Programming with a Differentiable Forth Interpreter

Matko Bošnjak 1  Tim Rocktäschel 2  Jason Naradowsky 3  Sebastian Riedel 1

Abstract

Given that in practice training data is scarce for all but a small set of problems, a core question is how to incorporate prior knowledge into a model. In this paper, we consider the case of prior procedural knowledge for neural networks, such as knowing how a program should traverse a sequence, but not what local actions should be performed at each step. To this end, we present an end-to-end differentiable interpreter for the programming language Forth which enables programmers to write program sketches with slots that can be filled with behaviour trained from program input-output data. We can optimise this behaviour directly through gradient descent techniques on user-specified objectives, and also integrate the program into any larger neural computation graph. We show empirically that our interpreter is able to effectively leverage different levels of prior program structure and learn complex behaviours such as sequence sorting and addition. When connected to outputs of an LSTM and trained jointly, our interpreter achieves state-of-the-art accuracy for end-to-end reasoning about quantities expressed in natural language stories.

1. Introduction

A central goal of Artificial Intelligence is the creation of machines that learn as effectively from human instruction as they do from data. A recent and important step towards this goal is the invention of neural architectures that learn to perform algorithms akin to traditional computers, using primitives such as memory access and stack manipulation (Graves et al., 2014; Joulin & Mikolov, 2015; Grefenstette et al., 2015; Kaiser & Sutskever, 2015; Kurach et al., 2016; Graves et al., 2016). These architectures can be trained through standard gradient descent methods, and enable machines to learn complex behaviour from input-output pairs or program traces. In this context, the role of the human programmer is often limited to providing training data. However, training data is a scarce resource for many tasks. In these cases, the programmer may have partial procedural background knowledge: one may know the rough structure of the program, or how to implement several subroutines that are likely necessary to solve the task. For example, in programming by demonstration (Lau et al., 2001) or query language programming (Neelakantan et al., 2015a) a user establishes a larger set of conditions on the data, and the model needs to set out the details. In all these scenarios, the question then becomes how to exploit various types of prior knowledge when learning algorithms.

To address the above question we present an approach that enables programmers to inject their procedural background knowledge into a neural network. In this approach, the programmer specifies a program sketch (Solar-Lezama et al., 2005) in a traditional programming language. This sketch defines one part of the neural network behaviour. The other part is learned using training data. The core insight that enables this approach is the fact that most programming languages can be formulated in terms of an abstract machine that executes the commands of the language. We implement these machines as neural networks, constraining parts of the networks to follow the sketched behaviour. The resulting neural programs are consistent with our prior knowledge and optimised with respect to the training data.

In this paper, we focus on the programming language Forth (Brodie, 1980), a simple yet powerful stack-based language that facilitates factoring and abstraction. Underlying Forth’s semantics is a simple abstract machine. We introduce 4, an implementation of this machine that is differentiable with respect to the transition it executes at each time step, as well as distributed input representations. Sketches that users write define underspecified behaviour which can then be trained with backpropagation.

For two neural programming tasks introduced in previous work (Reed & de Freitas, 2015) we present Forth sketches that capture different degrees of prior knowledge. For example, we define only the general recursive structure of a sorting problem. We show that given only input-output pairs, 4 can learn to fill the sketch and generalise well to problems of unseen size. In addition, we apply 4 to the task of solving word algebra problems. We show that when provided with basic algorithmic scaffolding and trained jointly with an upstream LSTM (Hochreiter & Schmidhuber, 1997), 4 is able to learn to read natural
The contributions of our work are as follows: i) We present a neural implementation of a dual stack machine underlying Forth, ii) we introduce Forth sketches for programming with partial procedural background knowledge, iii) we apply Forth sketches as a procedural prior on learning algorithms from data, iv) we introduce program code optimisations based on symbolic execution that can speed up neural execution, and v) using Forth sketches we obtain state-of-the-art for end-to-end reasoning about quantities expressed in natural language narratives.

