
Programming with a Differentiable Forth Interpreter

Appendix

A. Forth Words and their implementation

We implemented a small subset of available Forth words in @4. The table of these words, together with their descriptions
is given in Table 4, and their implementation is given in Table 5. The commands are roughly divided into 7 groups. These
groups, line-separated in the table, are:

Data stack operations {num}, 1+, 1-, DUP, SWAP, OVER, DROP, +, -, *, /
Heap operations @, !
Comparators >, <, =
Return stack operations >R, R>, @R
Control statements IF..ELSE..THEN, BEGIN..WHILE..REPEAT, DO..LOOP
Subroutine control :, {sub}, ;, MACRO
Variable creation VARIABLE, CREATE..ALLOT

Table 4: Forth words and their descriptions. TOS denotes top-of-stack, NOS denotes next-on-stack, DSTACK denotes the
data stack, RSTACK denotes the return stack, and HEAP denotes the heap.

Forth Word Description

{num} Pushes {num} to DSTACK.
1+ Increments DSTACK TOS by 1.
1- Decrements DSTACK TOS by 1.
DUP Duplicates DSTACK TOS.
SWAP Swaps TOS and NOS.
OVER Copies NOS and pushes it on the TOS.
DROP Pops the TOS (non-destructive).
+, -, *, / Consumes DSTACK NOS and TOS. Returns NOS operator TOS.

@ Fetches the HEAP value from the DSTACK TOS address.
! Stores DSTACK NOS to the DSTACK TOS address on the HEAP.

>, <, = Consumes DSTACK NOS and TOS.
Returns 1 (TRUE) if NOS > |< |= TOS respectivelly, 0 (FALSE) otherwise.

>R Pushes DSTACK TOS to RSTACK TOS, removes it from DSTACK.
R> Pushes RSTACK TOS to DSTACK TOS, removes it from RSTACK.
@R Copies the RSTACK TOS TO DSTACK TOS.

IF..ELSE..THEN Consumes DSTACK TOS, if it equals to a non-zero number (TRUE), executes
commands between IF and ELSE. Otherwise executes commands between
ELSE and THEN.

BEGIN..WHILE..REPEAT Continually executes commands between WHILE and REPEAT while the code
between BEGIN and WHILE evaluates to a non-zero number (TRUE).

DO..LOOP Consumes NOS and TOS, assumes NOS as a limit, and TOS as a current index.
Increases index by 1 until equal to NOS. At every increment, executes commands
between DO and LOOP.

: Denotes the subroutine, followed by a word defining it.
{sub} Subroutine invocation, puts the program counter PC on RSTACK, sets PC to the

subroutine address.
; Subroutine exit. Consumest TOS from the RSTACK and sets the PC to it.
MACRO Treats the subroutine as a macro function.

VARIABLE Creates a variable with a fixed address. Invoking the variable name returns its
address.

CREATE..ALLOT Creates a variable with a fixed address. Do not allocate the next N addresses to
any other variable (effectively reserve that portion of heap to the variable)

Programming with a Differentiable Forth Interpreter

Table 5: Implementation of Forth words described in Table 4. Note that the variable creation words are implemented as fixed
address allocation, and MACROwords are implemented with inlining.

Symbol Explanation

M Stack, M2{D,R}
M Memory buffer, M2{D,R,H}
p Pointer, p2{d,r,c}
R1± Increment and decrement matrices (circular shift)

R1±
ij =

⇢
1 i±1⌘j(modn))
0 otherwise

R+,R�,R⇤,R/ Circular arithmetic operation tensors

R
{op}
ijk =

⇢
1 i{op}j⌘k(modn))
0 otherwise

Pointer and value manipulation Expression

Increment a (or value x) inc(a)=aTR1+

Decrement a (or value x) dec(a)=aTR1�

Algebraic operation application {op}(a,b)=aTR{op}b
Conditional jump a jump(c,a) :p=(popD()=TRUE)

c pc+(1�p)a
a�1 Next on stack, a aTR1�

Buffer manipulation

READ from M readM(a)=aTM
WRITE to M writeM(x,a) :M M�a⌦1·M+x⌦a
PUSH x onto M pushM(x) :writeM(x,a) [side-effect: d inc(d)]
POP an element from M popM()=readM(a) [side-effect: d dec(d)]

