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Abstract Algorithm 1 Frank-Wolfe Algorithm Frank & Wolfe,
1956

Input: smooth convex function with curvatureC, x; "

P start vertex|_Pp linear minimization oracle

Output: x; points inP

1. fort=1toT# 1do

2: vi $ LPp (| f(Xt))

3 Xeer $ (@# V)X + v with !y =
4: end for

Conditional gradient algorithms (also often called
Frank-Wolfe algorithms) are popular due to their
simplicity of only requiring a linear optimization
oracle and more recently they also gained signif-
icant traction for online learning. While simple
in principle, in many cases the actual implemen-
tation of the linear optimization oracle is costly.
We show a general method lewify various con-
ditional gradient algorithms, which in actual com-

putatlons_leads to several orders (_Jf ma@,l”'t“de of & Wolfe, 1956 (also known as conditional gradient de-
speedup in wall-clock time. This is achieved by gcant 1 evitin & Polyak, 1966; see alsoJaggi 2013 for
using a faster separation oracle instead of alinear 5, overview) and its online versiokiézan & Kale 2012
optimization oracle, relying only ofew linear due to their simplicity. We recall the basic Frank-Wolfe
optimization oracle calls. algorithm in Algorithm1. These methods eschew the pro-
jection step and rather use a linear optimization oracle to
. stay within the feasible region. While convergence rates
1. Introduction and regret bounds are often suboptimal, in many cases the
mgain due to only having to solvesinglelinear optimization
Q_roblem over the feasible region in every iteration still leads

_2_
t+2

Convex optimization is an important technique both fro
a theoretical and an applications perspective. Gradient d&-". ibcant tational advant
scent based methods are widely used due to their simplicit signibcant computational advantages (see d-gz4n

and easy applicability to many real-world problems. We are Kale, 20_12 Sectign 5))- This led to Cof‘d“io”?" grad_i-
ents algorithms being used for e.g., online optimization

interested in solving constraint convex optimization prob- : :
lems of the form and more generally machine learning and th_e prop_erty that
minf (x) 1) these algorlthm§ naturally gene_rate sparse dlstrlbqtlons over
'P ' the extreme points of the feasible region (sometimes also
wheref is a smooth convex function amis a polytope, refereed to as atoms) is often hglpful. Further increasing
with access td being limited to brst-order information, € relevance of these methods, it was shown recently that
i.e., we can obtaih f (v) andf (v) for a givenv " P and conditional gradient methods can also achieve Imegr con-
access t® via a linear minimization oracle which returns Vergence (see e.gGarber & Hazan2013 Lacoste-Julien
X = argmin,, p cx for a given linear objective. & Jaggi 2015 Garber & MeskuZQl@) as well as that the .
number of total gradient evaluations can be reduced while
When solving Problen(1) using gradient descent ap- maintaining the optimal number of oracle calls as shown in
proaches in order to maintain feasibility, typically a projec—(Lan & Zhou, 2014).

tion step is required. This projection back into the feasible

regionP is potentially computationally expensive, espe-Oracle 1 Weak Separation OraclePsepy (¢, X, ! ,K)
cially for complex feasible regions in very large dimensions.lnput c " R" linear objectivex " P point, K % 1
As such projection-free methods gained a lot of attention accuracy! > 0 objective value;

recently, in particular the Frank-Wolfe algorithrRrank Output: Either(1)y " P vertex withc(x # y) > ! /K , or

LISyE, Georgia Institute of Technology, Atlanta, GA. Corre-  (2) false c(x # z) & | forallz" P.
spondence to: Daniel Zink daniel.zink@gatech.egu

Proceedings of th@4" International Conference on Machine Unfortunately, for complex feasible regions even solving the

Learning Sydney, Australia, PMLR 70, 2017. Copyright 2017 by linear optimization problem might be time-consuming and
the author(s). as such the cost of solving the LP might be non-negligible.



