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Abstract

Conditional gradient algorithms (also often called
Frank-Wolfe algorithms) are popular due to their
simplicity of only requiring a linear optimization
oracle and more recently they also gained signif-
icant traction for online learning. While simple
in principle, in many cases the actual implemen-
tation of the linear optimization oracle is costly.
We show a general method tolazifyvarious con-
ditional gradient algorithms, which in actual com-
putations leads to several orders of magnitude of
speedup in wall-clock time. This is achieved by
using a faster separation oracle instead of a linear
optimization oracle, relying only onfew linear
optimization oracle calls.

1. Introduction

Convex optimization is an important technique both from
a theoretical and an applications perspective. Gradient de-
scent based methods are widely used due to their simplicity
and easy applicability to many real-world problems. We are
interested in solving constraint convex optimization prob-
lems of the form

min

x ! P
f (x), (1)

wheref is a smooth convex function andP is a polytope,
with access tof being limited to Þrst-order information,
i.e., we can obtain! f (v) andf (v) for a givenv " P and
access toP via a linear minimization oracle which returns
x = argminv! P cx for a given linear objectivec.

When solving Problem(1) using gradient descent ap-
proaches in order to maintain feasibility, typically a projec-
tion step is required. This projection back into the feasible
regionP is potentially computationally expensive, espe-
cially for complex feasible regions in very large dimensions.
As such projection-free methods gained a lot of attention
recently, in particular the Frank-Wolfe algorithm (Frank
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Algorithm 1 Frank-Wolfe Algorithm (Frank & Wolfe,
1956)
Input: smooth convexf function with curvatureC, x1 "

P start vertex,LPP linear minimization oracle
Output: xt points inP
1: for t = 1 to T # 1 do
2: vt $ LPP (! f (xt ))

3: xt +1 $ (1 # ! t )xt + ! t vt with ! t :

=

2
t +2

4: end for

& Wolfe, 1956) (also known as conditional gradient de-
scent (Levitin & Polyak, 1966); see also (Jaggi, 2013) for
an overview) and its online version (Hazan & Kale, 2012)
due to their simplicity. We recall the basic Frank-Wolfe
algorithm in Algorithm1. These methods eschew the pro-
jection step and rather use a linear optimization oracle to
stay within the feasible region. While convergence rates
and regret bounds are often suboptimal, in many cases the
gain due to only having to solve asinglelinear optimization
problem over the feasible region in every iteration still leads
to signiÞcant computational advantages (see e.g., (Hazan
& Kale, 2012, Section 5)). This led to conditional gradi-
ents algorithms being used for e.g., online optimization
and more generally machine learning and the property that
these algorithms naturally generate sparse distributions over
the extreme points of the feasible region (sometimes also
refereed to as atoms) is often helpful. Further increasing
the relevance of these methods, it was shown recently that
conditional gradient methods can also achieve linear con-
vergence (see e.g., (Garber & Hazan, 2013; Lacoste-Julien
& Jaggi, 2015; Garber & Meshi, 2016)) as well as that the
number of total gradient evaluations can be reduced while
maintaining the optimal number of oracle calls as shown in
(Lan & Zhou, 2014).

Oracle 1Weak Separation OracleLPsepP (c, x, ! , K )

Input: c " Rn linear objective,x " P point, K % 1

accuracy,! > 0 objective value;
Output: Either(1) y " P vertex withc(x # y) > ! /K , or

(2) false: c(x # z) & ! for all z " P.

Unfortunately, for complex feasible regions even solving the
linear optimization problem might be time-consuming and
as such the cost of solving the LP might be non-negligible.



Lazifying Conditional Gradient Algorithms

This could be the case, e.g., when linear optimization over
the feasible region is a hard problem or when solving large-
scale optimization problems or learning problems. As such
it is natural to ask the following questions:

(i) Does the linear optimization oracle have to be called
in every iteration?

(ii) Does one need approximately optimal solutions for
convergence?

(iii) Can one reuse information across iteration?