Forth Word

Literal x pushD(x)
1+ writeD(inc(readD(d)),d)
1- writeD(dec(readD(d)),d)
DUP pushD(readD(d))
SWAP x=readD(d), y=readD(d�1

)

:writeD(d,y) , writeD(d�1,x)
OVER pushD(readD(d))
DROP popD()

+, -, *, / writeD({op}(readD(d�1
),readD(d)),d)

@ readH(d)
! writeH(d,d�1

)

< SWAP >
> e1=

Pn�1
i=0 i⇤di, e2=

Pn�1
i=0 i⇤d�1

i
p=�pwl(e1�e2), where �pwl(x)=min(max(0,x+0.5),1)
p1+(p�1)0

= p=�pwl(d,d
�1

)

p1+(p�1)0
>R pushR(d)
R> popR()

@R writeD(d,readR(r))

IF..1ELSE..2THEN p=(popD()=0)

p⇤..1+(1�p)⇤..2
BEGIN..1WHILE..2REPEAT ..1 jump(c,..2)
DO..LOOP start=c,current= inc(popD()),limit=popD()

p=(current= limit)
jump(p,..),jump(c,start)

Programming with a Differentiable Forth Interpreter

B. Bubble sort algorithm description

An example of a Forth program that implements the Bubble sort algorithm is shown in Listing 1 (white lines and a lines,
colored green). We provide a description of how the first iteration of this algorithm is executed by the Forth abstract machine:

The program begins at line 12, putting the sequence [2 4 2 7] on the data stack D, followed by the sequence length 4.6 It then
calls the SORTword.

D R line comment
1 [] [] 12 execution start
2 [2 4 2 7 4] [] 12 pushing sequence [2 4 2 7 4] to D
3 [2 4 2 7 4] [ASORT] 9 SORT (puts return address ASORT to R)

For a sequence of length 4, SORT performs a do-loop in line 10 that calls theBUBBLE subroutine. It does so by decrementing
the top of D with the 1-word to 3. Subsequently, 3 is duplicated on D by using DUP, and 0 is pushed onto D.

4 [2 4 2 7 3] [ASORT] 10 1-
5 [2 4 2 7 3 3] [ASORT] 10 DUP
6 [2 4 2 7 3 3 0] [ASORT] 10 0

DO consumes the top two stack elements 3 and 0 as the limit and starting point of the loop, leaving the stack D to be [2 4 2
7 3]. We use the return stack R as a temporary variable buffer and push 3 onto it using the word >R. This drops 3 from D,
which we copy from R with R@

7 [2 4 2 7 3] [ASORT] 10 DO
8 [2 4 2 7] [ASORT 3] 10 >R
9 [2 4 2 7 3] [ASORT 3] 10 R@

Next, we call BUBBLE to perform one iteration of the bubble pass (BUBBLE will be called 3 times in total), and consuming
3. Note that this call puts the current program counter onto R as the BUBBLE return address ABUBBLE, to be used for the
program counter c when exiting the BUBBLE subroutine.

Inside the BUBBLE subroutine, DUP duplicates 3 on R. IF consumes the duplicated 3 and interprets it as TRUE (non-zero
value). >R puts 3 on R.

10 [2 4 2 7 3] [ASORT 3 ABUBBLE] 1 BUBBLE (puts return address ABUBBLE to R)
11 [2 4 2 7 3 3] [ASORT 3 ABUBBLE] 2 DUP
12 [2 4 2 7 3] [ASORT 3 ABUBBLE] 2 IF
13 [2 4 2 7] [ASORT 3 ABUBBLE 3] 2 >R

Calling OVER twice duplicates the top two elements of the stack, to test them with <, which tests whether 2< 7. IF tests if
the result is TRUE (non-zero value), which it is, so it executes SWAP.

14 [2 4 2 7 2 7] [ASORT 3 ABUBBLE 3] 3 OVER OVER
15 [2 4 2 7 1] [ASORT 3 ABUBBLE 3] 3 <
16 [2 4 2 7] [ASORT 3 ABUBBLE 3] 3 IF
17 [2 4 7 2] [ASORT 3 ABUBBLE 3] 3 SWAP

To prepare for the next call to BUBBLEwe move 3 back from the return stack R to the data stack D via R>, SWAP it with the
next element, put it back to R with >R, decrease the TOS with 1- and invoke BUBBLE again. Note that R will accumulate
the analysed part of the sequence, which will be recursively taken back by the final R> in line 4.

