Appendix

In the appendices we present the proofs, and additional lemmas that are used in the proofs.

A. Lemma 1

Lemma 1 proves that if (5) is satisfied for some action $a \in A(I)$ on iteration T, then the value of action a and all its descendants on every iteration played so far can be set to the T-near counterfactual best response value. The same lemma holds if one replaces the T-near counterfactual best response values with exact counterfactual best response values. The proof for Lemma 1 draws from recent work on warm starting CFR using only an average strategy profile (Brown \& Sandholm, 2016).
Lemma 1. Assume T iterations of CFR with RM have been played in a two-player zero-sum game. If $T\left(\psi^{\bar{\sigma}_{-i}^{T}, T}(I, a)\right) \leq \sum_{t=1}^{T} v^{\sigma^{t}}(I)$ and one sets $v^{\sigma^{t}}(I, a)=$ $\psi^{\bar{\sigma}_{-i}^{T}, T}(I, a)$ for each $t \leq T$ and for each $I^{\prime} \in D(I, a)$ sets $v^{\sigma^{t}}\left(I^{\prime}, a^{\prime}\right)=\psi^{\bar{\sigma}_{-i}^{T}, T}\left(I^{\prime}, a^{\prime}\right)$ and $v^{\sigma^{t}}\left(I^{\prime}\right)=\psi^{\bar{\sigma}_{-i}^{T}, T}\left(I^{\prime}\right)$ then after T^{\prime} additional iterations of CFR with RM, the bound on exploitability of $\bar{\sigma}^{T+T^{\prime}}$ is no worse than having played $T+T^{\prime}$ iterations of CFR with $R M$ unaltered.

Proof. The proof builds upon Theorem 2 in (Brown \& Sandholm, 2016). Assume $T\left(\psi^{\bar{\sigma}_{-i}^{T}, T}(I, a)\right) \leq \sum_{t=1}^{T} v^{\sigma^{t}}(I)$. We wish to warm start to T iterations. For each $I^{\prime} \in D(I, a)$ set $v^{\sigma^{t}}\left(I^{\prime}, a^{\prime}\right)=\psi^{\bar{\sigma}_{-i}^{T}, T}\left(I^{\prime}, a^{\prime}\right)$ and $v^{\sigma^{t}}\left(I^{\prime}\right)=\psi^{\bar{\sigma}_{-i}^{T}, T}\left(I^{\prime}\right)$ and set $v^{\sigma^{t}}(I, a)=\psi^{\bar{\sigma}_{-i}^{T}, T}(I, a)$ for all $t \leq T$. For every other action, leave regret unchanged. For each $I^{\prime} \in D(I, a)$ we know by construction that $\Phi\left(R^{T}\left(I^{\prime}\right)\right)$ is within the CFR bound $y_{I^{\prime}}^{T}$ after changing regret. By assumption $T\left(\psi^{\bar{\sigma}_{-i}^{T}, T}(I, a)\right) \leq \sum_{t=1}^{T} v^{\sigma^{t}}(I)$, so $R^{T}(I, a) \leq 0$ and therefore $\Phi\left(R^{T}(I)\right)$ is unchanged. Finally, since the T iterations were played according to CFR with RM and regret is unchanged for every other information set $I^{\prime \prime}$, so the conditions for Theorem 2 in (Brown \& Sandholm, 2016) hold for every information set, and therefore we can warm start to T iterations of CFR with RM with no penalty to the convergence bound.