Lazifying Conditional Gradient Algorithms

This could be the case, e.g., when linear optimization oveOracle 2 LPsep (¢, X,! ,K) via LP oracle

the feasible region is a hard problem or when solving largemput: ¢ * R" linear objectivex " P point, K % 1
scale optimization problems or learning problems. As such ~ accuracy! > 0 objective value;

it is natural to ask the following questions: Output: Either(1)y " P vertex withc(x# y) > ! /K , or

. . o (2)false c(x# z) & ! forallz" P.
() Does the linear optimization oracle have to be called ;. j y" P cached withc(x # y) > | /K existsthen

in every iteration? 2. return y {Cache call
(i) Does one need approximately optimal solutions for 3: €lse
convergence? 4: _computey $ argmax,, p c(x) {LP call}
_ _ . . 5. ifc(x#y)>1!/K then
(iii) Can one reuse information across iteration? 6: return y andadd y to cache
7. else
We will answer these questions in this work, showing that (i) 8: return false

the LP oracle is not required to be called in every iteration, . gng if
that (i) much weaker guarantees are sufpcient, and that (i) o. eng if
we can reuse information. To signibcantly reduce the cost
of oracle callswvhile maintaining identical convergence rates
up to small constant factors, we replace the linear optimiza-
tion oracle by aweak) separation oraclésee Oraclel)  results demonstrating effectiveness of our approach via a
which approximately solves a certaeparation problem ~ SigniPcant reduction in wall-clock running time compared
within a multiplicative factor and returns improving vertices to their linear optimization counterparts.
(or atoms). We stress that the weak separation oracle is
signibcantly weaker than approximate minimization, whichRelated Work
has been already considered daggj 2013. In fact, if the
oracle returns an improving vertex then this vertiees not
imply any guargn_teg n Ferms of squ'uon q“"?"'ty with rgspectonly able to review work most closely related to ours. The
to the linear minimization problem. It is this relaxation of . L . .
. . . Frank-Wolfe algorithm was originally introduced iRrank

the dual guarantees that will provide a signibcant speedug 2 :

. ) ) Wolfe, 1956 (also known as conditional gradient descent
as we will see later. At the same time, in case that the oracl

returnsfalse we directly obtain a dual bound via convexity. evitin & Eolyak, 1969 a_nd _has been intensely studied in
particular in terms of achieving stronger convergence guar-

A (weak) separation oracle can be realized by a single cakntees as well as afbne-invariant versions. We demonstrate
to a linear optimization oracle, however with two important our approach for the vanilla Frank-Wolfe algorithFrénk
differences. It allows focachingandearly termination & Wolfe, 1956 (see also Jaggj 2013) as an introduc-
Previous solutions are cached, and brst it is veribed whetheory example. We then consider more complicated variants
any of the cached solutions satisfy the oracleOs separatitivat require non-trivial changes to the respective conver-
condition. The underlying linear optimization oracle has togence proofs to demonstrate the versatility of our approach.
be called, only when none of the cached solutions satisfifhis includes the linearly convergent variant via local lin-
the condition, and the linear optimization can be stopped aear optimization Garber & Hazan2013 as well as the
soon as a satisfactory solution with respect to the separatigpairwise conditional gradient variant dbérber & Meshi
condition is found. See Algorithr for pseudo-code; early 2016, which is especially efbcient in terms of implementa-
termination is implicit in line 4. tion. However, our technique also applies to Aveay-Step

We call this techniaquéazy optimizatiorand we will demon- Frank-Wolfealgorithm, theFully-Corrective Frank-Wolfe
d yop algorithm, as well as thBlock-Coordinate Frank-Wolfal-

strate §|gnlbcant.speeqlup.s n w_all-clpck performance (Segeorithm. Recently, infreund & Grigas2016 guarantees
e.g., Figurel), while maintaining identical theoretical con- for arbitrary step-size rules were provided and an analo-
vergence rates.

gous analysis can be also performed for our approach. On
To exemplify our approach we provide conditional gradi-the other hand, the analysis of the inexact variants, e.g.,
ent algorithms employing the weak separation oracle fowith approximate linear minimization does not apply to our
the standard Frank-Wolfe algorithm as well as the variantgase as our oracle is signibcantly weaker than approximate
in (Hazan & Kale 2012 Garber & Meshi2016 Garber  minimization as pointed out earlier. For more information,
& Hazan 2013, which have been chosen due to requir-we refer the interested reader to the excellent overview in
ing modibed convergence arguments that go beyond thogéaggj 2013 for Frank-Wolfe methods in general as well as
required for the vanilla Frank-Wolfe algorithm. Comple- (Lacoste-Julien & JaggR015 for an overview with respect
menting the theoretical analysis we report computationato global linear convergence.