18 [2 4 7 2 3] [ASORT 3 ABUBBLE] 4 R>
19 [2 4 7 3 2] [ASORT 3 ABUBBLE] 4 SWAP
20 [2 4 7 3] [ASORT 3 ABUBBLE 2] 4 >R
21 [2 4 7 2] [ASORT 3 ABUBBLE 2] 4 1-
22 [2 4 7 2] [ASORT 3 ABUBBLE 2] 1 BUBBLE ...

When we reach the loop limit we DROP (line 10) the length of the sequence and exit SORT with the ; word (line 11) which
takes the return address from R. At the end, the stack will contain the ordered sequence [7 4 2 2].

6Note that Forth uses Reverse Polish Notation and that the top of the data stack is 4 in this example.

Programming with a Differentiable Forth Interpreter

C. Learning and Run Time Efficiency

C.1. Accuracy per training examples

Sorter When measuring the performance of the model as
the number of training instances varies, we can observe the
benefit of additional prior knowledge to the optimisation
process. We find that when stronger prior knowledge is
provided (COMPARE), the model quickly maximises the
training accuracy. Providing less structure (PERMUTE)
results in lower testing accuracy initially, however, both
sketches learn the correct behaviour and generalise equally
well after seeing 256 training instances. Additionally, it
is worth noting that the PERMUTE sketch was not always
able to converge into a result of the correct length, and both
sketches are not trivial to train.

In comparison, Seq2Seq baseline is able to generalise only
to the sequence it was trained on (Seq2Seq trained and
tested on sequence length 3). When training it on sequence
length 3, and testing it on a much longer sequence length of
8, Seq2Seq baseline is not able to achieve more than 45%

accuracy.

Figure 3: Accuracy of models for varying number of
training examples, trained on input sequence of length 3 for
the Bubble sort task. Compare, permute, and Seq2Seq (test
8) were tested on sequence lengths 8, and Seq2Seq (test 3)
was tested on sequence length 3.

Adder We tested the models to train on datasets of
increasing size on the addition task. The results, depicted in
Table 4 show that both the choose and the manipulate sketch
are able to perfectly generalise from 256 examples, trained
on sequence lengths of 8, tested on 16. In comparison, the
Seq2Seq baseline achieves 98% when trained on 16384

examples, but only when tested on the input of the same
length, 8. If we test Seq2Seq as we tested the sketches, it is
unable to achieve more 19.7%.

Figure 4: Accuracy of models for varying number of
training examples, trained on input sequence of length 8 for
the addition task. Manipulate, choose, and Seq2Seq (test
16) were tested on sequence lengths 16, and Seq2Seq (test
8) was tested on sequence length 8.

C.2. Program Code Optimisations

We measure the runtime of Bubble sort on sequences of
varying length with and without the optimisations described
in Section 3.4. The results of ten repeated runs are shown
in Figure 5 and demonstrate large relative improvements
for symbolic execution and interpolation of if-branches
compared to non-optimised @4 code.

Figure 5: Relative speed improvements of program code
optimisations for different input sequence lengths (bottom).

D. @4 execution of a Bubble sort sketch

Listing 1 (lines 3b and 4b – in blue) defines the BUBBLE
word as a sketch capturing several types of prior knowledge.
In this section, we describe the PERMUTE sketch. In it, we
assume BUBBLE involves a recursive call, that terminates at
length 1, and that the next BUBBLE call takes as input some
function of the current length and the top two stack elements.

The input to this sketch are the sequence to be sorted and
its length decremented by one, n�1 (line 1). These inputs

Programming with a Differentiable Forth Interpreter

are expected on the data stack. After the length (n � 1)
is duplicated for further use with DUP, the machine tests
whether it is non-zero (using IF, which consumes the TOS
during the check). If n�1>0, it is stored on the R stack for
future use (line 2).