We will answer these questions in this work, showing that (i)
the LP oracle is not required to be called in every iteration,
that (ii) much weaker guarantees are sufÞcient, and that (iii)
we can reuse information. To signiÞcantly reduce the cost
of oracle callswhilemaintaining identical convergence rates
up to small constant factors, we replace the linear optimiza-
tion oracle by a(weak) separation oracle(see Oracle1)
which approximately solves a certainseparation problem
within a multiplicative factor and returns improving vertices
(or atoms). We stress that the weak separation oracle is
signiÞcantly weaker than approximate minimization, which
has been already considered in (Jaggi, 2013). In fact, if the
oracle returns an improving vertex then this vertexdoes not
imply any guarantee in terms of solution quality with respect
to the linear minimization problem. It is this relaxation of
the dual guarantees that will provide a signiÞcant speedup
as we will see later. At the same time, in case that the oracle
returnsfalse, we directly obtain a dual bound via convexity.

A (weak) separation oracle can be realized by a single call
to a linear optimization oracle, however with two important
differences. It allows forcachingandearly termination:
Previous solutions are cached, and Þrst it is veriÞed whether
any of the cached solutions satisfy the oracleÕs separation
condition. The underlying linear optimization oracle has to
be called, only when none of the cached solutions satisfy
the condition, and the linear optimization can be stopped as
soon as a satisfactory solution with respect to the separation
condition is found. See Algorithm2 for pseudo-code; early
termination is implicit in line 4.

We call this techniquelazy optimizationand we will demon-
strate signiÞcant speedups in wall-clock performance (see
e.g., Figure1), while maintaining identical theoretical con-
vergence rates.

To exemplify our approach we provide conditional gradi-
ent algorithms employing the weak separation oracle for
the standard Frank-Wolfe algorithm as well as the variants
in (Hazan & Kale, 2012; Garber & Meshi, 2016; Garber
& Hazan, 2013), which have been chosen due to requir-
ing modiÞed convergence arguments that go beyond those
required for the vanilla Frank-Wolfe algorithm. Comple-
menting the theoretical analysis we report computational

Oracle 2LPsepP (c, x, ! , K ) via LP oracle
Input: c " Rn linear objective,x " P point, K % 1

accuracy,! > 0 objective value;
Output: Either(1) y " P vertex withc(x # y) > ! /K , or

(2) false: c(x # z) & ! for all z " P.
1: if y " P cached withc(x # y) > ! /K existsthen
2: return y { Cache call}
3: else
4: computey $ argmaxx ! P c(x) { LP call}
5: if c(x # y) > ! /K then
6: return y andadd y to cache
7: else
8: return false
9: end if

10: end if

results demonstrating effectiveness of our approach via a
signiÞcant reduction in wall-clock running time compared
to their linear optimization counterparts.

Related Work

There has been extensive work on Frank-Wolfe algorithms
and conditional gradient descent algorithms and we will be
only able to review work most closely related to ours. The
Frank-Wolfe algorithm was originally introduced in (Frank
& Wolfe, 1956) (also known as conditional gradient descent
(Levitin & Polyak, 1966) and has been intensely studied in
particular in terms of achieving stronger convergence guar-
antees as well as afÞne-invariant versions. We demonstrate
our approach for the vanilla Frank-Wolfe algorithm (Frank
& Wolfe, 1956) (see also (Jaggi, 2013)) as an introduc-
tory example. We then consider more complicated variants
that require non-trivial changes to the respective conver-
gence proofs to demonstrate the versatility of our approach.
This includes the linearly convergent variant via local lin-
ear optimization (Garber & Hazan, 2013) as well as the
pairwise conditional gradient variant of (Garber & Meshi,
2016), which is especially efÞcient in terms of implementa-
tion. However, our technique also applies to theAway-Step
Frank-Wolfealgorithm, theFully-Corrective Frank-Wolfe
algorithm, as well as theBlock-Coordinate Frank-Wolfeal-
gorithm. Recently, in (Freund & Grigas, 2016) guarantees
for arbitrary step-size rules were provided and an analo-
gous analysis can be also performed for our approach. On
the other hand, the analysis of the inexact variants, e.g.,
with approximate linear minimization does not apply to our
case as our oracle is signiÞcantly weaker than approximate
minimization as pointed out earlier. For more information,
we refer the interested reader to the excellent overview in
(Jaggi, 2013) for Frank-Wolfe methods in general as well as
(Lacoste-Julien & Jaggi, 2015) for an overview with respect
to global linear convergence.
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It was also recently shown in (Hazan & Kale, 2012) that
the Frank-Wolfe algorithm can be adjusted to the online
learning setting and here we provide a lazy version of this
algorithm. Combinatorial convex online optimization has
been investigated in a long line of work (see e.g., (Kalai
& Vempala, 2005; Audibert et al., 2013; Neu & Bart«ok,
2013)). It is important to note that our regret bounds hold
in the structured online learning setting, i.e., our bounds
depend on the"1-diameter or sparsity of the polytope, rather
than its ambient dimension for arbitrary convex functions
(see e.g., (Cohen & Hazan, 2015; Gupta et al., 2016)). We
refer the interested reader to (Hazan, 2016) for an extensive
overview.