There has been extensive work on Frank-Wolfe algorithms
and conditional gradient descent algorithms and we will be
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It was also recently shown irHgzan & Kale 2012 that  Garber & Meshi2016.

the Frank-Wolfe algorithm can be adjusted to the online

learning setting and here we provide a lazy version of this

algorithm. Combinatorial convex online optimization has (i) Weak separation through augmentatiakie show in
been investigated in a long line of work (see e.galai  the case of 0/1 polytopes how to implement a weak separa-
& Vempala 2005 Audibert et al, 2013 Neu & Barik, tion oracle with at mosk calls to an augmentation oracle
2013). Itis important to note that our regret bounds holdthat on inputt " R" andx " P provides either an improv-
in the structured online learning setting, i.e., our bounddng solutionX " P with cX < cx or ensures optimality,
depend on th&; -diameter or sparsity of the polytope, rather wherek denotes thé;-diameter ofP . This is useful when
than its ambient dimension for arbitrary convex functionsthe solution space is sparse.

(see e.g.,Cohen & Hazan2015 Gupta et al.201§). We

refer the interested reader tdgzan 2016 for an extensive ) )
overview. (iv) Computational experimentt/e demonstrate compu-

_ N tational superiority by extensive comparisons of the weak
A key component of the new oracle is the ability to cacheseparation based versions with their original versions. In

and reuse old solutions, which accounts for the majorityy|| cases we report signibcant speedups in wall-clock time
of the observed speed up. The idea of caching of oraclgften of several orders of magnitude.

calls was already explored in various other contexts such
as cutting plane methods (see e.gagchims et al2009)

as well as thdlock-Coordinate Frank-Wolfalgorithm in |t js important to note that in all cases, we inherit the same
(Shah et a].2015 Osokin et al. 2016. Our lazibcation  requirements, assumptions, and properties of the baseline
approach (which uses caching) is different however in theyigorithm that we lazify. This includes applicable func-
sense that our weak separation oracle does not resemble g8n classes, norm requirements, as well as smoothness and
approximate linear optimization oracle with a multiplicative (strong) convexity requirements. We also maintain identical

approximation guarantee; se@gokin et al. 2016 Proof of  convergence rates up to (small!) constant factors.
Theorem 3. Appendix F) and.écoste-Julien et 312013

for comparison to our setup. In fact, our weaker oracle doegytjine
not imply any approximation guarantee and differs from
approximate minimization as done e.g., ilaggj 2013  We brieRy recall notation and notions in Sectiand con-

substantially. sider conditional gradients algorithms in Sect®rin Sec-
tion 4 we explain how parameter-free variants of the pro-
Contribution posed algorithms can be obtained. Finally, in SecBon

we provide some experimental results. In the supplemental
The main technical contribution of this paper is a new apmaterial we consider two more variants of conditional gra-
proach, whereby instead of Pnding the optimal solutiongients algorithms (SectiorsandC), we show that we can
the oracle is used only to Pndyaod enough solutioar a  realize a weak separation oracle with an even weaker oracle
certibcatethat such a solution does not exist, both ensurin the case of combinatorial problem (Sectbhand we

ing the desired convergence rate of the conditional gradienrovide additional computational results (Sectifn
algorithms.

