
Learning to Discover Sparse Graphical Models

Eugene Belilovsky 1 2 3 Kyle Kastner 4 Gael Varoquaux 2 Matthew B. Blaschko 1

Abstract
We consider structure discovery of undirected
graphical models from observational data. Infer-
ring likely structures from few examples is a com-
plex task often requiring the formulation of priors
and sophisticated inference procedures. Popular
methods rely on estimating a penalized maximum
likelihood of the precision matrix. However, in
these approaches structure recovery is an indirect
consequence of the data-fit term, the penalty can
be difficult to adapt for domain-specific knowl-
edge, and the inference is computationally de-
manding. By contrast, it may be easier to gener-
ate training samples of data that arise from graphs
with the desired structure properties. We propose
here to leverage this latter source of information
as training data to learn a function, parametrized
by a neural network, that maps empirical co-
variance matrices to estimated graph structures.
Learning this function brings two benefits: it im-
plicitly models the desired structure or sparsity
properties to form suitable priors, and it can be
tailored to the specific problem of edge structure
discovery, rather than maximizing data likelihood.
Applying this framework, we find our learnable
graph-discovery method trained on synthetic data
generalizes well: identifying relevant edges in
both synthetic and real data, completely unknown
at training time. We find that on genetics, brain
imaging, and simulation data we obtain perfor-
mance generally superior to analytical methods.

Introduction
Probabilistic graphical models provide a powerful frame-
work to describe the dependencies between a set of vari-
ables. Many applications infer the structure of a probabilis-
tic graphical model from data to elucidate the relationships

1KU Leuven 2INRIA 3University of Paris-Saclay 4University
of Montreal. Correspondence to: Eugene Belilovsky <eu-
gene.belilovsky@inria.fr>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017 by
the author(s).

between variables. These relationships are often represented
by an undirected graphical model also known as a Markov
Random Field (MRF). We focus on a common MRF model,
Gaussian graphical models (GGMs). GGMs are used in
structure-discovery settings for rich data such as neuroimag-
ing, genetics, or finance (Friedman et al., 2008; Ryali et al,
2012; Mohan et al., 2012; Belilovsky et al., 2016). Although
multivariate Gaussian distributions are well-behaved, deter-
mining likely structures from few examples is a difficult task
when the data is high dimensional. It requires strong priors,
typically a sparsity assumption, or other restrictions on the
structure of the graph, which now make the distribution
difficult to express analytically and use.

A standard approach to estimating structure with GGMs in
high dimensions is based on the classic result that the zeros
of a precision matrix correspond to zero partial correlation,
a necessary and sufficient condition for conditional indepen-
dence (Lauritzen, 1996). Assuming only a few conditional
dependencies corresponds to a sparsity constraint on the
entries of the precision matrix, leading to a combinatorial
problem. Many popular approaches to learning GGMs can
be seen as leveraging the `1-norm to create convex surro-
gates to this problem. Meinshausen & Bühlmann (2006)
use nodewise `1 penalized regressions, while other estima-
tors penalize the precision matrix directly (Cai et al., 2011;
Friedman et al., 2008; Ravikumar et al., 2011), the most
popular being the graphical lasso

fgl(Σ̂) = arg min
Θ�0
− log |Θ|+Tr (Σ̂Θ) + λ‖Θ‖1 (1)

which can be seen as a penalized maximum-likelihood esti-
mator. Here Θ and Σ̂ are the precision and sample covari-
ance matrices, respectively. A large variety of alternative
penalties extend the priors of the graphical lasso (Dana-
her et al., 2014; Ryali et al, 2012; Varoquaux et al., 2010).
However, this strategy faces several challenges. Construct-
ing novel surrogates for structured-sparsity assumptions on
MRF structures is difficult, as priors need to be formulated
and incorporated into a penalized maximum likelihood ob-
jective which then calls for the development of an efficient
optimization algorithm, often within a separate research ef-
fort. Furthermore, model selection in a penalized maximum
likelihood setting is difficult as regularization parameters
are often unintuitive.

We propose to learn the estimator. Rather than manually de-

Learning to Discover Sparse Graphical Models

signing a specific graph-estimation procedure, we frame this
estimator-engineering problem as a learning problem, se-
lecting a function from a large flexible function class by risk
minimization. This allows us to construct a loss function
that explicitly aims to recover the edge structure. Indeed,
sampling from a distribution of graphs and empirical covari-
ances with desired properties is often possible, even when
this distribution is not analytically tractable. As such we
can perform empirical risk minimization to select an appro-
priate function for edge estimation. Such a framework gives
more control on the assumed level of sparsity (as opposed
to graph lasso) and can impose structure on the sampling to
shape the expected distribution, while optimizing a desired
performance metric.

For particular cases we show that the problem of interest
can be solved with a polynomial function, which is learn-
able with a neural network (Andoni et al., 2014). Motivated
by this fact, as well as theoretical and empricial results
on learning smooth functions approximating solutions to
combinatorial problems (Cohen et al., 2016; Vinyals et al.,
2015), we propose to use a particular convolutional neural
network as the function class. We train it by sampling small
datasets, generated from graphs with the prescribed proper-
ties, with a primary focus on sparse graphical models. We
estimate from this data small-sample covariance matrices
(n < p), where n is the number of samples and p is the
dimensionality of the data. Then we use them as training
data for the neural network (Figure 2) where target labels
are indicators of present and absent edges in the underlying
GGM. The learned network can then be employed in various
real-world structure discovery problems.

In Section 1.1 we review the related work. In Section 2 we
formulate the risk minimization view of graph-structure in-
ference and describe how it applies to sparse GGMs. Section
2.3 describes and motivates the deep-learning architecture
we chose to use for the sparse GGM problem in this work.
In Section 3 we describe the details of how we train an edge
estimator for sparse GGMs. We then evaluate its properties
extensively on simulation data. Finally, we show that this
edge estimator trained only on synthetic data can obtain
state of the art performance at inference time on real neu-
roimaging and genetics problems, while being much faster
to execute than other methods.