2. The Forth Abstract Machine

Forth is a simple Turing-complete stack-based programming language (ANSI, 1994; Brodie, 1980). We chose Forth as the host language of our work because i) it is an established, general-purpose high-level language relatively close to machine code, ii) it promotes highly modular programs through use of branching, loops and function calls, thus bringing out a good balance between assembly and higher level languages, and importantly iii) its abstract machine is simple enough for a straightforward creation of its continuous approximation. Forth’s underlying abstract machine is represented by a state \( S = (D, R, H, c) \), which contains two stacks: a data evaluation pushdown stack \( D \) (data stack) holds values for manipulation, and a return address pushdown stack \( R \) (return stack) assists with return pointers and subroutine calls. These are accompanied by a heap or random memory access buffer \( H \), and a program counter \( c \).

A Forth program \( P \) is a sequence\(^1\) of Forth words (i.e. commands) \( P = w_1 \ldots w_n \). The role of a word varies, encompassing language keywords, primitives, and user-defined subroutines (e.g. \texttt{DROP} discards the top element of the data stack, or \texttt{DUP} duplicates the top element of the data stack).\(^2\) Each word \( w_i \) defines a transition function between machine states \( w_i : S \rightarrow S \). Therefore, a program \( P \) itself defines a transition function by simply applying the word at the current program counter to the current state. Although usually considered as a part of the heap \( H \), we consider Forth programs \( P \) separately to ease the analysis.

An example of a Bubble sort algorithm implemented in Forth is shown in Listing 1 in everything except lines \( 3b-4c \). The execution starts from line 12 where literals are pushed on the data stack and the \texttt{SORT} is called. Line 10 executes the main loop over the sequence. Lines 2-7 denote the \texttt{BUBBLE} procedure – comparison of top two stack numbers (line 3a), and the recursive call to itself (line 4a). A detailed description of how this program is executed by the Forth abstract machine is provided in Appendix B. Notice that while Forth provides common control structures such as looping and branching, these can always be reduced to low-level code that uses jumps and conditional jumps (using the words \texttt{BRANCH} and \texttt{BRANCH0}, respectively). Likewise, we can think of sub-routine definitions as labelled code blocks, and their invocation amounts to jumping to the code block with the respective label.

3. \( \partial 4 \): Differentiable Abstract Machine

When a programmer writes a Forth program, they define a sequence of Forth words, i.e., a sequence of known state transition functions. In other words, the programmer knows exactly how computation should proceed. To accommodate for cases when the developer’s procedural background knowledge is incomplete, we extend Forth to support the definition of a program sketch. As is the case with Forth programs, sketches are sequences of transition functions. However, a sketch may contain transition functions whose behaviour is learned from data.

To learn the behaviour of transition functions within a program, we first model the execution of the program using a differentiable abstract machine with continuous state representations, differentiable words and sketches. Program execution in \( \partial 4 \) is modelled by a recurrent neural network (RNN), parameterised by the transition functions at each time step.

---

\(^1\)Forth is a concatenative language.

\(^2\)In this work, we restrict ourselves to a subset of all Forth words, detailed in Appendix A.
3.1. Machine State Encoding

We map the symbolic machine state \( S = (D, R, H, c) \) to a continuous representation \( S = (D, R, H, c) \) into two differentiable stacks (with pointers), the data stack \( D = (D, d) \) and the return stack \( R = (R, r) \), a heap \( H \), and an attention vector \( c \) indicating which word of the sketch \( P_\theta \) is being executed at the current time step. Figure 1 depicts the machine together with its elements. All three memory structures, the data stack, the return stack and the heap, are based on differentiable flat memory buffers \( M \in \{D, R, H\} \), where \( D, R, H \in \mathbb{R}^{l \times v} \), for a stack size \( l \) and a value size \( v \). Each has a differentiable read operation

\[
\text{read}_M(a) = a^T M
\]

and write operation

\[
\text{write}_M(x, a): M \leftarrow M - (a1^T) \odot M + xa^T
\]

akin to the Neural Turing Machine (NTM) memory (Graves et al., 2014), where \( \odot \) is the element-wise multiplication, and \( a \) is the address pointer.\(^3\) In addition to the memory buffers \( D \) and \( R \), the data stack and the return stack contain pointers to the current top-of-the-stack (TOS) element \( d, r \in \mathbb{R}^l \), respectively. This allows us to implement pushing as writing a value \( x \) into \( M \) and incrementing the TOS pointer as:

\[
\text{push}_M(x) : \text{write}_M(x, p) \quad \text{(side-effect: } p \leftarrow \text{inc}(p))
\]

where \( p \in \{d, r\} \), \( \text{inc}(p) = p^T R^1 + \), \( \text{dec}(p) = p^T R^- \), and \( R^1 \) and \( R^- \) are increment and decrement matrices (left and right circular shift matrices).