Our contribution can be summarized as follows: 2. Preliminaries

, o , Let'a’ be an arbitrary norm oR", and leta’  denote
i) Lazifying approach.We provide a general method to '
) fying app P g the dual norm ofd'. We will specify the applicable

lazify conditional gradient algorithms. For this we replace i the | . A f ‘g is L -Lioschi
the linear optimization oracle with a weak separation oraclelorm n the later sections. unctian is L -Lipschitz

which allows us to reuse feasible solutions from previouéf I () # (),()l & L'y # X 'for allx,y " domf. A
oracle calls, so that in many cases the oracle call can b pnvex functiorf is smoothwith curvatureat mgStC if
skipped. In fact, once a simple representation of the unde (ty +"(1# DX) & 1) +11 1 (x)(y# X) ¥ Ct“/ 2 for
lying feasible region is learned no further oracle calls aréll Xy * domf and0 & 1 & 1. Afunctionf is S-strongly

. S 2
needed. We also demonstrate how parameter-free variant nvexulll‘ FO)#T0) % LT )y # x) *3 Y# X for .
can be obtained. all x,y " domf . Unless stated otherwise Lipschitz conti-

nuity and strong convexity will be measured in the norm
(i) Lazibed conditional gradient algorithmdaMe exem- 'a' . Moreover, leB;, (x) :={y|'x# y' & r} be the ball
plify our approach by providing lazy versions of the vanilla aroundx with radiusr with respect td . . In the following,
Frank-Wolfe algorithm as well as of the conditional gradientP will denote the feasible region, a polytope and the vertices
methods inHazan & Kale 2012 Garber & Hazan2013 of P will be denoted by, ...,y .
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3. Lazy Conditional Gradients

guish two cases depending on the return value of the weak
separation oracle in Ling.

We start with the most basic Frank-Wolfe algorithm as a . _ _ _
simple example how a conditional gradient algorithm canwhen the oracle returns an improving solutignwhich we

be lazibed by means ofveeak separation oracleNe will

call the positive case, theénf (x;)(Xi# v¢) %! (/K , which

also use the basic variant to discuss various properties arid used in the second inequality below. The prst inequality
implications. We then show how the more complex Frankfollows by smoothness df, and the third inequality by the

Wolfe algorithms in Garber & Hazan2013 and Garber &
Meshi 2016 can be lazibed. Throughout this sectlah
denotes thé,-norm.

3.1. Lazy Conditional Gradients: a basic example

We start with lazifying the original Frank-Wolfe algorithm

(arguably the simplest Conditional Gradients algorithm),

adapting the baseline argument frodaggj 2013 Theo-

induction hypothesis:

f (X ) # T (X))

. 12
&f(Xt)#f(X)"‘!t!'|:(Xt)(Vt#Xt)'|'CTt
. ! C!2
ot t
&) # T )# L+ =
le , C1E_

'y
&l # ly—+——=1y,

rem 1). While the vanilla version has suboptimal conver- K 2

gence rat@(1/T ), its simplicity makes it an illustrative

example of the main idea of lazibcation. The lazy algoWhen the oracle returns no improving solution, then in par-

rithm (Algorithm 2) maintains an upper bourd on the

ticular! f (x¢)(x¢ # x") & ! ¢, hence by Lin& f (x;+1 ) #

convergence rate, guiding its eagerness for progress whér(x ) =f (x¢) # f (x') & ! f (X)Xt # x ) ="!4.

searching for an improving vertex. If the oracle provides
an improving vertex;; we refer to this as positive calland
we call it anegative calbtherwise.

Algorithm 2 Lazy Conditional Gradients (LCG)
Input: smooth convex function with curvatureC, x; "
P start vertex] Psepp weak linear separation oracle,
accuracyK > 1, initial upper bound g
Output: x; points inP
1. fort=1t0T# 1do

- Lot C;?