B. Proof of Theorem 1

Proof. From Lemma 1 we can immediately set regret for $a \in A(I)$ to $v^{\sigma^{t}}(I, a)=\psi^{\bar{\sigma}_{-i}^{T}, T}(I, a)$. By construction of $T^{\prime}, R^{t}(I, a)$ is guaranteed to be nonpositive for $T \leq t \leq$ $T+T^{\prime}$ and therefore $\sigma^{t}(I, a)=0$. Thus, $\bar{\sigma}_{i}^{T+T^{\prime}}\left(I^{\prime}\right)$ for $I^{\prime} \in D(I, a)$ is identical regardless of what is played in $D(I, a)$ during $T \leq t \leq T+T^{\prime}$.
$\begin{array}{lll}\text { Since }\left(T+T^{\prime}\right)\left(\psi^{\bar{\sigma}_{-i}^{T+T^{\prime}}, T+T^{\prime}}(I, a)\right) & \leq \\ T\left(\psi^{\bar{\sigma}_{-i}^{T}, T}(I, a)\right)+T^{\prime}(U(I, a)) \text { and } \sum_{t=1}^{T+T^{\prime}} v^{\sigma^{t}}(I) & \geq\end{array}$
$\sum_{t=1}^{T} v^{\sigma^{t}}(I)+T^{\prime}(L(I))$, so by the definition of T^{\prime}, $\left(T+T^{\prime}\right)\left(\psi^{\bar{\sigma}_{-i}^{T+T^{\prime}}, T+T^{\prime}}(I, a)\right) \leq \sum_{t=1}^{T+T^{\prime}} v^{\sigma^{t}}(I)$. So if regrets in $D(I, a)$ and $R^{T+T^{\prime}}(I, a)$ are set according to Lemma 1, then after $T^{\prime \prime}$ additional iterations of CFR with RM, the bound on exploitability of $\bar{\sigma}^{T+T^{\prime}+T^{\prime \prime}}$ is no worse than having played $T+T^{\prime}+T^{\prime \prime}$ iterations of CFR with RM from scratch.

C. Proof of Theorem 2

Proof. Consider an information set I and action $a \in A(I)$ where for every opponent Nash equilibrium strategy $\sigma_{-P(I)}^{*}$, $C B V^{\sigma_{-P(I)}^{*}}(I, a)<C B V^{\sigma_{-P(I)}^{*}}(I)$. Let $i=P(I)$. Let $\delta=\min _{\sigma_{-i} \in \Sigma^{*}}\left(C B V^{\sigma_{-i}}(I)-C B V^{\sigma_{-i}}(I, a)\right)$ where Σ^{*} is the set of Nash equilibria. Let $\sigma_{-i}^{\prime}=$ $\arg \max _{\sigma_{-i} \in \Sigma_{-i} \left\lvert\, C B V^{\sigma_{-i}}(I)-C B V^{\sigma_{-i}}(I, a) \leq \frac{3 \delta}{4}\right.} u_{-i}\left(\sigma_{-i}, B R\left(\sigma_{-i}\right)\right)$ Since σ_{-i}^{\prime} is not a Nash equilibrium strategy and CFR converges to a Nash equilibrium strategy for both players, so there exists a T_{δ} such that for all $T \geq T_{\delta}, C B V^{\bar{\sigma}_{-i}^{T}}(I)-C B V^{\bar{\sigma}_{-i}^{T}}(I, a)>\frac{3 \delta}{4}$. Let $T_{I, a}^{\prime}=\frac{4|\mathcal{I}|^{2} \Delta^{2}|A|}{\delta^{2}}$. For $T \geq T_{I, a}^{\prime}$ since $R_{i}^{T} \leq \sum_{I \in \mathcal{I}_{i}} R^{T}(I)$, so $C B V^{\bar{\sigma}_{-i}^{T}}(I)-\sum_{t=1}^{T} v^{\sigma^{t}}(I) \leq \frac{\delta}{2}$. Let $T_{I, a}=\max \left(T_{I, a}^{\prime}, T_{\delta}\right)$ and $\delta_{I, a}=\frac{\delta}{4}$. Then for $T \geq T_{I, a}, C B V^{\bar{\sigma}_{-i}^{T}}(I, a)-\frac{\sum_{t=1}^{T} v^{\sigma^{t}}(I)}{T} \leq-\delta_{I, a}$.