---

\(^3\)The equal widths of \( H \) and \( D \) allow us to directly move vector representations of values between the heap and the stack.

Popping is realized by multiplying the TOS pointer and the memory buffer, and decreasing the TOS pointer:

\[
\text{pop}_M() = \text{read}_M(p) \quad \text{(side-effect: } p \leftarrow \text{dec}(p))
\]

Finally, the program counter \( c \in \mathbb{R}^p \) is a vector that, when one-hot, points to a single word in a program of length \( p \), and is equivalent to the \( c \) vector of the symbolic state machine.\(^4\) We use \( S \) to denote the space of all continuous representations \( S \).

**Neural Forth Words** It is straightforward to convert Forth words, defined as functions on discrete machine states, to functions operating on the continuous space \( S \). For example, consider the word \( \text{DUP} \), which duplicates the top of the data stack. A differentiable version of \( \text{DUP} \) first calculates the value \( e \) on the TOS address of \( D \), as \( e = d^T D \). It then shifts the stack pointer via \( d \leftarrow \text{inc}(d) \), and writes \( e \) to \( D \) using \( \text{write}_D(e, d) \). The complete description of implemented Forth Words and their differentiable counterparts can be found in Appendix A.

3.2. Forth Sketches

We define a Forth sketch \( P_\theta \) as a sequence of continuous transition functions \( P = w_1 ... w_n \). Here, \( w_i \in S \rightarrow S \) either corresponds to a neural Forth word or a trainable transition function (neural networks in our case). We will call these trainable functions slots, as they correspond to underspecified “slots” in the program code that need to be filled by learned behaviour.

We allow users to define a slot \( w \) by specifying a pair of a state encoder \( w_{\text{enc}} \) and a decoder \( w_{\text{dec}} \). The encoder
produces a latent representation $h$ of the current machine state using a multi-layer perceptron, and the decoder consumes this representation to produce the next machine state. We hence have $w = w_{\text{dec}} \circ w_{\text{enc}}$. To use slots within Forth program code, we introduce a notation that reflects this decomposition. In particular, slots are defined by the syntax $\{ \text{encoder} \rightarrow \text{decoder} \}$ where encoder and decoder are specifications of the corresponding slot parts as described below.

**Encoders** We provide the following options for encoders:

- **static** produces a static representation, independent of the actual machine state.
- **observe** $e_1 ... e_m$: concatenates the elements $e_1 ... e_m$ of the machine state. An element can be a stack item $\text{Di}$ at relative index $i$, a return stack item $\text{Ri}$, etc.
- **linear** $N$, **sigmoid**, **tanh** represent chained transformations, which enable the multilayer perceptron architecture. Linear $N$ projects to $N$ dimensions, and sigmoid and tanh apply same-named functions elementwise.

**Decoders** Users can specify the following decoders:

- **choose** $w_1 ... w_m$: chooses from the Forth words $w_1 ... w_m$.
  Takes an input vector $h$ of length $m$ to produce a weighted combination of machine states $\sum_i h_i w_i(S)$.
- **manipulate** $e_1 ... e_m$: directly manipulates the machine state elements $e_1 ... e_m$ by writing the appropriately reshaped and softmaxed output of the encoder over the machine state elements with $\text{write}_M$.
- **permute** $e_1 ... e_m$: permutes the machine state elements $e_1 ... e_m$ via a linear combination of $m!$ state vectors.