2: '+ $ T
vi $ LPsepp (! f (X¢), Xt,! 1,K)
if vy = false then

Xee1 $ X¢

3
4
5:
6: else
7
8
9

Xie1 $ (L# 1OX + 1wy
: endif
: end for

The step sizé, is chosen to (approximately) minimizg
in Line 2; roughly! {4 1/KC .
Theorem 3.1. Assumd is convex and smooth with cur-

vatureC. Then Algorithm2 with !; = % has
convergence rate

2max{C,! o}(K? +1)
t+K2+2 ’

wherex” is a minimum point of overP.

fx)#f(X')&

Proof. We prove by induction that(x¢) # f (") & ! #1.
The claim is clear fot = 1 by the choice of ¢. Assuming
the claim is true fort, we prove it fort + 1. We distin-

Finally, using the specibc values!qfwe prove the upper
bound
2max{C,! o} (K2 +1)

t+K2+2
by induction ort. The claim is obvious fot = 1. The in-
duction step is an easy computation relying on the depnition
of ! { on Line2:

Vi1 &

c! 2 2max{C,! o} (K 2+1) max{C,! o}!?
I e S t+K2+2 + 2

Te T
1+ ¢ 1+ ¢

= 2max{C,! 0}(K2+1)!1

o
+ b (t+K2+2)

2max{C,! o} (K2 +1)
t+K2+3

Here the second equation follows via plugging-in the choice
for 'y for one of the!; in the quadratic term and last in-
equality follows fromt % 1 and the concrete choice of
li. O

Remark3.2 (Discussion of the weak separation orack)
few remarks are in order:

(i) Interpretation of weak separation oracleThe weak
separation oracle provides n@xtreme pointgor vertices)

v; that ensure necessary progress to converge at the proposed
rate! ; or it certibes that we are alreadly-close to the
optimal solution. It is important to note that the two cases in
Oraclel are not mutually exclusive: the oracle might return

y " P withc(x# y) > ! /K (positive call: returning a
vertexy with improvement /K ), while still c(x # z) & !
forallz" P (negative call: certifying that there is no vertex
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z that can improve by ). This a desirable property as it & Meshi, 2016, using separation instead of linear optimiza-
makes the separation problem much easier and the algorithtion. We make identical assumptions: the feasible region
works with either answer in the ambiguous case. is a0/ 1 polytope given in the fornP = {x " R" | 0 &

x & 1,Ax = b}, wherel denotes the all-one vector of
(i) Choice ofK. TheK parameter can be used to bias compatible dimension; in particular all verticesRhave
the oracle towards positive calls, i.e., returning improvingonly 0/ 1 entries.
directions. We would also like to point out that the algorithm
above as well as those below will also work #r = 1,  Algorithm 3 Lazy Pairwise Conditional Gradients (LPCG)

however we show in supplemental material (Sectin  |nput: polytopeP, smooth and-strongly convex function
that we can use an even weaker oracle to realize a weak  f wjth curvatureC, accuracK > 1, # non-increasing

separation oracle K > 1 and for consistency, we require step-sizes
K> 1throughout. Inthe cadeé = 1thetwo casesinthe oytput: x, points
oracle are mutually exclusive. 1: X, " P arbitrary and ¢ %f (x1) # f (x")

ff ¢ hi q | inatiokvh i 2:fort=1,...,Tdo
(iii) Effect of caching and early terminatioWhen realiz- 3. debnd f(x;)" RM as follows:

ing the weak separation oracle, the actual linear optimiza-

tion oracle has to be only called if none of the previously 5 # Lf () if (<) > O
seen vertices (or atoms) satispes the separation condition. P f(xp)i = .
Moreover, the weak separation oracle has to only produce # if (x)i =0
a satisfactory solution and not an approximately optimal L
one. These two properties are responsible for the observed: !¢ $ $% o

t 0

speedup (see Figutg. Moreover, the convex combinations | f e
of vertices ofP that represent the solutiowrg are extremely 5 a$ !f(x)#! (Xt% %
sparse as we reuse (cached) vertices whenever possible. 6. (v ,v/)$ LPseppgp Ci, (X, Xt), '—ft K