Related Work

Lopez-Paz et al. (2015) analyze learning functions to iden-
tify the structure of directed graphical models in causal
inference using estimates of kernel-mean embeddings. As
in our work, they demonstrate the use of simulations for
training while testing on real data. Unlike our work, they
primarily focus on finding the causal direction in two node
graphs with many observations.

Our learning architecture is motivated by the recent litera-
ture on deep networks. Vinyals et al. (2015) have shown
that neural networks can learn approximate solutions to NP-
hard combinatorial problems, and the problem of optimal
edge recovery in MRFs can be seen as a combinatorial op-
timization problem. Several recent works have proposed
neural architectures for graph input data (Henaff et al., 2015;
Duvenaud et al, 2015; Li et al., 2016). These are based on
multi-layer convolutional networks, as in our work, or multi-
step recurrent neural networks. The input in our approach
can be viewed as a complete graph, while the output is a
sparse graph, thus none of these are directly applicable. Re-
lated to our work, Balan et al. (2015) use deep networks
to approximate a posterior distribution. Finally, Gregor
& LeCun (2010); Xin et al. (2016) use deep networks to
approximate steps of a known sparse recovery algorithm.

Bayesian approaches to structure learning rely on priors on
the graph combined with sampling techniques to estimate
the posterior of the graph structure. Some approaches make
assumptions on the decomposability of the graph (Moghad-
dam et al., 2009). The G-Wishart distribution is a popular
distribution which forms part of a framework for structure
inference, and advances have been recently made in efficient
sampling (Mohammadi & Wit, 2015). These methods can
still be rather slow compared to competing methods, and in
the setting of p > n we find they are less powerful.

Methods

Learning an Approximate Edge Estimation Procedure

We consider MRF edge estimation as a learnable function.
Let X ∈ Rn×p be a matrix whose n rows are i.i.d. samples
x ∼ P (x) of dimension p. LetG = (V,E) be an undirected
and unweighted graph associated with the set of variables in
x. Let L = {0, 1} and Ne =

p(p−1)
2 the maximum possible

edges in E. Let Y ∈ LNe indicate the presence or absence
of edges in the edge set E of G, namely

Y ij =

{
0 xi ⊥ xj |xV \i,j
1 xi 6⊥ xj |xV \i,j .

(2)

We define an approximate structure discovery method
gw(X), which predicts the edge structure, Ŷ = gw(X),
given a sample of data X . We focus on X drawn from a
Gaussian distribution. In this case, the empirical covariance
matrix, Σ̂, is a sufficient statistic of the population covari-
ance and therefore of the conditional dependency structure.
We thus express our structure-recovery problem as a func-
tion of Σ̂: gw(X) := fw(Σ̂). fw is parametrized by w and
belongs to the function class F . Note that the graphical
lasso in Equation (1) is an fw for a specific choice of F .

This view on the edge estimator now allows us to bring the
selection of fw from the domain of human design to the

Learning to Discover Sparse Graphical Models

domain of empirical risk minimization over F . Defining a
distribution P on Rp×p × LNe such that (Σ̂, Y) ∼ P, we
would like our estimator, fw, to minimize the expected risk

R(f) = E(Σ̂,Y)∼P[l(f(Σ̂), Y)]. (3)

Here l : LNe × LNe → R+ is the loss function. For graphi-
cal model selection the 0/1 loss function is the natural error
metric to consider (Wang et al., 2010). The estimator with
minimum risk is generally not possible to compute as a
closed form expression for most interesting choices of P,
such as those arising from sparse graphs. In this setting,
Eq. (1) achieves the information theoretic optimal recov-
ery rate up to a constant for certain P corresponding to
uniformly sparse graphs with a maximum degree, but only
when the optimal λ is used and the non-zero precision ma-
trix values are bounded away from zero (Wang et al., 2010;
Ravikumar et al., 2011).

The design of the estimator in Equation (1) is not explicitly
minimizing this risk functional. Thus modifying the esti-
mator to fit a different class of graphs (e.g. small-world net-
works) while minimizing R(f) is not obvious. Furthermore,
in practical settings the optimal λ is unknown and precision
matrix entries can be very small. We would prefer to directly
minimize the risk functional. Desired structural assumptions
on samples from P on the underlying graph, such as sparsity,
may imply that the distribution is not tractable for analytic
solutions. Meanwhile, we can often devise a sampling pro-
cedure for P allowing us to select an appropriate function
via empirical risk minimization. Thus it is sufficient to
define a rich enough F over which we can minimize the
empirical risk over the samples generated, giving us a learn-
ing objective over N samples {Yk,Σk}Nk=1 drawn from P:
min
w

1
N

∑N
k=1 l(fw(Σ̂k), Yk). To maintain tractability, we

use the standard cross-entropy loss as a convex surrogate,
l̂ : RNe × LNe , given by∑

i 6=j

(
Y ij log(f ijw (Σ̂)) + (1− Y ij) log(1− f ijw (Σ̂))

)
.

We now need to select a sufficiently rich function class
for fw and a method to produce appropriate (Y, Σ̂) which
model our desired data priors. This will allow us to learn
a fw that explicitly attempts to minimize errors in edge
discovery.

Discovering Sparse GGMs and Beyond

We discuss how the described approach can be applied to
recover sparse Gaussian graphical models. A typical as-
sumption in many modalities is that the number of edges
is sparse. A convenient property of these GGMs is that the
precision matrix has a zero value in the (i, j)th entry pre-
cisely when variables i and j are independent conditioned
on all others. Additionally, the precision matrix and partial

correlation matrix have the same sparsity pattern, while the
partial correlation matrix has normalized entries.

We propose to simulate our a priori assumptions of sparsity
and Gaussianity to learn fw(Σ̂), which can then produce
predictions of edges from the input data. We model P (x|G)
as arising from a sparse prior on the graph G and corre-
spondingly the entries of the precision matrix Θ. To obtain
a single sample of X corresponds to n i.i.d. samples from
N (0,Θ−1). We can now train fw(Σ̂) by generating sample
pairs (Σ̂, Y). At execution time we standardize the input
data and compute the covariance matrix before evaluating
fw(Σ̂). The process of learning fw for the sparse GGM is
given in Algorithm 1.