At this point (line 3b) the programmer only knows that
a decision must be made based on the top two data stack
elements D0 and D-1 (comparison elements), and the top
return stack,R0 (length decremented by 1). Here the precise
nature of this decision is unknown but is limited to variants
of permutation of these elements, the output of which pro-
duce the input state to the decrement -1 and the recursive
BUBBLE call (line 4b). At the culmination of the call, R0,
the output of the learned slot behaviour, is moved onto the
data stack usingR>, and execution proceeds to the next step.

Figure 2 illustrates how portions of this sketch are executed
on the @4 RNN. The program counter initially resides at >R
(line 3 in P), as indicated by the vector c, next to program
P. Both data and return stacks are partially filled (R has 1
element, D has 4), and we show the content both through
horizontal one-hot vectors and their corresponding integer
values (colour coded). The vectors d and r point to the top
of both stacks, and are in a one-hot state as well. In this
execution trace, the slot at line 4 is already showing optimal
behaviour: it remembers the element on the return stack (4)
is larger and executes BUBBLE on the remaining sequence
with the counter n subtracted by one, to 1.

E. Experimental details

The parameters of each sketch are trained using
Adam (Kingma & Ba, 2015), with gradient clipping
(set to 1.0) and gradient noise (Neelakantan et al., 2015b).
We tuned the learning rate, batch size, and the parameters
of the gradient noise in a random search on a development
variant of each task.

E.1. Seq2Seq baseline

The Seq2Seq baseline models are single-layer networks
with LSTM cells of 50 dimensions.

The training procedure for these models consists of 500
epochs of Adam optimisation, with a batch size of 128,
a learning rate of 0.01, and gradient clipping when the
L2 norm of the model parameters exceeded 5.0. We vary
the size of training and test data (Fig. 3), but observe no
indication of the models failing to reach convergence under
these training conditions.

E.2. Sorting

The Permute and Compare sketches in Table 1 were trained
on a randomly generated train, development and test set

containing 256, 32 and 32 instances, respectively. Note
that the low number of dev and test instances was due to the
computational complexity of the sketch.

The batch size was set to a value between 64 and 16,
depending on the problem size, and we used an initial
learning rate of 1.0.

E.3. Addition

We trained the addition Choose and Manipulate sketches
presented in Table 2 on a randomly generated train, develop-
ment and test sets of sizes 512, 256, and 1024 respectively.
The batch size was set to 16, and we used an initial learning
rate of 0.05

E.4. Word Algebra Problem

The Common Core (CC) dataset (Roy & Roth, 2015) is par-
titioned into a train, dev, and test set containing 300, 100,
and 200 questions, respectively. The batch size was set to
50, and we used an initial learning rate of0.02. The BiLSTM
word vectors were initialised randomly to vectors of length
75. The stack width was set to 150 and the stack size to 5.

F. Qualitative

Analysis on BubbleSort of PC traces

In Figure 6 we visualise the program counter traces. The
trace follows a single example from start, to middle, and the
end of the training process. In the beginning of training, the
program counter starts to deviate from the one-hot represen-
tation in the first 20 steps (not observed in the figure due to
unobservable changes), and after two iterations ofSORT, @4
fails to correctly determine the next word. After a few train-
ing epochs @4 learns better permutations which enable the
algorithm to take crisp decisions and halt in the correct state.

Programming with a Differentiable Forth Interpreter

(a) Program Counter trace in early stages of training.

(b) Program Counter trace in the middle of training.

(c) Program Counter trace at the end of training.
Figure 6: Program Counter traces for a single example at different stages of training BubbleSort in Listing 1 (red: successive
recursion calls to BUBBLE, green: successive returns from the recursion, and blue: calls to SORT). The last element in the
last row is the halting command, which only gets executed after learning the correct slot behaviour.

Programming with a Differentiable Forth Interpreter

G. The complete Word Algebra Problem sketch

The Word Algebra Problem (WAP) sketch described in Listing 3 is the core of the model that we use for WAP problems.
However, there were additional words before and after the core which took care of copying the data from the heap to data
and return stacks, and finally emptying out the return stack.