C ot R —
(iv) Dual certibcatesBy not computing an approximately if (v ,vi ) = false then
optimal solution, we give up dual optimality certibcates. For 8: IXt+l $ x
a given pointx " P, letg(x) == maxyi p ! f(X)(x # V) else P i
denote theWolfe gap We havef (x) # f (x') & g(x) ¥ R $ max{2""|$ Z‘@O' 277 & #}
wherex” = argmin,, p f (x) by convexity. In those 11: Xeer 3 Xe H (Ve # V()
roundst where we obtain an improving vertex we have 12: end if
no information aboug(x;). However, if the oracle re- 13: end for

turnsfalsein roundt, then we obtain the dual certibcate
fx)# f(X')&gx) & ! ¢. Observe that Algorithn3 callsLPsep on the cartesian prod-

uct of P with itself. Choosing the objective function as
(v) Rate of convergenceA close inspection of the algo- in Line 5 allows us to simultaneously bPnd an improving
rithm utilizing the weak separation oracle suggests that thelirection and an away-step direction.

algorithm converges only at the worst-case convergence rateheorem 3.3. Letx” be a minimum point df in P, and! o

that we propose with the; sequence. This however is only an ypper bound of (x1) # f (x"). Furthermore, leM; =
an artefact of the simplibed presentation for the proof o?‘ — S M., = KC/2 % = min{ M 1/’ T5}
2 = ) — - 0f>

&

the worst-case rate. We can easily adjust the algorithm to 8card(x*)’ 2M 5’

implicitly perform a search over the rate combined with . = o4 T .7 and" , = 2« xs*)! =1 then Algo-
line search fot . This leads to a parameter-free variant of
Algorithm 2as given in Sectiod and comes at the expense
of a (small') constant factor deterioration of the worst-case . ( 1+B )t
rate guarantee; see also Supplementary Matac{dl) for ) # ()& &l 1+28 '
an in-depth discussion.

rithm 3 has convergence rate

whereB = %a%t.
We discuss potential implementation improvements in Sup-

plementary Materiah. We recall a technical lemma for the proof.
Lemma 3.4 ((Garber & Meshj 2016 Lemma 2)) Let
3.2. Lazy Pairwise Conditional Gradients X,y " P. There exists verticeg of B, such thatx =

In this section we provide a lazy variant (Algorithdh of = &Vi andy = izl & # Li)vi+ oyl zwith

the Pairwise Conditional Gradient algorithm fro@grber !; " [0,&],z" P and :(:1 Ii & card(y)' x# y'.
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Proof of Theoren3.3. The feasibility of the iterates; is

Algorithm 4 Parameter-free Lazy Conditional Gradients

ensured by Lind 0 and the monotonicity of the sequence (LCG)

{#}t%1 With the same argument as iG@rber & Meshj
2016 Lemma 1 and Observation 2).

We Prst show by induction thét(x;+1 ) # f (") & ! . For

t = 0we havel o %f (x1)# f (x"). Now assume the state-

ment for someé % 0. In the negative case (Lir®), we use
the guarantee of Oracleto getc; ((X¢, X¢)# (z1,22)) & '—i

forallz;,z, " P, which is equivalent to (as (¢, Xt) = 0)

Uf (x))z2 #! f(x1)z1 & ++ and therefore

L () (2 # 21) &

for all Z,z; " P with supp(Z2) *, supp(x¢). We fur-
ther use Lemma.4to write x, = ', &v; andx’ =
& # v+ Lizwith ! "g[0,&], 2" P and

Input: smooth convex functiofi, x; P start vertex,
LPsepp weak linear separation oracle, accurécy 1
Output: x; points inP
1:10% maxg p! f (X)X # x)/ 2 {Initial bound
2. fort=1t0oT# 1do

3 v $ LPsepp (! f(X¢), Xty ! 121, K)

4: if vy = false then

5: Xt+1 $ Xt

6: '+ $ "T” {Update! }
7. else

8: 1+$ argmingg, g1 F ((L# )X +1vy)

9: Xte1 & (@A # Toxe + 1w {Update iteratp
10: ! t $ ! t# 1

11: endif

12: end for

& card() x # X & 2N e o
in the second inequality. Ther(X«1 ) # f (") = f (x;) #
fX)&! Fox)e#X )= K Li(vi#2)alf(x)&
! ¢, where we used Equatidh2for the last inequality.