A key component of the new oracle is the ability to cache
and reuse old solutions, which accounts for the majority
of the observed speed up. The idea of caching of oracle
calls was already explored in various other contexts such
as cutting plane methods (see e.g., (Joachims et al., 2009))
as well as theBlock-Coordinate Frank-Wolfealgorithm in
(Shah et al., 2015; Osokin et al., 2016). Our laziÞcation
approach (which uses caching) is different however in the
sense that our weak separation oracle does not resemble an
approximate linear optimization oracle with a multiplicative
approximation guarantee; see (Osokin et al., 2016, Proof of
Theorem 3. Appendix F) and (Lacoste-Julien et al., 2013)
for comparison to our setup. In fact, our weaker oracle does
not imply any approximation guarantee and differs from
approximate minimization as done e.g., in (Jaggi, 2013)
substantially.

Contribution

The main technical contribution of this paper is a new ap-
proach, whereby instead of Þnding the optimal solution,
the oracle is used only to Þnd agood enough solutionor a
certiÞcatethat such a solution does not exist, both ensur-
ing the desired convergence rate of the conditional gradient
algorithms.

Our contribution can be summarized as follows:

(i) Lazifying approach.We provide a general method to
lazify conditional gradient algorithms. For this we replace
the linear optimization oracle with a weak separation oracle,
which allows us to reuse feasible solutions from previous
oracle calls, so that in many cases the oracle call can be
skipped. In fact, once a simple representation of the under-
lying feasible region is learned no further oracle calls are
needed. We also demonstrate how parameter-free variants
can be obtained.

(ii) LaziÞed conditional gradient algorithms.We exem-
plify our approach by providing lazy versions of the vanilla
Frank-Wolfe algorithm as well as of the conditional gradient
methods in (Hazan & Kale, 2012; Garber & Hazan, 2013;

Garber & Meshi, 2016).

(iii) Weak separation through augmentation.We show in
the case of 0/1 polytopes how to implement a weak separa-
tion oracle with at mostk calls to an augmentation oracle
that on inputc " Rn andx " P provides either an improv-
ing solutionx " P with cx < cx or ensures optimality,
wherek denotes the"1-diameter ofP. This is useful when
the solution space is sparse.

(iv) Computational experiments.We demonstrate compu-
tational superiority by extensive comparisons of the weak
separation based versions with their original versions. In
all cases we report signiÞcant speedups in wall-clock time
often of several orders of magnitude.

It is important to note that in all cases, we inherit the same
requirements, assumptions, and properties of the baseline
algorithm that we lazify. This includes applicable func-
tion classes, norm requirements, as well as smoothness and
(strong) convexity requirements. We also maintain identical
convergence rates up to (small!) constant factors.

Outline

We brießy recall notation and notions in Section2 and con-
sider conditional gradients algorithms in Section3. In Sec-
tion 4 we explain how parameter-free variants of the pro-
posed algorithms can be obtained. Finally, in Section5
we provide some experimental results. In the supplemental
material we consider two more variants of conditional gra-
dients algorithms (SectionsB andC), we show that we can
realize a weak separation oracle with an even weaker oracle
in the case of combinatorial problem (SectionD) and we
provide additional computational results (SectionE).