### 3.3. The Execution RNN

We model execution using an RNN which produces a state $S_{n+1}$ conditioned on a previous state $S_n$. It does so by first passing the current state to each function $w_i$ in the program, and then weighing each of the produced next states by the component of the program counter vector $c_i$ that corresponds to program index $i$, effectively using $c$ as an attention vector over code. Formally we have:

$$S_{n+1} = \text{RNN}(S_n, P \theta) = \sum_{i=1}^{[P]} c_i w_i(S_n)$$

Clearly, this recursion, and its final state, are differentiable with respect to the program code $P \theta$, and its inputs. Furthermore, for differentiable Forth programs the final state of this RNN will correspond to the final state of a symbolic execution (when no slots are present, and one-hot values are used).

**Interpolation of If-Branches** We cannot apply symbolic execution to code with branching points as the branching behaviour depends on the current machine state, and we cannot resolve it symbolically. However, we can still collapse if-branches that involve no function calls or loops by executing both branches in parallel and weighing their output states by the value of the condition. If the if-branch does contain function calls or loops, we simply fall back to execution of all words weighted by the program counter.
3.5. Training

Our training procedure assumes input-output pairs of machine start and end states \((x_i, y_i)\) only. The output \(y_i\) defines a target memory \(Y^D_i\) and a target pointer \(y^d_i\) on the data stack \(D\). Additionally, we have a mask \(K_i\) that indicates which components of the stack should be included in the loss (e.g. we do not care about values above the stack depth). We use \(D_T(\theta, x_i)\) and \(d_T(\theta, x_i)\) to denote the final state of \(D\) and \(d\) after \(T\) steps of execution RNN and using an initial state \(x_i\). We define the loss function as

\[
\mathcal{L}(\theta) = \mathcal{H}(K_i \odot D_T(\theta, x_i), K_i \odot Y^D_i) \\
+ \mathcal{H}(K_i \odot d_T(\theta, x_i), K_i \odot y^d_i)
\]

where \(\mathcal{H}(x, y) = -x \log y\) is the cross-entropy loss, and \(\theta\) are parameters of slots in the program \(P\). We can use backpropagation and any variant of gradient descent to optimise this loss function. Note that at this point it would be possible to include supervision of the intermediate states (trace-level), as done by the Neural Program Interpreter (Reed & de Freitas, 2015).

4. Experiments

We evaluate \(\partial^4\) on three tasks. Two of these are simple transduction tasks, sorting and addition as presented in (Reed & de Freitas, 2015), with varying levels of program structure. For each problem, we introduce two sketches.

We also test \(\partial^4\) on the more difficult task of answering word algebra problems. We show that not only can \(\partial^4\) act as a standalone solver for such problems, bypassing the intermediary task of producing formula templates which must then be executed, but it can also outperform previous work when trained on the same data.

4.1. Experimental Setup

Specific to the transduction tasks, we discretise memory elements during testing. This effectively allows the trained model to generalise to any sequence length if the correct sketch behaviour has been learned. We also compare against a Seq2Seq (Sutskever et al., 2014) baseline. Full details of the experimental setup can be found in Appendix E.

4.2. Sorting

Sorting sequences of digits is a hard task for RNNs, as they fail to generalise to sequences even marginally longer than the ones they have been trained on (Reed & de Freitas, 2015). We investigate several strong priors based on Bubble sort for this transduction task and present two \(\partial^4\) sketches in Listing 1 that enable us to learn sorting from only a few hundred training examples (see Appendix C.1 for more detail):

<table>
<thead>
<tr>
<th>Train Length:</th>
<th>Test Length 8</th>
<th>Test Length: 64</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seq2Seq</td>
<td>26.2</td>
<td>29.2</td>
</tr>
<tr>
<td>(\partial^4) Permute</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>(\partial^4) Compare</td>
<td>100.0</td>
<td>49.22</td>
</tr>
</tbody>
</table>

Table 1: Accuracy (Hamming distance) of Permute and Compare sketches in comparison to a Seq2Seq baseline on the sorting problem.

In both sketches, the outer loop can be specified in \(\partial^4\) (Listing 1, line 10), which repeatedly calls a function BUBBLE. In doing so, it defines sufficient structure so that the behaviour of the network is invariant to the input sequence length.