For the positive case (Ling and11) we get, using brst

smoothness df, then#/2 < & & # and! f (x)(v{ #
Vi) &# ! /(" tK), and Pnally the dePnition of:

fxa )# X)) =T +FEN #VE)D# (X))

w
&1+ RO # V) + 0
#, !y  #C
! i3 + 0=
&l y1# 23..tK > t

Plugging in the values af and" ; to the depPnition of ;
gives the desired bound.

| _2!t#1+#t2C_| l+0/(77M2/K

B R R R

&l 1+B ( 1+B)t -
TWITYR T 142

4. Parameter-free Conditional Gradients via
Weak Separation

t, using the induction hypothesis and the strong convexity

will show now that Algorithm4 converges in the worst-case
at a rate identical to Algorithr2 (up to a small constant
factor).

Theorem 4.1. Letf be a smooth convex function with cur-
vatureC. Algorithm4 converges at a rate proportional to
1/t . In particular to achieve a bounti(x ) # f (x') & ',
given an initial upper bound (x1) # f (x") & 2! o, the
number of required steps is upper bounded by

16K 2C

t & +log! o/ , +1+ 4K Hog! o/KC , +

Proof. The main idea of the proof is that while negative
answers to oracle calls halve the dual upper bokind
positive oracle calls signibcantly decrease the function value
of the current point.

We analyze iteratioh of the algorithm. If Oracld in Line 3
returns a negative answer (i.faJse, case (2)), then this
guarantees$ f (X )(X¢ # X) & !z, forallx " P, in
particular, using convexityf, (x¢+1 ) # f (x') = f (x¢) #
f(X") &! f (Xt)(xt # X") &! t#H1 = 2! t-

If Oraclel returns a positive answer (case (1)), then we have

We now provide a parameter-free variant of the Lazy Frankf (X¢) # f (Xi+1) %!¢! 4 1/K # (C/2)! 2 by smoothness
Wolfe Algorithm. We stress that the worst-case convergenc®f f . By minimality of !, thereforef (x¢) # f (Xt+1) %
rate is identical up to a small constant factor. Here we bnd @inog: & 1(! ! #1/K # (C/2)! ?), whichis! % 1/ (2CK ?)
tight initial bound! ¢ with a single extra LP call, whichcan if ! 41 <KC ,and! (41/K # C/2% % if | 141 %KC.

be also done approximately as long'asis a valid upper Now we bound the numbér of consecutive positive oracle

bound. Alternatively, one can perform binary search via the . : : : : : .
. . ! calls immediately following an iterationwith a negative
weak separation oracle as described earlier.

oracle call. Note that the same argument bounds the number
Note that the accuracy parametérin Algorithm 4 is a  of initial consecutive positive oracle calls with the choice
parameter of the oracle and not of the algorithm itself. Wet = 0, as we only usé (x¢+1 ) # f (X" ) & 2!  below.
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Note thatl  =! 41 = 44& ! {+1. Therefore

et
20 %F (X ) #F(X)%  (f (Xs) # f (Xse1))
$=t+1

if 1
% |f.t#1<KC
=L S if g %KC

which gives in the cask; < KC thatt' & 4CK?/! {, and
in the case { % KC that

: 2! 4K ! 4K 1
t & = & = 4K.
L# S 20 (#KC T2 # )y

Thus iterationt is followed by at mos#lK consecutive
positive oracle calls as long &s % KC , and4CK ?/! { <
2%1 44K ones for2* ¥ 1IKC < 1 ; & 2# K C with " %0.

1.0

®—8 LOCG with cache ®—8 LOCG with cache
0.8 @—e LOCG without cache |{ 0.8 @ LOCG without cache [
¥—v 0CG ¥—v 0CG

, 0.6 d ., 0.6 d

2 S| 8 S

= 0.4} 1 = 0.4} 1
0.2 L\t& 1 0.2} 1

0.0

. 0.0
0 2000 4000 6000 8000 0 2000 4000 6000 8000
Wall-clock time Oracle time

Figure 1. Performance gain due to caching and early termination
for stochastic optimization over a maximum cut problem with
linear losses. The red line is the OCG baseline, the green one is
the lazy variant using only early termination, and the blue one
uses caching and early termination. Left: loss vs. wall-clock time.
Right: loss vs. total time spent in oracle calls. Time limit was
7200seconds. Caching allows for a signibcant improvement in
loss reduction in wall-clock time. The effect is even more obvious
in oracle time as caching cuts out a large number of oracle calls.