2. Preliminaries

Let 'á' be an arbitrary norm onRn , and let'á' " denote
the dual norm of'á' . We will specify the applicable
norm in the later sections. A functionf is L -Lipschitz
if |f (y) # f (x)| & L ' y # x' for all x, y " dom f . A
convex functionf is smoothwith curvatureat mostC if
f (!y + (1 # ! )x) & f (x) + ! ! f (x)(y # x) + C! 2/ 2 for
all x, y " dom f and0 & ! & 1. A functionf is S-strongly
convexif f (y) # f (x) % ! f (x)(y # x) +

S
2 ' y # x' 2 for

all x, y " dom f . Unless stated otherwise Lipschitz conti-
nuity and strong convexity will be measured in the norm
'á' . Moreover, letBr (x)

:

= { y | ' x # y' & r } be the ball
aroundx with radiusr with respect to' .' . In the following,
P will denote the feasible region, a polytope and the vertices
of P will be denoted byv1, . . . , vN .
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3. Lazy Conditional Gradients

We start with the most basic Frank-Wolfe algorithm as a
simple example how a conditional gradient algorithm can
be laziÞed by means of aweak separation oracle. We will
also use the basic variant to discuss various properties and
implications. We then show how the more complex Frank-
Wolfe algorithms in (Garber & Hazan, 2013) and (Garber &
Meshi, 2016) can be laziÞed. Throughout this section'á'
denotes the"2-norm.

3.1. Lazy Conditional Gradients: a basic example

We start with lazifying the original Frank-Wolfe algorithm
(arguably the simplest Conditional Gradients algorithm),
adapting the baseline argument from (Jaggi, 2013, Theo-
rem 1). While the vanilla version has suboptimal conver-
gence rateO(1/T ), its simplicity makes it an illustrative
example of the main idea of laziÞcation. The lazy algo-
rithm (Algorithm 2) maintains an upper bound! t on the
convergence rate, guiding its eagerness for progress when
searching for an improving vertexvt . If the oracle provides
an improving vertexvt we refer to this as apositive calland
we call it anegative callotherwise.

Algorithm 2 Lazy Conditional Gradients (LCG)
Input: smooth convexf function with curvatureC, x1 "

P start vertex,LPsepP weak linear separation oracle,
accuracyK > 1, initial upper bound! 0

Output: xt points inP
1: for t = 1 to T # 1 do

2: ! t $ ! t�1+
C�2

t
2

1+ �t
K

3: vt $ LPsepP (! f (xt ), xt , ! t , K )

4: if vt = false then
5: xt +1 $ xt

6: else
7: xt +1 $ (1 # ! t )xt + ! t vt

8: end if
9: end for

The step size! t is chosen to (approximately) minimize! t

in Line 2; roughly! t # 1/KC .

Theorem 3.1. Assumef is convex and smooth with cur-
vatureC. Then Algorithm2 with ! t =

2(K 2+1)
K ( t + K 2+2) has

convergence rate

f (xt ) # f (x"
) &

2 max{ C, ! 0} (K 2
+ 1)

t + K 2
+ 2

,

wherex" is a minimum point off overP.

Proof. We prove by induction thatf (xt ) # f (x"
) & ! t # 1.

The claim is clear fort = 1 by the choice of! 0. Assuming
the claim is true fort, we prove it fort + 1. We distin-

guish two cases depending on the return value of the weak
separation oracle in Line3.

When the oracle returns an improving solutionvt , which we
call the positive case, then! f (xt )(xt # vt ) % ! t /K , which
is used in the second inequality below. The Þrst inequality
follows by smoothness off , and the third inequality by the
induction hypothesis:

f (xt +1 ) # f (x"
)

& f (xt ) # f (x"
) + ! t ! f (xt )(vt # xt ) +

C! 2
t

2

& f (xt ) # f (x"
) # ! t

! t

K
+

C! 2
t

2

& ! t # 1 # ! t
! t

K
+

C! 2
t

2

= ! t ,

When the oracle returns no improving solution, then in par-
ticular ! f (xt )(xt # x"

) & ! t , hence by Line5 f (xt +1 ) #
f (x"

) = f (xt ) # f (x"
) & ! f (xt )(xt # x"

) = ! t .

Finally, using the speciÞc values of! t we prove the upper
bound

! t # 1 &
2 max{ C, ! 0} (K 2

+ 1)

t + K 2
+ 2

by induction ont. The claim is obvious fort = 1. The in-
duction step is an easy computation relying on the deÞnition
of ! t on Line2:

! t =

! t # 1 +

C! 2
t

2

1 +

! t

K

&
2 max { C, ! 0} (K 2+1)

t + K 2+2 +

max { C, ! 0} ! 2
t

2

1 +

! t

K

= 2 max{ C, ! 0} (K 2
+ 1)

1 +

! t

2K!
1 +

! t

K

"
(t + K 2

+ 2)

&
2 max{ C, ! 0} (K 2

+ 1)

t + K 2
+ 3

.