Results on Bubble sort A quantitative comparison of our models on the Bubble sort task is provided in Table 1. For a given test sequence length, we vary the training set lengths to illustrate the model’s ability to generalise to sequences longer than those it observed during training. We find that \(\partial^4\) quickly learns the correct sketch behaviour, and it is able to generalise perfectly to sort sequences of 64 elements after observing only sequences of length two and three during training. In comparison, the Seq2Seq baseline falters when attempting similar generalisations, and performs close to chance when tested on longer sequences. Both \(\partial^4\) sketches perform flawlessly when trained on short sequence lengths, but under-perform when trained on sequences of length 4 due to arising computational difficulties (COMPARE sketch performs better due to more structure it imposes). We discuss this issue further in Section 5.

4.3. Addition

Next, we applied \(\partial^4\) to the problem of learning to add two n-digit numbers. We rely on the standard elementary school addition algorithm, where the goal is to iterate over pairs of aligned digits, calculating the sum of each to yield the resulting sum. The key complication arises when two digits sum to a two-digit number, requiring that the correct extra digit (a carry) be carried over to the subsequent column.
Listing 2: Manipulate sketch (a lines – green) and the choose sketch (b lines – blue) for Elementary Addition. Input data is used to fill data stack externally.

We assume aligned pairs of digits as input, with a carry for the least significant digit (potentially 0), and the length of the respective numbers. The sketches define the high-level operations through recursion, leaving the core addition to be learned from data.

The specified high-level behaviour includes the recursive call template and the halting condition of the recursion (no remaining digits, line 2-3). The underspecified addition operation must take three digits from the previous call, the two digits to sum and a previous carry, and produce a single digit (the sum) and the resultant carry (lines 6a, 6b and 7a, 7b). We introduce two sketches for inducing this behaviour:

MANIPULATE. This sketch provides little prior procedural knowledge as it directly manipulates the \( \partial^4 \) machine state, filling in a carry and the result digits, based on the top three elements on the data stack (two digits and the carry). Depicted in Listing 2 in green.

CHOOSE. Incorporating additional prior information, \( \partial^4 \) Choose exactly specifies the results of the computation, namely the output of the first slot (line 6b) is the carry, and the output of the second one (line 7b) is the result digit, both conditioned on the two digits and the carry on the data stack. Depicted in Listing 2 in blue.

The rest of the sketch code reduces the problem size by one and returns the solution by popping it from the return stack.

Quantitative Evaluation on Addition In a set of experiments analogous to those in our evaluation on Bubble sort, we demonstrate the performance of \( \partial^4 \) on the addition task by examining test set sequence lengths of 8 and 64 while varying the lengths of the training set instances (Table 2). The Seq2Seq model again fails to generalise to longer sequences than those observed during training. In comparison, both the \( \partial^4 \) Choose and the MANIPULATE sketches learn the correct sketch behaviour and generalise to all test sequence lengths (with an exception of MANIPULATE which required more data to train perfectly). In additional experiments, we were able to successfully train both the \( \partial^4 \) Choose and the MANIPULATE sketches from sequences of input length 24, and we tested them up to the sequence length of 128, confirming their perfect training and generalisation capabilities.

4.4. Word Algebra Problems

Word algebra problems (WAPs) are often used to assess the numerical reasoning abilities of schoolchildren. Questions are short narratives which focus on numerical quantities, culminating with a question. For example:

A florist had 50 roses. If she sold 15 of them and then later picked 21 more, how many roses would she have?

Answering such questions requires both the understanding of language and of algebra — one must know which numeric operations correspond to which phrase and how to execute these operations.

Previous work cast WAPs as a transduction task by mapping a question to a template of a mathematical formula, thus requiring manually labelled formulas. For instance, one formula that can be used to correctly answer the question in the example above is \((50 - 15) + 21 = 56\). In previous work, local classifiers (Roy & Roth, 2015; Roy et al., 2015), hand-crafted grammars (Koncel-Kedziorski et al., 2015), and recurrent neural models (Bouchard et al., 2016) have been used to perform this task. Predicted formula templates may be marginalised during training (Kushman et al., 2014), or evaluated directly to produce an answer.

In contrast to these approaches, \( \partial^4 \) is able to learn both, a soft mapping from text to algebraic operations and their execution, without the need for manually labelled equations and no explicit symbolic representation of a formula.