Adding up the number of oracle calls gives the desired rate:
in addition to the positive oracle calls we also have at most; Experiments

Hog(! o/' ), + 1 negative oracle calls, wheteg(d is the

binary logarithm and is the (additive) accuracy. Thus after As mentioned before, lazy algorithms have two improve-

a total of

(logKC/& )
Hog! o/ ,+1+4K Hog! o/KC , + 2% &K
%0
16K 2C

& +log! of , +1+4K Hog! o/KC , +

iterations (or equivalently oracle calls) we havéx;) #
f(x')&". O

Remark4.2. Observe that Algorithn¥ might converge
much faster due to the aggressive halving of the rate.

ments: caching and early termination. Here we depict the
effect of caching in Figur&, comparing OCG (no caching,

no early termination), LOCG (caching and early termina-
tion) and LOCG (only early termination) (see Algorittin

We did not include a caching-only OCG variant, because
caching without early termination does not make much
sense: in each iteration a new linear optimization problem
has to be solved; previous solutions can hardly be reused as
they are unlikely to be optimal for the new linear optimiza-
tion problem.

Ir$'1' Effect ofK

fact, Algorithm4 convergences at a rate that is at most g the parameteK of the oracle can be chosen, which
factor4k 2 slower than the rate that the vanilla (non-lazy) depends on the actual oracle implementation, then we can
Frank-Wolfe algorlthm would realize for the same prOb'em.increasd( to bias the a|gorithm towards performing more

In actual wall-clock time Algorithn# is much faster though
due to the use of the weaker oracle; see Figuend4
for a comparison and Sectid&1.2for more experimental
results.

positive calls. At the same time the steps get shorter. As
such there is a natural trade-off between the cost of many
positive calls vs. a negative call. We depict the impact of
the parameter choice fét in Figure6.

Negative oracle calls tend to be signibcantly more expen-
sive time-wise than positive oracle calls due to proving dual
bounds. The following corollary is an immediate conse-
guence of the argumentation from above:

Corollary 4.3. Algorithm4 makes at mostlog! o/' , +1
negative oracle calls.

If line search is too expensive we can chodse =
min(1,! {/KC ) in Algorithm 4. In this case an estimate of
the curvatureC is required, though no explicit knowledge
of the sequenck; is needed as compared to the textbook
variant in Sectior8.1
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Figure 5. Performance of the two lazibed variants LOCG (left
column) and LPCG (right column). The feasible regions are a
Figure 3. Performance on a large instance of the video colocalcut polytope on the left and the MIPLIB instane&r04 on the
ization problem using PCG and its lazy variant. We observe thatight. The objective functions are in both cases quadratic, on the
lazy PCG is signibcantly better both in terms of function value andjeft randomly chosen in every step. We show the performance
dual bound. Recall that the function value is normalized betweermver wall clock time in seconds (brst row) and over iterations
[0, 1]. (second row). The last row shows the number of call to the linear
optimization oracle. The lazibed versions perform signipcantly
better in wall clock time compared to the non-lazy counterparts.
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Figure 4. Performance on a matrix completion instance. More Wall clock time (s) Iterations

information about this problem can be found in the supplemental
material (Sectior). The performance is reported as the objective
function value over wall-clock time in seconds on the left and over
LP calls on the right. In both measures after an initial phase th
function value using LCG is much lower than with the non-lazy
algorithm.

Figure 6. Impact of the oracle approximation parameierde-
icted for the Lazy CG algorithm. We can see that increasing
leads to a deterioration of progress in iterations but improves
performance in wall-clock time. The behavior is similar for other
algorithms.
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