Here the second equation follows via plugging-in the choice
for ! t for one of the! t in the quadratic term and last in-
equality follows fromt % 1 and the concrete choice of
! t .

Remark3.2 (Discussion of the weak separation oracle). A
few remarks are in order:

(i) Interpretation of weak separation oracle.The weak
separation oracle provides newextreme points(or vertices)
vt that ensure necessary progress to converge at the proposed
rate! t or it certiÞes that we are already! t -close to the
optimal solution. It is important to note that the two cases in
Oracle1 are not mutually exclusive: the oracle might return
y " P with c(x # y) > ! /K (positive call: returning a
vertexy with improvement! /K ), while still c(x # z) & !
for all z " P (negative call: certifying that there is no vertex
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z that can improve by! ). This a desirable property as it
makes the separation problem much easier and the algorithm
works with either answer in the ambiguous case.

(ii) Choice ofK . The K parameter can be used to bias
the oracle towards positive calls, i.e., returning improving
directions. We would also like to point out that the algorithm
above as well as those below will also work forK = 1,
however we show in supplemental material (SectionD)
that we can use an even weaker oracle to realize a weak
separation oracle ifK > 1 and for consistency, we require
K > 1 throughout. In the caseK = 1 the two cases in the
oracle are mutually exclusive.

(iii) Effect of caching and early termination.When realiz-
ing the weak separation oracle, the actual linear optimiza-
tion oracle has to be only called if none of the previously
seen vertices (or atoms) satisÞes the separation condition.
Moreover, the weak separation oracle has to only produce
a satisfactory solution and not an approximately optimal
one. These two properties are responsible for the observed
speedup (see Figure1). Moreover, the convex combinations
of vertices ofP that represent the solutionsxt are extremely
sparse as we reuse (cached) vertices whenever possible.

(iv) Dual certiÞcates.By not computing an approximately
optimal solution, we give up dual optimality certiÞcates. For
a given pointx " P, let g(x)

:

= maxv! P ! f (x)(x # v)

denote theWolfe gap. We havef (x) # f (x"
) & g(x)

where x"
= argminx ! P f (x) by convexity. In those

roundst where we obtain an improving vertex we have
no information aboutg(xt ). However, if the oracle re-
turnsfalsein roundt, then we obtain the dual certiÞcate
f (xt ) # f (x"

) & g(xt ) & ! t .

(v) Rate of convergence.A close inspection of the algo-
rithm utilizing the weak separation oracle suggests that the
algorithm converges only at the worst-case convergence rate
that we propose with the! t sequence. This however is only
an artefact of the simpliÞed presentation for the proof of
the worst-case rate. We can easily adjust the algorithm to
implicitly perform a search over the rate! t combined with
line search for! . This leads to a parameter-free variant of
Algorithm 2as given in Section4 and comes at the expense
of a (small!) constant factor deterioration of the worst-case
rate guarantee; see also Supplementary MaterialA.(iii) for
an in-depth discussion.

We discuss potential implementation improvements in Sup-
plementary MaterialA.

3.2. Lazy Pairwise Conditional Gradients

In this section we provide a lazy variant (Algorithm3) of
the Pairwise Conditional Gradient algorithm from (Garber

& Meshi, 2016), using separation instead of linear optimiza-
tion. We make identical assumptions: the feasible region
is a0/ 1 polytope given in the formP = { x " Rn | 0 &
x & 1, Ax = b} , where1 denotes the all-one vector of
compatible dimension; in particular all vertices ofP have
only 0/ 1 entries.

Algorithm 3 Lazy Pairwise Conditional Gradients (LPCG)
Input: polytopeP, smooth andS-strongly convex function

f with curvatureC, accuracyK > 1, #t non-increasing
step-sizes

Output: xt points
1: x1 " P arbitrary and! 0 % f (x1) # f (x"

)

2: for t = 1, . . . , T do
3: deÞne˜! f (xt ) " Rm as follows:

˜! f (xt )i :

=

#
! f (xt )i if (xt )i > 0

#( if (xt )i = 0

4: ! t $ 2! t�1+ " 2
t C

2+ ⌘t
K�t

5: ct $
$

! f (xt ), # ˜! f (xt )

%

6: (v+
t , v#

t ) $ LPsepP $ P

$
ct , (xt , xt ), ! t

" t
, K

%

7: if (v+
t , v#

t ) = false then
8: xt +1 $ xt

9: else
10: #̃t $ max{ 2

# # | $ " Z%0, 2

# # & #t }
11: xt +1 $ xt + #̃t (v+

t # v#
t )

12: end if
13: end for

Observe that Algorithm3 callsLPsep on the cartesian prod-
uct of P with itself. Choosing the objective function as
in Line 5 allows us to simultaneously Þnd an improving
direction and an away-step direction.