Algorithm 1 Training a GGM edge estimator

for i ∈ {1, .., N} do
Sample Gi ∼ P(G)
Sample Θi ∼ P(Θ|G = Gi)
Xi ← {xj ∼ N(0,Θ−1

i)}nj=1

Construct (Yi, Σ̂i) pair from (Gi,Xi)
end for
Select Function Class F (e.g. CNN)
Optimize: min

f∈F
1
N

∑N
k=1 l̂(f(Σ̂k), Yk))

A weakly-informative sparsity prior is one where each edge
is equally likely with small probability, versus structured
sparsity where edges have specific configurations. For ob-
taining the training samples (Σ̂, Y) in this case we would
like to create a sparse precision matrix, Θ, with the desired
number of zero entries distributed uniformly. One strategy
to do this and assure the precision matrices lie in the positive
definite cone is to first construct an upper triangular sparse
matrix and then multiply it by its transpose. This process
is described in detail in the experimental section. Alterna-
tively, an MCMC based G-Wishart distribution sampler can
be employed if specific structures of the graph are desired
(Lenkoski, 2013).

The sparsity patterns in real data are often not uniformly
distributed. Many real world networks have a small-world
structure: graphs that are sparse and yet have a compara-
tively short average distance between nodes. These transport
properties often hinge on a small number of high-degree
nodes called hubs. Normally, such structural patterns re-
quire sophisticated adaptation when applying estimators
like Eq. (1). Indeed, high-degree nodes break the small-
sample, sparse-recovery properties of `1-penalized estima-
tors (Ravikumar et al., 2011). In our framework such struc-
tural assumptions appear as a prior that can be learned of-
fline during training of the prediction function. Similarly
priors on other distributions such as general exponential
families can be more easily integrated. As the structure dis-
covery model can be trained offline, even a slow sampling
procedure may suffice.

Learning to Discover Sparse Graphical Models

Neural Network Graph Estimator

In this work we propose to use a neural network as our
function fw. To motivate this let us consider the extreme
case when n � p. In this case Σ̂ ≈ Σ and thus entries
of Σ̂−1 or the partial correlation that are almost equal to
zero can give the edge structure. We can show that a neural
network is consistent with this limiting case.
Definition 1 (P-consistency). A function class F is P-
consistent if ∃f ∈ F such that E(Σ̂,Y)∼P[l(f(Σ̂), Y)]→ 0
as n→∞ with high probability.
Proposition 1 (Existence of P-consistent neural network
graph estimator). There exists a feed forward neural net-
work function class F that is P-consistent.

Proof. If the data is standardized, each entry of Σ corre-
sponds to the correlation ρi,j . The partial correlation of
edge (i, j) conditioned on nodes Z, is given recursively as

ρi,j|Z = (ρi,j|Z\zo − ρi,zo|Z\zoρj,zo|Z\zo)
1

D
. (4)

We may ignore the denominator, D, as we are interested in
I(ρi,j|Z = 0). Thus we are left with a recursive formula that
yields a high degree polynomial. From Andoni et al. (2014,
Theorem 3.1) using gradient descent, a neural network with
only two layers can learn a polynomial function of degree d
to arbitrary precision given sufficient hidden units.

Remark 1. Naïvely the polynomial from the recursive defi-
nition of partial correlation is of degree bounded by 2p−2.
In the worst case, this would seem to imply that we would
need an exponentially growing number of hidden nodes to
approximate it. However, this problem has a great deal
of structure that can allow efficient approximation. Firstly,
higher order monomials will go to zero quickly with a uni-
form prior on ρi,j , which takes values between 0 and 1,
suggesting that in many cases a concentration bound exists
that guarantees non-exponential growth. Furthermore, the
existence result is shown already for a shallow network, and
we expect a logarithmic decrease in the number of param-
eters to peform function estimation with a deep network
(Cohen et al., 2016).

Moreover, there are a great deal of redundant computations
in Eq. (4) and an efficient dynamic programming implemen-
tation can yield polynomial computation time and require
only low order polynomial computations with appropriate
storage of previous computation. Similarly we would like to
design a network that would have capacity to re-use compu-
tations across edges and approximate low order polynomials.
We also observe that the conditional independence of nodes
i, j given Z can be computed equivalently in many ways by
considering many paths through the nodes Z. Thus we can
choose any valid ordering for traversing the nodes starting
from a given edge.

We now describe an efficient architecture for this problem
which uses a series of shared operations at each edge. We
consider a feedforward network where each edge i, j is asso-
ciated with a vector, oki,j , at each layer k > 0. For each edge,
i, j, we start with a neighborhood of the 6 adjacent nodes,
i, j, i-1, i+1, j-1, j+1 for which we take all corresponding
edge values from the covariance matrix and construct o1i,j .
We proceed at each layer to increase the nodes considered
for each oki,j , the output at each layer progressively increas-
ing the receptive field making sure all values associated with
the considered nodes are present. The entries used at each
layer are illustrated in Figure 1. The receptive field here
refers to the original covariance entries which are accessible
by a given, oki,j (Luo et al., 2010). The equations defining
the process are shown in Figure 1. Here a neural network
fwk is applied at each edge at each layer and a dilation se-
quence dk is used. We call a network of this topology a
D-Net of depth l. We use dilation here to allow the receptive
field to grow fast, so the network does not need a great deal
of layers. We make the following observations:
Proposition 2. For general P it is a necessary condition
for P-consistency that the receptive field of D-Net covers all
entries of the covariance, Σ̂, at any edge it is applied.
Proof. Consider nodes i and j and a chain graph such that
i and j are adjacent to each other in the matrix but are at
the terminal nodes of the chain graph. One would need
to consider all other variables to be able to explain away
the correlation. Alternatively we can see this directly from
expanding Eq. (4).

