree.

3.2. Classification

In order to have the same prediction as the underlying tree,
we must demonstrate that the probability of being in class

l associated to node j will be
|Z(l)

j |
|Zj | .

Under the zero-sum constraint, we have

exp

(
1

K − 1
w

(l)
j

)
=

1

cj
α(l)
πj

(23)

=
1

cj

∑
i∈Z(l)

j

exp

(
− 1

K − 1
ŷ(l)πj

)
(24)

=
1

cj
|Z(l)
j | exp

(
− 1

K − 1
ŷ(l)πj

)
(25)

exp

(
1

K − 1
ŷ
(l)
j

)
= exp

(
1

K − 1
ŷ(l)πj

)
exp

(
1

K − 1
w

(l)
j

)
(26)

=
1

cj
|Z(l)
j | (27)

Pj(l) =
exp

(
1

K−1 ŷ
(l)
j

)
∑K
k=1 exp

(
1

K−1 ŷ
(k)
j

) =
|Z(l)
j |
|Zj |

(28)

where cj =
(∏K

k=1 α
(k)
j

) 1
K

is a constant. The first equal-

ity is a consequence of the value ofw(l)
j (Equation 16). The
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second is a due to the definition of α(l)
j (Equation 15). The

third is a consequence of having a single tree: the predic-
tion of the parent is the same for all instances.

Notice that, in both regression and classification, the equiv-
alence also holds for an internal node: the prediction is the
one the tree would have yielded if that node had been a leaf.

4. Datasets
Table 1 sums up the main characteristics of the datasets
we used. Abalone, CT slice, California data housig (Ca-
data), Musk2, Vowel and Letter come from the UCI Ma-
chine Learning Repository (Blake & Merz, 1998). Ring-
norm, Twonorm and Waveform are described in (Breiman
et al., 1998). Hwang F5 comes from the DELVE repository
1. The noise parameter of the Friedman1 dataset (Fried-
man, 1991) has been set to 1. Hastie is described in (Fried-
man et al., 2001). Out of the 500 features of Madelon
(Guyon et al., 2004), 20 are informative and 50 are redun-
dant; the others are noise. Mnist8vs9 is the Mnist dataset
(LeCun et al., 1998) of which only the 8 and 9 digits have
been kept. Binary versions of the Mnist, Letter and Vowel
datasets have been created as well by grouping the first half
and second half classes together.

Table 1. Characteristics of the datasets. N is the learning sample
size, TS stands for testing set, and p is the number of features.

DATASET N |TS| p # CLASSES
FRIEDMAN1 300 2000 10 -
ABALONE 2506 1671 10 -
CT SLICE 2000 51500 385 -
HWANG F5 2000 11600 2 -
CADATA 12384 8256 8 -
RINGNORM 300 7100 20 2
TWONORM 300 7100 10 2
HASTIE 2000 10000 10 2
MUSK2 2000 4598 166 2
MADELON 2200 2200 500 2
MNIST8VS9 11800 1983 784 2
WAVEFORM 3500 1500 40 3
VOWEL 495 495 10 11
MNIST 50000 10000 784 10
LETTER 16000 4000 8 26

5. Comparison with local baseline algorithms
We have tested three deepening algorithm for decision for-
est relying on non-global metrics, meaning that the choice
of the best candidate is not made according to how well the
forest, as a whole, performs. These algorithms share that
the final model is exactly a sub-forest of the un-pruned for-
est: contrary to GIF, no internal weights are fitted and the
predictions of at the leaves are the usual tree predictions.

1http://www.cs.utoronto.ca/delve

Breadth first deepening This variant consist in adding
the nodes level after level, from left to right, producing a
heaped forest. As a consequence, all trees have the same
(order of) height, implying that the forest can be quite wide
but usually shallow.

Random deepening This variant consist in first choosing
a tree and then choosing one of its leaves to transform to a
decision nodes. Both choices are made uniformly at ran-
dom so that the trees are expected to have approximately
the same number of nodes. The depth, however, might vary
significantly.