Model description Our model is a fully end-to-end differentiable structure, consisting of a \( \partial^4 \) interpreter, a
The BiLSTM reader reads the text of the problem and produces a vector representation (word vectors) for each word, concatenated from the forward and the backward pass of the BiLSTM network. We use the resulting word vectors corresponding only to numbers in the text, numerical values of those numbers (encoded as one-hot vectors), and a vector representation of the whole problem (concatenation of the last and the first vector of the opposite passes) to initialise the \( \partial 4 \) heap \( H \). This is done in an end-to-end fashion, enabling gradient propagation through the BiLSTM to the vector representations. The process is depicted in Figure 1.

The sketch, depicted in Listing 3 dictates the differentiable computation.\(^5\) First, it copies values from the heap \( H \) – word vectors to the return stack \( R \), and numbers (as one-hot vectors) on the data stack \( D \). Second, it contains four slots that define the space of all possible operations of four operators on three operands, all conditioned on the vector representations on the return stack. These slots are i) permutation of the elements on the data stack, ii) choosing the first operator, iii) possibly swapping the intermediate result and the last operand, and iv) the choice of the second operator. The final set of commands simply empties out the return stack \( R \). These slots define the space of possible operations, however, the model needs to learn how to utilise these operations in order to calculate the correct result.

**Results** We evaluate the model on the Common Core (CC) dataset, introduced by Roy & Roth (2015). CC is notable for having the most diverse set of equation patterns, consisting of four operators \((+, -, \times, \div)\), with up to three operands.

We compare against three baseline systems: (1) a local classifier with hand-crafted features (Roy & Roth, 2015), (2) a Seq2Seq baseline, and (3) the same model with a data generation component (GeNeRe) Bouchard et al. (2016). All baselines are trained to predict the best equation, which is executed outside of the model to obtain the answer. In contrast, \( \partial 4 \) is trained end-to-end from input-output pairs and predicts the answer directly without the need for an intermediate symbolic representation of a formula.

Results are shown in Table 3. All RNN-based methods (bottom three) outperform the classifier-based approach. Our method slightly outperforms a Seq2Seq baseline, achieving the highest reported result on this dataset without data augmentation.

### 5. Discussion

\( \partial 4 \) bridges the gap between a traditional programming language and a modern machine learning architecture. However, as we have seen in our evaluation experiments, faithfully simulating the underlying abstract machine architecture introduces its own unique set of challenges.

One such challenge is the additional complexity of performing even simple tasks when they are viewed in terms of operations on the underlying machine state. As illustrated in Table 1, \( \partial 4 \) sketches can be effectively trained from small training sets (see Appendix C.1), and generalise perfectly to sequences of any length. However, difficulty arises when training from sequences of modest lengths. Even when dealing with relatively short training length sequences, and with the program code optimisations employed, the underlying machine can unroll into a problematically large number states. For problems whose machine execution is quadratic, like the sorting task (which at input sequences of length 4 has 120 machine states), we observe significant instabilities during training from backpropagating through such long RNN sequences, and consequent failures to train. In comparison, the addition problem was easier to train due to a comparatively shorter underlying execution RNNs.

The higher degree of prior knowledge provided played an important role in successful learning. For example, the COMPARE sketch, which provides more structure, achieves higher accuracies when trained on longer sequences. Similarly, employing softmax on the directly manipulated memory elements enabled perfect training for the MANIPULATE sketch for addition. Furthermore, it is encouraging to see that \( \partial 4 \) can be trained jointly with an upstream LSTM to provide strong procedural prior knowledge for solving a real-world NLP task.
6. Related Work

Program Synthesis The idea of program synthesis is as old as Artificial Intelligence, and has a long history in computer science (Manna & Waldinger, 1971). Whereas a large body of work has focused on using genetic programming (Koza, 1992) to induce programs from the given input-output specification (Nordin, 1997), there are also various Inductive Programming approaches (Kietzmann, 2009) aimed at inducing programs from incomplete specifications of the code to be implemented (Albarghouthi et al., 2013; Solar-Lezama et al., 2006). We tackle the same problem of sketching, but in our case, we fill the sketches with neural networks able to learn the slot behaviour.