Proposition 3. A p × p matrix Σ̂ will be covered by the
receptive field for a D-Net of depth log2(p) and dk = 2k−1

Proof. The receptive field of a D-Net with dilation sequence
dk = 2k−1 of depth l is O(2l). We can see this as oki,j will
receive input from ok−1a,b at the edge of it’s receptive field,
effectively doubling it. It now follows that we need at least
log2(p) layers to cover the receptive field.

Intuitively adjacent edges have a high overlap in their
receptive fields and can easily share information about
the non-overlapping components. This is analogous to a
parametrized message passing. For example if edge (i, j) is
explained by node k, as k enters the receptive field of edge
(i, j − 1), the path through (i, j) can already be discounted.
In terms of Eq. (4) this can correspond to storing computa-
tions that can be used by neighbor edges from lower levels
in the recursion.

As fwk is identical for all nodes, we can simultaneously
implement all edge predictions efficiently as a convolutional
network. We make sure that to have considered all edges
relevant to the current set of nodes in the receptive field
which requires us to add values from filters applied at the
diagonal to all edges. In Figure 1 we illustrate the nodes

Learning to Discover Sparse Graphical Models

3

4

5

12

13

14

(a)

layer 1, edge 4,13

(b)
1

16
2

15

3

14

4

13

5

12

6

11

7

10

8

9

9

8

10

7

11

6

12

5

13

4

14

3

15

2

16

1

layer 2, edge 4,13

(c)
1

16
2

15

3

14

4

13

5

12

6

11

7

10

8

9

9

8

10

7

11

6

12

5

13

4

14

3

15

2

16

1

o0i,j =pi,j

o1i,j =fw1(o0i,j , o
0
i-1,j , o

0
i,j-1, o

0
i+1,j-1, ..)

o2i,j =fw2(o1i,j , o
1
i-d2,j , o

1
i,j-d2

, o1i+d2,j-d2
, ..)

oli,j =fwl(ol-1i,j , o
l-1
i-dl,j

, ol-1i,j-dl
, ol-1i+dl,j-dl

..)

ŷi,j =σ(w
l+1oli,j)

Figure 1: (a) Illustration of nodes and edges "seen" at edge 4,13 in layer 1 and (b) Receptive field at layer 1. All entries in
grey show the o0i,j in covariance matrix used to compute o14,13. (c) shows the dilation process and receptive field (red) at
higher layers. Finally the equations for each layer output are given, initialized by the covariance entries pi,j

and receptive field considered with respect to the covariance
matrix. This also motivates a straightforward implementa-
tion using 2D convolutions (adding separate convolutions at
i, i and j, j to each i, j at each layer to achieve the specific
input pattern described) shown in Figure 2.

Ultimately our choice of architecture that has shared com-
putations and multiple layers is highly scalable as compared
with a naive fully connected approach and allows leverag-
ing existing optimized 2-D convolutions. In preliminary
work we have also considered fully connected layers but
this proved to be much less efficient in terms of storage and
scalibility than using deep convolutional networks.

Considering the general n� p case is illustrative. However,
the main benefit of making the computations differentiable
and learned from data is that we can take advantage of the
sparsity and structure assumptions to obtain more efficient
results than naive computation of partial correlation or ma-
trix inversion. As n decreases our estimate of ρ̂i,j becomes
inexact; a data-driven model that takes better advantage of
the assumptions on the underlying distribution and can more
accurately recover the graph structure.

The convolution structure is dependent on the order of the
variables used to build the covariance matrix, which is arbi-
trary. Permuting the input data we can obtain another esti-
mate of the output. In the experiments, we leverage these
various estimate in an ensembling approach, averaging the
results of several permutations of input. We observe that this
generally yields a modest increase in accuracy, but that even
a single node ordering can show substantially improved
performance over competing methods in the literature.

Experiments
Our experimental evaluations focus on the challenging high
dimensional settings in which p > n and consider both
synthetic data and real data from genetics and neuroimaging.
In our experiments we explore how well networks trained on
parametric samples generalize, both to unseen synthetic data
and to several real world problems. In order to highlight

the generality of the learned networks, we apply the same
network to multiple domains. We train networks taking in
39, 50, and 500 node graphs. The former sizes are chosen
based on the real data we consider in subsequent sections.
We refer to these networks as DeepGraph-39, 50, and 500.
In all cases we have 50 feature maps of 3× 3 kernels. The
39 and 50 node network with 6 convolutional layers and
dk = k+ 1. For the 500 node network with 8 convolutional
layers and dk = 2k+1. We use ReLU activations. The last
layer has 1× 1 convolution and a sigmoid outputing a value
of 0 to 1 for each edge.

We sample P (X|G) with a sparse prior on P (G) as follows.
We first construct a lower diagonal matrix, L, where each
entry has α probability of being zero. Non-zero entries are
set uniformly between −c and c. Multiplying LLT gives a
sparse positive definite precision matrix, Θ. This gives us
our P (Θ|G) with a sparse prior on P (G). We sample from
the Gaussian N (0,Θ−1) to obtain samples of X . Here α
corresponds to a specific sparsity level in the final precision
matrix, which we set to produce matrices 92− 96% sparse
and c chosen so that partial correlations range 0 to 1.

Each network is trained continously with new samples gen-
erated until the validation error saturates. For a given preci-
sion matrix we generate 5 possible X samples to be used as
training data, with a total of approximately 100K training
samples used for each network. The networks are optimized
using ADAM (Kingma & Ba, 2015) coupled with cross-
entropy loss as the objective function (cf. Sec. 2.1). We use
batch normalization at each layer. Additionally, we found
that using the absolute value of the true partial correlations
as labels, instead of hard binary labels, improves results.

Synthetic Data Evaluation To understand the properties
of our learned networks, we evaluated them on different
synthetic data than the ones they were trained on. More
specifically, we used a completely different third party sam-
pler so as to avoid any contamination. We use DeepGraph-
39, which takes 4 hours to train, on a variety of settings.
The same trained network is utilized in the subsequent neu-
roimaging evaluations as well. DeepGraph-500 is also used

Learning to Discover Sparse Graphical Models

Dilated
Conv.
layers

Conv.
layer

1x1
Conv.
layer

Standardize

Estimate
Covariance

Input Data

Figure 2: Diagram of the DeepGraph structure discovery architecture used in this work. The input is first standardized and then the
sample covariance matrix is estimated. A neural network consisting of multiple dilated convolutions (Yu & Koltun, 2015) and a final
1× 1 convolution layer is used to predict edges corresponding to non-zero entries in the precision matrix.

to evaluate larger graphs.