The full WAP sketch is given in Listing 4. We define a QUESTION variable which will denote the address of the question
vector on the heap. Lines 4 and 5 create REPR BUFFER and NUM BUFFER variables and denote that they will occupy
four sequential memory slots on the heap, where we will store the representation vectors and numbers, respectively. Lines
7 and 8 create variables REPR and NUM which will denote addresses to current representations and numbers on the heap.
Lines 10 and 11 store REPR BUFFER to REPR and NUM BUFFER to NUM, essentially setting the values of variables REPR
and NUM to starting addresses allotted in lines 4 and 5. Lines 14-16 and 19-20 create macro functions STEP NUM and
STEP REPR which increment the NUM and REPR values on call. These macro functions will be used to iterate through the
heap space. Lines 24-25 define macro functions CURRENT NUM for fetching the current number, and CURRENT REPR for
fetching representation values. Lines 28-32 essentially copy values of numbers from the heap to the data stack by using
the CURRENT NUM and STEP NUM macros. After that line 35 pushes the question vector, and lines 36-40 push the word
representations of numbers on the return stack.

Following that, we define the core operations of the sketch. Line 43 permutes the elements on the data stack (numbers) as a
function of the elements on the return stack (vector representations of the question and numbers). Line 45 chooses an operator
to execute over the TOS and NOS elements of the data stack (again, conditioned on elements on the return stack). Line 47
executes a possible swap of the two elements on the data stack (the intermediate result and the last operand) conditioned on
the return stack. Finally, line 49 chooses the last operator to execute on the data stack, conditioned on the return stack.

The sketch ends with lines 52-55 which empty out the return stack.

Programming with a Differentiable Forth Interpreter

1 \ address of the question on H
2 VARIABLE QUESTION
3 \ allotting H for representations and numbers
4 CREATE REPR_BUFFER 4 ALLOT
5 CREATE NUM_BUFFER 4 ALLOT
6 \ addresses of the first representation and number
7 VARIABLE REPR
8 VARIABLE NUM

10 REPR_BUFFER REPR !
11 NUM_BUFFER NUM !

13 \ macro function for incrementing the pointer to numbers in H
14 MACRO: STEP_NUM
15 NUM @ 1+ NUM !
16 ;

18 \ macro function for incrementing the pointer to representations in H
19 MACRO: STEP_REPR
20 REPR @ 1+ REPR !
21 ;

23 \ macro functions for fetching current numbers and representations
24 MACRO: CURRENT_NUM NUM @ @ ;
25 MACRO: CURRENT_REPR REPR @ @ ;

27 \ copy numbers to D
28 CURRENT_NUM
29 STEP_NUM
30 CURRENT_NUM
31 STEP_NUM
32 CURRENT_NUM

34 \ copy question vector, and representations of numbers to R
35 QUESTION @ >R
36 CURRENT_REPR >R
37 STEP_REPR
38 CURRENT_REPR >R
39 STEP_REPR
40 CURRENT_REPR >R

42 \ permute stack elements, based on the question and number representations
43 { observe R0 R-1 R-2 R-3 -> permute D0 D-1 D-2 }
44 \ choose the first operation
45 { observe R0 R-1 R-2 R-3 -> choose + - * / }
46 \ choose whether to swap intermediate result and the bottom number
47 { observe R0 R-1 R-2 R-3 -> choose SWAP NOP }
48 \ choose the second operation
49 { observe R0 R-1 R-2 R-3 -> choose + - * / }

51 \ empty out R
52 R> DROP
53 R> DROP
54 R> DROP
55 R> DROP

Listing 4: The complete Word Algebra Problem sketch

	Introduction
	The Forth Abstract Machine
	4: Differentiable Abstract Machine
	Machine State Encoding
	Forth Sketches
	The Execution RNN
	Program Code Optimisations
	Training

	Experiments
	Experimental Setup
	Sorting
	Addition
	Word Algebra Problems

	Discussion
	Related Work
	Conclusion and Future Work
	Forth Words and their implementation
	Bubble sort algorithm description
	Learning and Run Time Efficiency
	Accuracy per training examples
	Program Code Optimisations

	4 execution of a Bubble sort sketch
	Experimental details
	Seq2Seq baseline
	Sorting
	Addition
	Word Algebra Problem

	Qualitative Analysis on BubbleSort of PC traces
	The complete Word Algebra Problem sketch