Theorem 3.3. Letx" be a minimum point off in P, and! 0

an upper bound off (x1) # f (x"
). Furthermore, letM 1 :

=&
S

8 card( x⇤) , M 2 :

= KC/ 2, % :

= min{ M 1
2M 2

, 1/
)

! 0} ,

#t :

= %
'

! t # 1 and " t :

=

&
2 card( x⇤)! t�1

S , then Algo-
rithm 3 has convergence rate

f (xt +1 ) # f (x"
) & ! t & ! 0

(
1 + B
1 + 2B

) t

,

whereB :

= %áM 1
2K .

We recall a technical lemma for the proof.

Lemma 3.4 ((Garber & Meshi, 2016, Lemma 2)). Let
x, y " P. There exists verticesvi of P such thatx =

* k
i =1 &i vi andy =

* k
i =1 (&i # ! i ) vi +

$* k
i =1 ! i

%
z with

! i " [0, &i ], z " P and
* k

i =1 ! i &
'

card(y)' x # y' .
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Proof of Theorem3.3. The feasibility of the iteratesxt is
ensured by Line10 and the monotonicity of the sequence
{ #t } t %1 with the same argument as in (Garber & Meshi,
2016, Lemma 1 and Observation 2).

We Þrst show by induction thatf (xt +1 ) # f (x"
) & ! t . For

t = 0 we have! 0 % f (x1) # f (x"
). Now assume the state-

ment for somet % 0. In the negative case (Line8), we use
the guarantee of Oracle1 to getct ((xt , xt )# (z1, z2)) & ! t

" t

for all z1, z2 " P, which is equivalent to (asct (xt , xt ) = 0)
˜! f (xt )z2 # ! f (xt )z1 & ! t

" t
and therefore

! f (xt )(z̃2 # z1) &
! t

" t
,

for all z̃2, z1 " P with supp(z̃2) * supp(xt ). We fur-
ther use Lemma3.4 to write xt =

* k
i =1 &i vi andx"

=

* k
i =1 (&i # ! i )vi +

* k
i =1 ! i z with ! i " [0, &i ], z " P and

* k
i =1 ! i &

'
card(x"

)' xt # x" ' &
&

2 card( x⇤)! t�1

S =

" t , using the induction hypothesis and the strong convexity
in the second inequality. Thenf (xt +1 ) # f (x"

) = f (xt ) #
f (x"

) & ! f (xt )(xt # x"
) =

* k
i =1 ! i (vi # z) á ! f (xt ) &

! t , where we used Equation3.2for the last inequality.

For the positive case (Lines10 and11) we get, using Þrst
smoothness off , then#t / 2 < #̃t & #t and! f (xt )(v+

t #
v#

t ) & # ! t / (" t K ), and Þnally the deÞnition of! t :

f (xt +1 ) # f (x"
) = f (xt + #̃t (v+

t # v#
t )) # f (x"

)

& ! t # 1 + #̃t ! f (xt )(v+
t # v#

t ) +

#̃2
t C
2

& ! t # 1 #
#t

2

á
! t

" t K
+

#2
t C
2

= ! t .

Plugging in the values of#t and" t to the deÞnition of! t

gives the desired bound.

! t =

2! t # 1 + #2
t C

2 +

" t

K " t

= ! t # 1
1 + %2M 2/K
1 + %M1/K

& ! t # 1
1 + B
1 + 2B

& ! 0

(
1 + B
1 + 2B

) t

.

4. Parameter-free Conditional Gradients via
Weak Separation

We now provide a parameter-free variant of the Lazy Frank-
Wolfe Algorithm. We stress that the worst-case convergence
rate is identical up to a small constant factor. Here we Þnd a
tight initial bound! 0 with a single extra LP call, which can
be also done approximately as long as! 0 is a valid upper
bound. Alternatively, one can perform binary search via the
weak separation oracle as described earlier.