We used the BDGraph R-package to produce sparse
precision matrices based on the G-Wishart distribution
(Mohammadi & Wit, 2015) as well as the R-package
rags2ridges (Peeters et al., 2015) to generate data from
small-world networks corresponding to the Watts–Strogatz
model (Watts & Strogatz, 1998). We compared our learned
estimator against the scikit-learn (Pedregosa et al,
2011) implementation of Graphical Lasso with regularizer
chosen by cross-validation as well as the Birth-Death Rate
MCMC (BDMCMC) method from Mohammadi & Wit
(2015).

For each scenario we repeat the experiment for 100 dif-
ferent graphs and small sample observations showing the
average area under the ROC curve (AUC), precision@k cor-
responding to 5% of possible edges, and calibration error
(CE) (Mohammadi & Wit, 2015).

For graphical lasso we use the partial correlations to indicate
confidence in edges; BDGraph automatically returns poste-
rior probabilities as does our method. Finally to understand
the effect of the regularization parameter we additionally
report the result of graphical lasso under optimal regularizer
setting on the testing data.

Our method dominates all other approaches in all cases with
p > n (which also corresponds to the training regime). For
the case of random Gaussian graphs with n=35 (as in our
training data), and graph sparsity of 95%, we have superior
performance and can further improve on this by averaging
permutations. Next we apply the method to less straightfor-
ward synthetic data, such as that arising from small-world
graphs which is typical of many applications. We found
that, compared to baseline methods, our network performs
particularly well with high-degree nodes and when the dis-
tribution becomes non-normal. In particular our method
performs well on the relevant metrics with small-world net-
works, a very common family of graphs in real-world data,
obtaining superior precision at the primary levels of interest.
Figure 3 shows examples of random and Watts-Strogatz
small-world graphs used in these experiments.

Training a new network for each number of samples can

pose difficulties with our proposed method. Thus we eva-
luted how robust the network DeepGraph-39 is to input
covariances obtained from fewer or more samples. We find
that overall the performance is quite good even when low-
ering the number of samples to n = 15, we obtain superior
performance to the other approaches (Table 1). We also
applied DeepGraph-39 on data from a multivariate general-
ization of the Laplace distribution (Gómez et al., 1998). As
in other experiments precision matrices were sampled from
the G-Wishart at a sparsity of 95%. Gómez et al. (1998,
Proposition 3.1) was applied to produce samples. We find
that DeepGraph-39 performs competitively, despite the dis-
crepancy between train and test distributions. Experiments
with variable sparsity are considered in the supplementary
material, which find that for very sparse graphs, the net-
works remain robust in performance, while for increased
density performance degrades but remains competitive.

Using the small-world network data generator (Peeters et al.,
2015), we demonstrate that we can update the generic sparse
prior to a structured one. We re-train DeepGraph-39 using
only 1000 examples of small-world graphs mixed with 1000
examples from the original uniform sparsity model. We
perform just one epoch of training and observe markedly
improved performance on this test case as seen in the last
row of Table 1.

For our final scenario we consider the very challenging
setting with 500 nodes and only n = 50 samples. We note
that the MCMC based method fails to converge at this scale,
while graphical lasso is very slow as seen in the timing
performance and barely performs better than chance. Our
method convincingly outperforms graphical lasso in this
scenario as shown in Tabel 2. Here we additionally report
precision at just the first 0.05% of edges since competitors
perform nearly at chance at the 5% level.

We compute the average execution time of our method com-
pared to Graph Lasso and BDGraph on a CPU in Table 3.
We note that we use a production quality version of graph
lasso (Pedregosa et al, 2011), whereas we have not opti-
mized the network execution, for which known strategies
may be applied (Denton et al., 2014).

Learning to Discover Sparse Graphical Models

Experimental Setup Method Prec@5% AUC CE
Glasso 0.361 ± 0.011 0.624 ± 0.006 0.07

Gaussian Glasso (optimal) 0.384 ± 0.011 0.639 ± 0.007 0.07
Random Graphs BDGraph 0.441 ± 0.011 0.715 ± 0.007 0.28
(n = 35, p = 39) DeepGraph-39 0.463 ± 0.009 0.738 ± 0.006 0.07

DeepGraph-39+Perm 0.487 ± 0.010 0.740 ± 0.007 0.07
Glasso 0.539 ± 0.014 0.696 ± 0.006 0.07

Gaussian Glasso (optimal) 0.571 ± 0.011 0.704 ± 0.006 0.07
Random Graphs BDGraph 0.648 ± 0.012 0.776 ± 0.007 0.16

(n = 100, p = 39) DeepGraph-39 0.567 ± 0.009 0.759 ± 0.006 0.07
DeepGraph-39+Perm 0.581± 0.008 0.771± 0.006 0.07

Glasso 0.233 ± 0.010 0.566 ± 0.004 0.07
Gaussian Glasso (optimal) 0.263 ± 0.010 0.578 ± 0.004 0.07

Random Graphs BDGraph 0.261 ± 0.009 0.630 ± 0.007 0.41
(n = 15, p = 39) DeepGraph-39 0.326 ± 0.009 0.664 ± 0.008 0.08

DeepGraph-39+Perm 0.360 ± 0.010 0.672 ± 0.008 0.08
Glasso 0.312 ± 0.012 0.605 ± 0.006 0.07

Laplace Glasso (optimal) 0.337 ± 0.011 0.622 ± 0.006 0.07
Random Graphs BDGraph 0.298 ± 0.009 0.687 ± 0.007 0.36
(n = 35, p = 39) DeepGraph-39 0.415 ± 0.010 0.711 ± 0.007 0.07

