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A. Extra Proofs
Proof of Proposition 3. It is well known that the local sensitivity of any contingency table with respect to our definition
of nbrs(X) is one. This is easy to see from the definition of nC following Eq. (2): each individual contributes a count of
exactly one to each clique contingency table. Since there are |C| tables, the local sensitivity is exactly |C| for all data sets,
and, therefore, the sensitivity is the same.

Proof of Proposition 4. Note that nC(iC) is a sum of N iid indicator variables, so nC(iC) ⇠ Binomial
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Recall that E[z] = 0 and Var(z) = 2|C|2/✏2. We see immediately that E[µ̄C(iC)] = E
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the estimator is unbiased and its mean-squared error is equal to its variance. Since nC(iC) and z are independent, we have:

Var

�
µ̄C(iC)

�
=

Var

�
nC(iC)

�

N2
+

Var(z)

N2

=

µC(iC)
�
1� µC(iC)

�

N
+

2|C|2

N2✏2

The fact that p(x; ˆ✓) converges to p(x;✓) follows from Proposition 2 and the consistency of the marginals, as long as the
true marginals µ lie in the interior of the marginal polytope M. However, this is guaranteed because the true distribution
p(x;✓) is strictly positive.

Proof of Proposition 5. After applying Stirling’s approximation to log p(n;✓) we obtain (Nguyen et al., 2016):
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where we define ˆHA = �
P

iA2X |A| nA(iA) log nA(iA) for any A 2 C [ S . The term ˆHA is a scaled entropy. We can
rewrite it as:

ˆHA = �N
X

iA

nA(iA)

N
log

⇣nA(iA)

N
·N

⌘

= �N
X

iA

µ̂A(iA) log µ̂A(iA)�N
X

iA

µ̂A(iA) logN

= NHA �N logN

where HA is now the entropy of the empirical marginal distribution ˆµA = nA/N . Since the total multiplicity of the
separators is one less than the number of cliques, when we substitute back into Eq. (7), all of the N logN terms cancel,
and we are left only with
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But, from standard arguments about the decomposition of entropy on junction trees, the term in parentheses is exactly the
entropy of distribution q defined as:

q(x) =

Y

C2C

Y

iC2X |C|

µ̂C(xC)

Y

S2S

Y

iS2X |S|

µ̂S(xS)
⌫(S)

,

which factors according to C and can be written as p(x;✓) for parameters ✓ derived from the marginal probabilities.
Although the mapping from parameters to distributions is many-to-one, for any maginals ˆµ, there is a unique distribution
p(x;✓) in the model family that has marginals ˆµ (Wainwright & Jordan, 2008), so this uniquely defines q(x) as stated in
the Proposition.