Probabilistic and Bayesian Programming Our work is closely related to probabilistic programming languages such as Church (Goodman et al., 2008). They allow users to inject random choice primitives into programs as a way to define generative distributions over possible execution traces. In a sense, the random choice primitives in such languages correspond to the slots in our sketches. A core difference lies in the way we train the behaviour of slots: instead of calculating their posteriors using probabilistic inference, we estimate their parameters using backpropagation and gradient descent. This is similar in-kind to Terpret’s FMGD algorithm (Gaunt et al., 2016), which is employed for code induction via backpropagation. In comparison, our model which optimises slots of neural networks surrounded by continuous approximations of code, enables the combination of procedural behaviour and neural networks. In addition, the underlying programming and probabilistic paradigm in these programming languages is often functional and declarative, whereas our approach focuses on a procedural and discriminative view. By using an end-to-end differentiable architecture, it is easy to seamlessly connect our sketches to further neural input and output modules, such as an LSTM that feeds into the machine heap.

Neural approaches Recently, there has been a surge of research in program synthesis, and execution in deep learning, with increasingly elaborate deep models. Many of these models were based on differentiable versions of abstract data structures (Joulin & Mikolov, 2015; Grefenstette et al., 2015; Kurach et al., 2016), and a few abstract machines, such as the NTM (Graves et al., 2014), Differentiable Neural Computers (Graves et al., 2016), and Neural GPUs (Kaiser & Sutskever, 2015). All these models are able to induce algorithmic behaviour from training data. Our work differs in that our differentiable abstract machine allows us to seemingly integrate code and neural networks, and train the neural networks specified by slots via backpropagation. Related to our efforts is also the Autograd (Maclaurin et al., 2015), which enables automatic gradient computation in pure Python code, but does not define nor use differentiable access to its underlying abstract machine.

The work in neural approximations to abstract structures and machines naturally leads to more elaborate machinery able to induce and call code or code-like behaviour. Neelakantan et al. (2015a) learned simple SQL-like behaviour—querying tables from the natural language with simple arithmetic operations. Although sharing similarities on a high level, the primary goal of our model is not induction of (fully expressive) code but its injection. (Andreas et al., 2016) learn to compose neural modules to produce the desired behaviour for a visual QA task. Neural Programmer-Interpreters (Reed & de Freitas, 2015) learn to represent and execute programs, operating on different modes of an environment, and are able to incorporate decisions better captured in a neural network than in many lines of code (e.g. using an image as an input). Users inject prior procedural knowledge by training on program traces and hence require full procedural knowledge. In contrast, we enable users to use their partial knowledge in sketches.

Neural approaches to language compilation have also been researched, from compiling a language into neural networks (Siegelmann, 1994), over building neural compilers (Gruau et al., 1995) to adaptive compilation (Bunel et al., 2016). However, that line of research did not perceive neural interpreters and compilers as a means of injecting procedural knowledge as we did. To the best of our knowledge, ∂4 is the first working neural implementation of an abstract machine for an actual programming language, and this enables us to inject such priors in a straightforward manner.

7. Conclusion and Future Work

We have presented ∂4, a differentiable abstract machine for the Forth programming language, and showed how it can be used to complement programmers’ prior knowledge through the learning of unspecified behaviour in Forth sketches. The ∂4 RNN successfully learns to sort and add, and solve word algebra problems, using only program sketches and program input-output pairs. We believe ∂4, and the larger paradigm it helps establish, will be useful for addressing complex problems where low-level representations of the input are necessary, but higher-level reasoning is difficult to learn and potentially easier to specify.

In future work, we plan to apply ∂4 to other problems in the NLP domain, like machine reading and knowledge base inference. In the long-term, we see the integration of non-differentiable transitions (such as those arising when interacting with a real environment), as an exciting future direction which sits at the intersection of reinforcement learning and probabilistic programming.
ACKNOWLEDGMENTS

We thank Guillaume Bouchard, Danny Tarlow, Dirk Weissenborn, Johannes Welbl and the anonymous reviewers for fruitful discussions and helpful comments on previous drafts of this paper. This work was supported by a Microsoft Research PhD Scholarship, an Allen Distinguished Investigator Award, and a Marie Curie Career Integration Award.

References