DeepGraph-39+Perm 0.445 ± 0.011 0.717 ± 0.007 0.07
Glasso 0.387 ± 0.012 0.588 ± 0.004 0.11

Gaussian Glasso (optimal) 0.453 ± 0.008 0.640 ± 0.004 0.11
Small-World Graphs BDGraph 0.428 ± 0.007 0.691 ± 0.003 0.17

(n=35,p=39) DeepGraph-39 0.479 ± 0.007 0.709 ± 0.003 0.11
DeepGraph-39+Perm 0.453 ± 0.007 0.712 ± 0.003 0.11

DeepGraph-39+update 0.560 ± 0.008 0.821 ± 0.002 0.11
DeepGraph-39+update+Perm 0.555 ± 0.007 0.805 ± 0.003 0.11

Table 1: For each case we generate 100 sparse graphs with 39
nodes and data matrices sampled (with n samples) from distribu-
tions with those underlying graphs. DeepGraph outperforms other
methods in terms of AP, AUC, and precision at 5% (the approx-
imate true sparsity). In terms of precision and AUC DeepGraph
has better performance in all cases except n > p.

Method Prec@0.05% Prec@5% AUC CE
random 0.052 ± 0.002 0.053 ± 0.000 0.500 ± 0.000 0.05
Glasso 0.156 ± 0.010 0.055 ± 0.001 0.501 ± 0.000 0.05

Glasso (optimal) 0.162 ± 0.010 0.055 ± 0.001 0.501 ± 0.000 0.05
DeepGraph-500 0.449 ± 0.018 0.109 ± 0.002 0.543 ± 0.002 0.06

DeepGraph-500+Perm 0.583 ± 0.018 0.116 ± 0.002 0.547 ± 0.002 0.06

Table 2: Experiment on 500 node graphs with only 50 samples
repeated 100 times. This corresponds to the experimental setup of
Gaussian Random Graphs (n=50,p=500). Improved performance
in all metrics.

(a) (b)

Figure 3: Example of
(a) random and (b) small
world used in experiments

50 nodes (s) 500 nodes (s)
sklearn GraphLassoCV 4.81 554.7

BDgraph 42.13 N/A
DeepGraph 0.27 5.6

Table 3: Avg. execution time over
10 trials for 50 and 500 node prob-
lem on a CPU for Graph Lasso,
BDMCMC, and DeepGraph

Cancer Genome Data We perform experiments on a
gene expression dataset described in Honorio et al. (2012).
The data come from a cancer genome atlas from 2360 sub-
jects for various types of cancer. We used the first 50 genes
from Honorio et al. (2012, Appendix C.2) of commonly
regulated genes in cancer. We evaluated on two groups of
subjects, one with breast invasive carcinoma (BRCA) con-
sisting of 590 subjects and the other colon adenocarcinoma
(COAD) consisting of 174 subjects.

Evaluating edge selection in real-world data is challenging.
We use the following methodology: for each method we
select the top-k ranked edges, recomputing the maximum
likelihood precision matrix with support given by the cor-

responding edge selection method. We then evaluate the
likelihood on held-out data. We repeat this procedure for a
range of k. We rely on Algorithm 0 in Hara & Takemura
(2010) to compute the maximum likelihood precision given
a support. The experiment is repeated for each of CODA
and BRCA subject groups 150 times. Results are shown in
Figure 4. In all cases we use 40 samples for edge selection
and precision estimation. We compare with graphical lasso
as well as the Ledoit-Wolf shrinkage estimator (Ledoit &
Wolf, 2004). We additionally consider the MCMC based
approach described in previous section. For graphical lasso
and Ledoit-Wolf, edge selection is based on thresholding
partial correlation (Balmand & Dalalyan, 2016).

Additionally, we evaluate the stability of the solutions pro-
vided by the various methods. In several applications a low
variance on the estimate of the edge set is important. On
Table 4, we report Spearman correlations between pairs of
solutions, as it is a measure of a monotone link between two
variables. DeepGraph has far better stability in the genome
experiments and is competitive in the fMRI data.

Resting State Functional Connectivity We evaluate our
graph discovery method to study brain functional connectiv-
ity in resting-state fMRI data. Correlations in brain ac-
tivity measured via fMRI reveal functional interactions
between remote brain regions. These are an impor-
tant measure to study psychiatric diseases that have no
known anatomical support. Typical connectome analy-
sis describes each subject or group by a GGM measur-
ing functional connectivity between a set of regions (Varo-
quaux & Craddock, 2013). We use the ABIDE dataset
(Di Martino et al, 2014), a large scale resting state fMRI
dataset. It gathers brain scans from 539 individuals suffer-
ing from autism spectrum disorder and 573 controls over
16 sites.1 For our experiments we use an atlas with 39
regions of interest described in Varoquaux et al. (2011).

Gene BRCA Gene COAD ABIDE Control ABIDE Autistic
Graph Lasso 0.25± .003 0.34± 0.004 0.21± .003 0.21 ± .003
Ledoit-Wolfe 0.12± 0.002 0.15± 0.003 0.13± .003 0.13± .003

Bdgraph 0.07± 0.002 0.08± 0.002 N/A N/A
DeepGraph 0.48 ± 0.004 0.57 ± 0.005 0.23 ± .004 0.17± .003

DeepGraph +Permute 0.42± 0.003 0.52± 0.006 0.19± .004 0.14± .004

Table 4: Average Spearman correlation results for real data show-
ing stability of solution amongst 50 trials
We use the network DeepGraph-39, the same network and
parameters from synthetic experiments, using the same eval-
uation protocol as used in the genomic data. For both control
and autism patients we use time series from 35 random sub-
jects to estimate edges and corresponding precision matrices.
We find that for both the Autism and Control group we can
obtain edge selection comparable to graph lasso for very
few selected edges. When the number of selected edges is in
the range above 25 we begin to perform significantly better

1http://preprocessed-connectomes-project.
github.io/abide/

http://preprocessed-connectomes-project.github.io/abide/
http://preprocessed-connectomes-project.github.io/abide/