D. Proof of Corollary 1

Proof. Let $I \notin \mathcal{I}_{S}$. Then $I \in D\left(I^{\prime}, a^{\prime}\right)$ for some I^{\prime} and $a^{\prime} \in A\left(I^{\prime}\right)$ such that for every opponent Nash equilibrium strategy $\sigma_{-P\left(I^{\prime}\right)}^{*}, C B V^{\sigma_{-P\left(I^{\prime}\right)}^{*}}\left(I^{\prime}, a^{\prime}\right)<C B V^{\sigma_{-P\left(I^{\prime}\right)}^{*}}\left(I^{\prime}\right)$. Applying Theorem 2, this means there exists a $T_{I^{\prime}, a^{\prime}}$ and $\delta_{I^{\prime}, a^{\prime}}>0$ such that for $T \geq T_{I^{\prime}, a^{\prime}}, C B V^{\bar{\sigma}_{-i}^{T}}\left(I^{\prime}, a^{\prime}\right)-$ $\frac{\sum_{t=1}^{T} v^{\sigma^{t}}\left(I^{\prime}\right)}{T} \leq-\delta_{I^{\prime}, a^{\prime}}$. So (5) always applies for $T \geq$ $T_{I^{\prime}, a^{\prime}}$ for I^{\prime} and a^{\prime} and I will always be pruned. Since (8) does not require knowledge of regret, it need not be stored for I.

Since $D\left(I^{\prime}, a^{\prime}\right)$ will always be pruned for $T \geq T_{I^{\prime}, a^{\prime}}$, so for any $T \geq \frac{\left(T_{I^{\prime}, a^{\prime}}\right)^{2}}{C^{2}}$ iterations for some constant $C>0$, $\pi_{i}^{\bar{\sigma}^{T}}(I) \leq \frac{C}{\sqrt{T}}$, which satisfies the threshold of the average strategy. Thus, the average strategy in $D(I, a)$ can be discarded.

E. Lemma 2

Lemma 2. If for all $T \geq T^{\prime}$ iterations of CFR with BRP, $T\left(C B V^{\bar{\sigma}^{T}}(I, a)\right)-\sum_{t=1}^{T} v^{\sigma^{t}}(I) \leq-x T$ for some $x>0$, then any history h^{\prime} such that $h \cdot a \sqsubseteq h^{\prime}$ for some $h \in I$ need only be traversed at most $O(\ln (T))$ times.

Proof. Let $a \in A(I)$ be an action such that for all $T \geq$ $T^{\prime}, T\left(C B V^{\bar{\sigma}^{T}}(I, a)\right)-\sum_{t=1}^{T} v^{\sigma^{t}}(I) \leq-x T$ for some $x>0$. $\psi^{\bar{\sigma}_{-i}^{T}, T}(I, a) \leq C B V^{\bar{\sigma}_{-i}^{T}}$, so from Theorem 1, $D(I, a)$ can be pruned for $m \geq\left\lfloor\frac{x T}{U(I, a)-L(I)}\right\rfloor$ iterations on iteration T. Thus, over iterations $T \leq t \leq T+m$, only a constant number of traversals must be done. So each iteration requires only $\frac{C}{m}$ work when amortized, where C is a constant. Since $x, U(I, a)$, and $L(I)$ are constants, so on each iteration $t \geq T^{\prime}$, only an average of $\frac{C}{t}$ traversals of $D(I, a)$ is required. Summing over all $t \leq T$ for $T \geq T^{\prime}$, and recognizing that T^{\prime} is a constant, we get that action a is only taken $O(\ln (T))$ over T iterations. Thus, any history h^{\prime} such that $h \cdot a \sqsubseteq h^{\prime}$ for some $h \in I$ need only be traversed at most $O(\ln (T))$ times.

F. Proof of Theorem 3

Proof. Consider an $h^{*} \notin S$. Then there exists some $h \cdot a \sqsubseteq h^{*}$ such that $h \in S$ but $h \cdot a \notin S$. Let $I=I(h)$ and $i=P(I)$. Since $h \cdot a \notin S$ but $h \in S$, so for every Nash equilibrium $\sigma^{*}, C B V^{\sigma^{*}}(I, a)<C B V^{\sigma^{*}}(I)$. From Theorem 2, there exists a $T_{I, a}$ and $\delta_{I, a}>0$ such that after $T \geq T_{I, a}$ iterations of CFR, $C B V^{\bar{\sigma}_{-i}^{T}}(I, a)-\frac{\sum_{t=1}^{T} v^{\sigma^{t}(I)}}{T} \leq-\delta_{I, a}$. Thus from Lemma 2, h^{*} need only be traversed at most $O(\ln (T))$ times.