Note that the accuracy parameterK in Algorithm 4 is a
parameter of the oracle and not of the algorithm itself. We

Algorithm 4 Parameter-free Lazy Conditional Gradients
(LCG)
Input: smooth convex functionf , x1 " P start vertex,

LPsepP weak linear separation oracle, accuracyK > 1

Output: xt points inP
1: ! 0 $ maxx ! P ! f (x1)(x1 # x)/ 2 { Initial bound}
2: for t = 1 to T # 1 do
3: vt $ LPsepP (! f (xt ), xt , ! t # 1, K )

4: if vt = false then
5: xt +1 $ xt

6: ! t $ ! t�1

2 { Update! }
7: else
8: ! t $ argmin0& ! & 1 f ((1 # ! )xt + !v t )

9: xt +1 $ (1 # ! t )xt + ! t vt { Update iterate}
10: ! t $ ! t # 1

11: end if
12: end for

will show now that Algorithm4 converges in the worst-case
at a rate identical to Algorithm2 (up to a small constant
factor).

Theorem 4.1. Let f be a smooth convex function with cur-
vatureC. Algorithm4 converges at a rate proportional to
1/t . In particular to achieve a boundf (xt ) # f (x"

) & ' ,
given an initial upper boundf (x1) # f (x"

) & 2! 0, the
number of required steps is upper bounded by

t & +log ! 0/' , + 1 + 4K +log ! 0/KC , +

16K 2C
'

.

Proof. The main idea of the proof is that while negative
answers to oracle calls halve the dual upper bound2! t ,
positive oracle calls signiÞcantly decrease the function value
of the current point.

We analyze iterationt of the algorithm. If Oracle1 in Line 3
returns a negative answer (i.e.,false, case (2)), then this
guarantees! f (xt )(xt # x) & ! t # 1 for all x " P, in
particular, using convexity,f (xt +1 ) # f (x"

) = f (xt ) #
f (x"

) & ! f (xt )(xt # x"
) & ! t # 1 = 2! t .

If Oracle1 returns a positive answer (case (1)), then we have
f (xt ) # f (xt +1 ) % ! t ! t # 1/K # (C/ 2)! 2

t by smoothness
of f . By minimality of ! t , thereforef (xt ) # f (xt +1 ) %
min0& ! & 1(! ! t # 1/K # (C/ 2)! 2

), which is! 2
t # 1/ (2CK 2

)

if ! t # 1 < KC , and! t # 1/K # C/ 2 % C
2 if ! t # 1 % KC .

Now we bound the numbert ' of consecutive positive oracle
calls immediately following an iterationt with a negative
oracle call. Note that the same argument bounds the number
of initial consecutive positive oracle calls with the choice
t = 0, as we only usef (xt +1 ) # f (x"

) & 2! t below.



Lazifying Conditional Gradient Algorithms

Note that! t = ! t +1 = á á á= ! t + t 0 . Therefore

2! t % f (xt +1 ) # f (x"
) %

t + t 0+

$= t +1

(f (x$) # f (x$+1 ))

%

,
-

.

t ' ! 2
t

2CK 2 if ! t # 1 < KC

t'
$

! t�1

K # C
2

%
if ! t # 1 % KC

,

which gives in the case! t < KC thatt ' & 4CK 2/ ! t , and
in the case! t % KC that

t ' &
2! t

! t
K # C

2

=

4K ! t

2! t # KC
&

4K ! t

2! t # ! t
= 4K.

Thus iterationt is followed by at most4K consecutive
positive oracle calls as long as! t % KC , and4CK 2/ ! t <
2

%+1 á4K ones for2# %# 1KC < ! t & 2

# %KC with " % 0.

Adding up the number of oracle calls gives the desired rate:
in addition to the positive oracle calls we also have at most
+log(! 0/' ), + 1 negative oracle calls, wherelog(á) is the
binary logarithm and' is the (additive) accuracy. Thus after
a total of

+log ! 0/' , +1+4K +log ! 0/KC , +

( log KC/& )+

%=0

2

%+1 á4K

& +log ! 0/' , + 1 + 4K +log ! 0/KC , +

16K 2C
'

iterations (or equivalently oracle calls) we havef (xt ) #
f (x"

) & ' .