Learning to Discover Sparse Graphical Models

20 40 60 80 100 120

Edges in support

−72

−71

−70

−69

−68

−67

−66

−65

−64

−63

L
og

-L
ik

eh
oo

d
T

es
t

D
at

a
Edge Selection Colon adenocarcinoma Subjects

DeepGraph

DeepGraph+Permute

glasso

ledoit

bayesian

20 40 60 80 100 120

Edges in support

−72

−71

−70

−69

−68

−67

−66

−65

−64

−63

L
og

-L
ik

eh
oo

d
T

es
t

D
at

a

Edge Selection Breast invasive carcinoma Subjects

DeepGraph

DeepGraph+Permute

glasso

ledoit

bayesian

10 20 30 40 50 60 70

Edges in Graph Support

−54.5

−54.0

−53.5

−53.0

−52.5

−52.0

−51.5

−51.0

A
ve

ra
ge

T
es

t
L

og
-L

ik
eh

oo
d

Edge Selection Autism Subjects

10 20 30 40 50 60 70

Edges in Graph Support

−54.5

−54.0

−53.5

−53.0

−52.5

−52.0

−51.5

−51.0

A
ve

ra
ge

T
es

t
L

og
-L

ik
eh

oo
d

Edge Selection Control Subjects

Figure 4: Average test likelihood for COAD and BRCA subject groups in gene data and neuroimaging data using different number of
selected edges. Each experiment is repeated 50 times for genetics data. It is repeated approximately 1500 times in the fMRI to obtain
significant results due high variance in the data. DeepGraph with averaged permutation dominates in all cases for genetics data, while
DeepGraph+Permutation is superior or equal to competing methods in the fMRI data.

L R
DeepGraph(35 samples)

L R
GraphLasso(35 Samples)

L RGraphLasso(368 samples)

Figure 5: Example solution from DeepGraph and Graph Lasso
in the small sample regime on the same 35 samples, along with a
larger sample solution of Graph Lasso for reference. DeepGraph
is able to extract similar key edges as graphical lasso

in edge selection as seen in Fig. 4. We evaluated stability
of the results as shown in Tab. 4. DeepGraph outperformed
the other methods across the board.

ABIDE has high variability across sites and subjects. As
a result, to resolve differences between approaches, we
needed to perform 1000 folds to obtain well-separated error
bars. We found that the birth-death MCMC method took
very long to converge on this data, moreover the need for
many folds to obtain significant results amongst the methods
made this approach prohibitively slow to evaluate.

We show the edges returned by Graph Lasso and DeepGraph
for a sample from 35 subjects (Fig. 5) in the control group.
We also show the result of a large-sample result based on
368 subjects from graphical lasso. In visual evaluation of
the edges returned by DeepGraph we find that they closely
align with results from a large-sample estimation procedure.
Furthermore we can see several edges in the subsample
which were particularly strongly activated in both methods.

Discussion and Conclusions
Learned graph estimation outperformed strong baselines
in both accuracy and speed. Even in cases that deviate
from standard GGM sparsity assumptions (e.g. Laplace,
small-world) it performed substantially better. When fine-
tuning on the target distribution performance further im-

proves. Most importantly the learned estimator generalizes
well to real data finding relevant stable edges. We also ob-
served that the learned estimators generalize to variations
not seen at training time (e.g. different n or sparsity), which
points to this potentialy learning generic computations. This
also shows potential to more easily scale the method to dif-
ferent graph sizes. One could consider transfer learning,
where a network for one size of data is used as a starting
point to learn a network working on larger dimension data.

Penalized maximum likelihood can provide performance
guarantees under restrictive assumptions on the form of the
distribution and not considering the regularization path. In
the proposed method one could obtain empirical bounds
under the prescribed data distribution. Additionally, at ex-
ecution time the speed of the approach can allow for re-
sampling based uncertainty estimates and efficient model
selection (e.g. cross-validation) amongst several trained es-
timators.

We have introduced the concept of learning an estimator for
determining the structure of an undirected graphical model.
A network architecture and sampling procedure for learning
such an estimator for the case of sparse GGMs was pro-
posed. We obtained competitive results on synthetic data
with various underlying distributions, as well as on challeng-
ing real-world data. Empirical results show that our method
works particularly well compared to other approaches for
small-world networks, an important class of graphs common
in real-world domains. We have shown that neural networks
can obtain improved results over various statistical methods
on real datasets, despite being trained with samples from
parametric distributions. Our approach enables straightfor-
ward specifications of new priors and opens new directions
in efficient graphical structure discovery from few exam-
ples.

Acknowledgements
This work is partially funded by Internal Funds KU Leu-
ven, FP7-MC-CIG 334380, DIGITEO 2013-0788D - SO-
PRANO, and ANR-11-BINF-0004 NiConnect. We thank
Jean Honorio for providing pre-processed Genome Data.

Learning to Discover Sparse Graphical Models

References
Andoni, Alexandr, Panigrahy, Rina, Valiant, Gregory, and Zhang,

Li. Learning polynomials with neural networks. In ICML, 2014.
Balan, Anoop Korattikara, Rathod, Vivek, Murphy, Kevin, and

Welling, Max. Bayesian dark knowledge. In NIPS, 2015.
Balmand, Samuel and Dalalyan, Arnak S. On estimation of the

diagonal elements of a sparse precision matrix. Electronic
Journal of Statistics, 10(1):1551–1579, 2016.

Belilovsky, Eugene, Varoquaux, Gaël, and Blaschko, Matthew B.
Hypothesis testing for differences in Gaussian graphical models:
Applications to brain connectivity. In NIPS, 2016.

Cai, Tony, Liu, Weidong, and Luo, Xi. A constrained `1 minimiza-
tion approach to sparse precision matrix estimation. Journal of
the American Statistical Association, 106(494):594–607, 2011.

Cohen, Nadav, Sharir, Or, and Shashua, Amnon. On the expressive
power of deep learning: a tensor analysis. In COLT, 2016.