Best first deepening This variant consist in choosing,
among all leaves which could be turned into a internal
node, the one which reduces its local impurity the most.
Let Nc, Nl and Nr be the number of instances reaching
the candidate node, candidate left child and candidate right
child respectively. Let also Ic, Il and Ir be the impurity
(gini index in classification, variance in regression) of the
instances reaching the candidate node, candidate left child
and candidate right child respectively. Then, forN learning
instances, the local impurity reduction is defined as:

∆Ic ,
Nc
N

[
Ic −

(
Nl
Nc

Il +
Nr
Nc

Ir

)]
(29)

Since the fraction of learning instances reaching the can-
didate is accounted for in the reduction of impurity, this
approach will naturally favor higher nodes in the trees.

Experiment We conducted the same experiment as for
GIF: the three algorithms were tested on ten folds with dif-
ferent learning sample/testing sample splits and were sub-
jected to the 1% and 10% node constraints. We started with
a pool of T = 1000 roots and no restriction was imposed
regarding the depth. All of the m = p the features were
examined in regression and m =

√
p in classification, as

suggested in (Geurts et al., 2006). Table 2 holds the av-
erage mean square error for the five regression problems
and Table 3 holds the average misclassification rate for the
classification problems.

Regression The trend is quite clear: both at 1% and 10%,
the breadth first algorithm is the best and the best first is
(largely) the worst. There are two instances where the local
baselines are able to beat GIF: on Abalone and Hwang F5
at 10%. Interestingly, these are the same cases on which
GIF was beaten by a small forest of Extremely random-
ized trees. The 10% Hwang F5 case aside, the local base-
lines always underperform the smaller fully-developed for-
est. Overall, such variants do not seem adequate for regres-
sion.
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Table 2. Average mean square error for local baselines at 1% and 10% budgets (T = 1000, m = p).

DATASET BREADTH FIRST10% RANDOM10% BEST FIRST10% BREADTH FIRST1% RANDOM1% BEST FIRST1%

FRIEDMAN1 6.02 ± 0.28 6.80 ± 0.34 15.00 ± 0.39 11.73 ± 0.46 12.52 ± 0.47 15.29 ± 0.42
ABALONE 4.72 ± 0.23 4.77 ± 0.23 6.82 ± 0.33 5.42 ± 0.27 5.55 ± 0.27 6.82 ± 0.33
CT SLICE 30.39 ± 1.90 36.19 ± 1.84 310.87 ± 4.79 82.19 ± 2.41 97.24 ± 1.90 313.84 ± 4.64
HWANG F5 ×10−2 6.73 ± 0.07 6.83 ± 0.06 56.57 ± 6.03 8.52 ± 0.24 13.17 ± 0.44 56.60 ± 6.07
CADATA ×10−2 29.24 ± 0.73 31.08 ± 0.74 75.23 ± 0.95 43.40 ± 1.18 47.47 ± 1.02 75.48 ± 0.95

Table 3. Error rate (%) for local baselines at 1% and 10% budgets (T = 1000, m =
√
p). The six first datasets are binary classification.

The last three are multiclass. The three in the middle are their binary versions.