Remark4.2. Observe that Algorithm4 might converge
much faster due to the aggressive halving of the rate. In
fact, Algorithm4 convergences at a rate that is at most a
factor4K 2 slower than the rate that the vanilla (non-lazy)
Frank-Wolfe algorithm would realize for the same problem.
In actual wall-clock time Algorithm4 is much faster though
due to the use of the weaker oracle; see Figure2 and4
for a comparison and SectionE.1.2for more experimental
results.

Negative oracle calls tend to be signiÞcantly more expen-
sive time-wise than positive oracle calls due to proving dual
bounds. The following corollary is an immediate conse-
quence of the argumentation from above:

Corollary 4.3. Algorithm4 makes at most+log ! 0/' , + 1

negative oracle calls.

If line search is too expensive we can choose! t =

min(1, ! t /KC ) in Algorithm 4. In this case an estimate of
the curvatureC is required, though no explicit knowledge
of the sequence! t is needed as compared to the textbook
variant in Section3.1.

Figure 1. Performance gain due to caching and early termination
for stochastic optimization over a maximum cut problem with
linear losses. The red line is the OCG baseline, the green one is
the lazy variant using only early termination, and the blue one
uses caching and early termination. Left: loss vs. wall-clock time.
Right: loss vs. total time spent in oracle calls. Time limit was
7200seconds. Caching allows for a signiÞcant improvement in
loss reduction in wall-clock time. The effect is even more obvious
in oracle time as caching cuts out a large number of oracle calls.

5. Experiments

As mentioned before, lazy algorithms have two improve-
ments: caching and early termination. Here we depict the
effect of caching in Figure1, comparing OCG (no caching,
no early termination), LOCG (caching and early termina-
tion) and LOCG (only early termination) (see Algorithm7).
We did not include a caching-only OCG variant, because
caching without early termination does not make much
sense: in each iteration a new linear optimization problem
has to be solved; previous solutions can hardly be reused as
they are unlikely to be optimal for the new linear optimiza-
tion problem.

5.1. Effect ofK

If the parameterK of the oracle can be chosen, which
depends on the actual oracle implementation, then we can
increaseK to bias the algorithm towards performing more
positive calls. At the same time the steps get shorter. As
such there is a natural trade-off between the cost of many
positive calls vs. a negative call. We depict the impact of
the parameter choice forK in Figure6.



Lazifying Conditional Gradient Algorithms

0 150 300 450 600
Wall clock time (s)

106
107
108
109

1010
1011
1012
1013
1014
1015

D
ua

lb
ou

nd

LCG
CG

0 100 200 300 400
LP calls

106

107

108

109

1010

1011

1012

1013

1014

1015

D
ua

lb
ou

nd

LCG
CG

Figure 2. Performance on an instance of the video colocalization
problem. We solve quadratic minimization over a ßow polytope
and report the achieved dual bound (or Wolfe-gap) over wall-clock
time in seconds in logscale on the left and over the number of actual
LP calls on the right. We used the parameter-free variant of the
Lazy CG algorithm, which performs in both measures signiÞcantly
better than the non-lazy counterpart. The performance difference
is more prominent in the number of LP calls.

Figure 3. Performance on a large instance of the video colocal-
ization problem using PCG and its lazy variant. We observe that
lazy PCG is signiÞcantly better both in terms of function value and
dual bound. Recall that the function value is normalized between
[0, 1].
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Figure 4. Performance on a matrix completion instance. More
information about this problem can be found in the supplemental
material (SectionE). The performance is reported as the objective
function value over wall-clock time in seconds on the left and over
LP calls on the right. In both measures after an initial phase the
function value using LCG is much lower than with the non-lazy
algorithm.

Figure 5. Performance of the two laziÞed variants LOCG (left
column) and LPCG (right column). The feasible regions are a
cut polytope on the left and the MIPLIB instanceair04 on the
right. The objective functions are in both cases quadratic, on the
left randomly chosen in every step. We show the performance
over wall clock time in seconds (Þrst row) and over iterations
(second row). The last row shows the number of call to the linear
optimization oracle. The laziÞed versions perform signiÞcantly
better in wall clock time compared to the non-lazy counterparts.
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Figure 6. Impact of the oracle approximation parameterK de-
picted for the Lazy CG algorithm. We can see that increasing
K leads to a deterioration of progress in iterations but improves
performance in wall-clock time. The behavior is similar for other
algorithms.
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