Danaher, Patrick, Wang, Pei, and Witten, Daniela M. The joint
graphical lasso for inverse covariance estimation across multiple
classes. Journal of the Royal Stat. Society(B), 76(2):373–397,
2014.

Denton, Emily L, Zaremba, Wojciech, Bruna, Joan, LeCun, Yann,
and Fergus, Rob. Exploiting linear structure within convolu-
tional networks for efficient evaluation. In NIPS, 2014.

Di Martino et al, Adriana. The autism brain imaging data ex-
change: Towards a large-scale evaluation of the intrinsic brain
architecture in autism. Molecular psychiatry, 19:659, 2014.

Duvenaud et al, David K. Convolutional networks on graphs for
learning molecular fingerprints. In NIPS, 2015.

Friedman, Jerome, Hastie, Trevor, and Tibshirani, Robert. Sparse
inverse covariance estimation with the graphical lasso. Bio-
statistics, 9(3):432–441, 2008.

Gómez, E, Gomez-Viilegas, MA, and Marin, JM. A multivariate
generalization of the power exponential family of distributions.
Commun Stat Theory Methods, 27(3):589–600, 1998.

Gregor, Karol and LeCun, Yann. Learning fast approximations of
sparse coding. In ICML, 2010.

Hara, Hisayuki and Takemura, Akimichi. A localization approach
to improve iterative proportional scaling in Gaussian graphical
models. Commun Stat Theory Methods, 39(8-9):1643–1654,
2010.

Henaff, Mikael, Bruna, Joan, and LeCun, Yann. Deep convolu-
tional networks on graph-structured data. arXiv:1506.05163,
2015.

Honorio, Jean, Jaakkola, Tommi, and Samaras, Dimitris. On the
statistical efficiency of `1,p multi-task learning of Gaussian
graphical models. arXiv:1207.4255, 2012.

Kingma, Diederik and Ba, Jimmy. Adam: A method for stochastic
optimization. ICLR, 2015.

Lauritzen, Steffen L. Graphical models. Oxford University Press,
1996.

Ledoit, Olivier and Wolf, Michael. A well-conditioned estimator
for large-dimensional covariance matrices. Journal of multivari-
ate analysis, 88(2):365–411, 2004.

Lenkoski, Alex. A direct sampler for G-Wishart variates. Stat, 2
(1):119–128, 2013.

Li, Yujia, Tarlow, Daniel, Brockschmidt, Marc, and Zemel,
Richard. Gated graph sequence neural networks. ICLR, 2016.

Lopez-Paz, David, Muandet, Krikamol, Schölkopf, Bernhard, and
Tolstikhin, Iliya. Towards a learning theory of cause-effect
inference. In ICML, 2015.

Luo, Wenjie, Li, Yujia, Urtasun, Raquel, and Zemel, Richard.
Understanding the effective receptive field in deep convolutional
neural networks. In ICML, 2010.

Meinshausen, Nicolai and Bühlmann, Peter. High-dimensional

graphs and variable selection with the lasso. The Annals of
Statistics, pp. 1436–1462, 2006.

Moghaddam, Baback, Khan, Emtiyaz, Murphy, Kevin P, and Mar-
lin, Benjamin M. Accelerating Bayesian structural inference for
non-decomposable Gaussian graphical models. In NIPS, 2009.

Mohammadi, Abdolreza and Wit, Ernst C. Bayesian structure
learning in sparse Gaussian graphical models. Bayesian Analy-
sis, 10(1):109–138, 2015.

Mohan, Karthik, Chung, Mike, Han, Seungyeop, Witten, Daniela,
Lee, Su-In, and Fazel, Maryam. Structured learning of Gaussian
graphical models. In NIPS, pp. 620–628, 2012.

Pedregosa et al, Fabian. Scikit-learn: Machine learning in python.
JMLR, 12:2825–2830, 2011.

Peeters, C.F.W., Bilgrau, A.E., and van Wieringen, W.N.
rags2ridges: Ridge estimation of precision matrices from high-
dimensional data. R package, 2015.

Ravikumar, Pradeep, Wainwright, Martin J, Raskutti, Garvesh, and
Yu, Bin. High-dimensional covariance estimation by minimiz-
ing `1-penalized log-determinant divergence. EJS, 5:935–980,
2011.

Ryali et al, Srikanth. Estimation of functional connectivity in fMRI
data using stability selection-based sparse partial correlation
with elastic net penalty. NeuroImage, 59(4):3852–3861, 2012.

Varoquaux, Gaël and Craddock, R Cameron. Learning and com-
paring functional connectomes across subjects. NeuroImage,
80:405–415, 2013.

Varoquaux, Gaël, Gramfort, Alexandre, Poline, Jean-Baptiste, and
Thirion, Bertrand. Brain covariance selection: Better individual
functional connectivity models using population prior. In NIPS,
2010.

Varoquaux, Gaël, Gramfort, Alexandre, Pedregosa, Fabian, Michel,
Vincent, and Thirion, Bertrand. Multi-subject dictionary learn-
ing to segment an atlas of brain spontaneous activity. In IPMI,
2011.

Vinyals, Oriol, Fortunato, Meire, and Jaitly, Navdeep. Pointer
networks. In NIPS, 2015.

Wang, Wei, Wainwright, Martin J, and Ramchandran, Kannan.
Information-theoretic bounds on model selection for gaussian
markov random fields. In ISIT, pp. 1373–1377. Citeseer, 2010.

Watts, Duncan J. and Strogatz, Steven H. Collective dynamics of
‘small-world’ networks. Nature, 393(6684):440–442, 06 1998.

Xin, Bo, Wang, Yizhou, Gao, Wen, and Wipf, David. Maximal
sparsity with deep networks? arXiv preprint arXiv:1605.01636,
2016.

Yu, Fisher and Koltun, Vladlen. Multi-scale context aggregation by
dilated convolutions. arXiv preprint arXiv:1511.07122, 2015.

	Introduction
	Related Work

	Methods
	Learning an Approximate Edge Estimation Procedure
	Discovering Sparse GGMs and Beyond
	Neural Network Graph Estimator

	Experiments
	Discussion and Conclusions