DATASET BREADTH FIRST10% RANDOM10% BEST FIRST10% BREADTH FIRST1% RANDOM1% BEST FIRST1%

RINGNORM 4.25 ± 1.24 4.08 ± 1.12 8.38 ± 6.94 8.94 ± 7.45 8.53 ± 7.04 8.94 ± 7.41
TWONORM 3.51 ± 0.26 3.53 ± 0.30 5.59 ± 1.85 5.91 ± 3.03 6.52 ± 4.28 7.28 ± 4.34
HASTIE 11.30 ± 1.20 11.18 ± 1.16 21.24 ± 7.11 13.92 ± 2.93 14.29 ± 3.20 21.24 ± 7.12
MUSK2 7.01 ± 0.40 7.63 ± 0.43 15.42 ± 0.23 15.42 ± 0.23 15.42 ± 0.23 15.42 ± 0.23
MADELON 11.68 ± 0.67 11.92 ± 0.65 19.12 ± 1.94 16.26 ± 0.97 16.70 ± 1.07 20.14 ± 2.41
MNIST8VS9 2.20 ± 0.38 2.37 ± 0.39 6.17 ± 0.73 4.53 ± 0.48 4.84 ± 0.51 6.67 ± 0.69
BIN. VOWEL 8.99 ± 1.96 8.85 ± 2.03 16.57 ± 3.02 18.73 ± 3.08 19.90 ± 3.71 21.80 ± 4.38
BIN. MNIST 4.46 ± 0.25 4.91 ± 0.27 21.71 ± 0.30 10.09 ± 0.25 11.78 ± 0.32 22.50 ± 0.35
BIN. LETTER 5.91 ± 0.43 5.71 ± 0.40 26.16 ± 0.86 17.91 ± 0.77 18.05 ± 0.78 26.19 ± 0.88
WAVEFORM 14.74 ± 0.63 14.83 ± 0.76 20.25 ± 2.22 16.75 ± 1.26 17.13 ± 1.25 20.45 ± 2.21
VOWEL 14.26 ± 2.41 13.21 ± 2.33 41.49 ± 5.45 42.40 ± 4.33 40.28 ± 4.62 50.44 ± 5.81
MNIST 4.63 ± 0.27 4.96 ± 0.26 28.54 ± 0.59 8.60 ± 0.35 9.76 ± 0.31 29.72 ± 0.61
LETTER 7.06 ± 0.29 6.39 ± 0.20 36.92 ± 1.80 22.11 ± 0.59 20.90 ± 0.55 37.27 ± 1.78

Classification In classification, the breadth first and ran-
dom baselines tend to perform similarly, one beating the
other on some problems. Once again, the best first ap-
proach seems to be lagging behind on some datasets. At
10%, the local baselines cannot rival with the other meth-
ods. Only on Waveform are they able to reach the other
performances—a setting where all methods seems to pro-
duce close results. At 1%, the breadth first and/or the
random methods surpass the ET10% on Twonorm, Hastie,
Madelon and Waveform. Those datasets correspond to
cases where ET was under-performing significantly com-
pared to GIF. All in all, the local baselines are never able
to beat GIF, even in the multiclass setting, which is partic-
ularly defavorable for GIF. Once again, the conclusion is
against the purely local baselines.

We believed the poor performances of the baselines are due
to the building mechanism of traditional ensemble meth-
ods. Although the trees are built independently and with
randomization, there remains an important redundancy be-
tween them, which is especially defavorable to pruning. A
global approach is better able to avoid redundancy and can
thus better exploit the node budget. This would also explain
why the best first variant performs worst in both regression
and classification: it is prone at picking redundant nodes,
which will usually offer the same kind of impurity reduc-
tion.
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ŷ x( ) = y +λw9z9 (x)
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(a) Current forest at time t

ŷ x( ) = y +λw9z9 (x)
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(b) A subset of candidates Ct is drawn uniformely at random from
the set of candidates C (step 8)

ŷ x( ) = y +λw9z9 (x)
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(c) The error reduction is computed for all candidates of Ct (step 9)

ŷ x( ) = y +λw9z9 (x)
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(d) The best node (highest error reduction) is selected (step 9)

ŷ x( ) = y +λw9z9 (x)+λw6z6 (x)
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(e) The chosen node is introduced in the model (step 10)

ŷ x( ) = y +λw9z9 (x)+λw6z6 (x)
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(f) The children of the chosen node are computed (step 11) and
added to the candidate list (step 12)

Figure 1. Illustration of the GIF regression building algorithm (T = 3, CW = 3)


