Appendix

In the appendices we present the proofs, and additional lemmas that are used in the proofs.

A. Lemma 1

Lemma 1 proves that if (5) is satisfied for some action \(a \in A(I) \) on iteration \(T \), then the value of action \(a \) and all its descendants on every iteration played so far can be set to the \(T \)-near counterfactual best response value. The same lemma holds if one replaces the \(T \)-near counterfactual best response values with exact counterfactual best response values. The proof for Lemma 1 draws from recent work on warm starting CFR using only an average strategy profile (Brown & Sandholm, 2016).

Lemma 1. Assume \(T \) iterations of CFR with RM have been played in a two-player zero-sum game. If \(T(\psi^T, T(I, a)) \leq T_{\psi^T, T(I, a)} \) and one sets \(v_\sigma^T(I, a) = \psi^{T', T}(I, a) \) for each \(t \leq T \) and for each \(I \in D(I, a) \) sets \(v_\sigma^T(I', a') = \psi^{T', T}(T(I, a)) \) and \(v_\sigma^T(I') = \psi^{T', T}(I') \) then after \(T' \) additional iterations of CFR with RM, the bound on exploitability of \(\sigma^T + T' \) is no worse than having played \(T + T' \) iterations of CFR with RM unaltered.

Proof. The proof builds upon Theorem 2 in (Brown & Sandholm, 2016). Assume \(T(\psi^T, T(I, a)) \leq T_{\psi^T, T(I, a)} \). We wish to warm start to \(T \) iterations. For each \(I \in D(I, a) \) set \(v_\sigma^T(I', a') = \psi^{T', T}(I, a') \) and \(v_\sigma^T(I') = \psi^{T', T}(I') \) and set \(v_\sigma^T(I, a) = \psi^{T', T}(I, a) \) for all \(t \leq T \). For every other action, leave regret unchanged. For each \(I' \in D(I, a) \) we know by construction that \(\Phi(R^T(I')) \) is within the CFR bound \(y^T \), after changing regret. By assumption \(T(\psi^T, T(I, a)) \leq T_{\psi^T, T(I, a)} \), so \(R^T(I, a) \) \leq 0 and therefore \(\Phi(R^T(I)) \) is unchanged. Finally, since the \(T \) iterations were played according to CFR with RM and regret is unchanged for every other information set \(I' \), so the conditions for Theorem 2 in (Brown & Sandholm, 2016) hold for every information set, and therefore we can warm start to \(T \) iterations of CFR with RM with no penalty to the convergence bound. \(\square \)

B. Proof of Theorem 1

Proof. From Lemma 1 we can immediately set regret for \(a \in A(I) \) to \(v_\sigma^T(I, a) = \psi^{T', T}(I, a) \). By construction of \(T' \), \(R^T(I, a) \) is guaranteed to be nonpositive for \(t \leq T + T' \) and therefore \(\sigma^T(I, a) = 0 \). Thus, \(\sigma^T + T'(I') \) for \(I' \in D(I, a) \) is identical regardless of what is played in \(D(I, a) \) during \(T \leq t \leq T + T' \).

Since \((T + T')(\psi^{T', T'+T'}(I, a)) \leq T(\psi^{T', T}(I, a)) + T'(U(I, a)) \) and \(\sum_{t=1}^{T'} v_\sigma^T(I) \geq \sum_{t=1}^{T'} v_\sigma^T(I) + T'(I(I)) \), so by the definition of \(T', (T + T')(\psi^{T', T'+T'}(I, a)) \leq \sum_{t=1}^{T'+T'} v_\sigma^T(I) \). So if regrets in \(D(I, a) \) and \(R^T + T'(I, a) \) are set according to Lemma 1, then after \(T'' \) additional iterations of CFR with RM, the bound on exploitability of \(\sigma^T + T' + T'' \) is no worse than having played \(T + T' + T'' \) iterations of CFR with RM from scratch. \(\square \)

C. Proof of Theorem 2

Proof. Consider an information set \(I \) and action \(a \in A(I) \) where for every opponent Nash equilibrium strategy \(\sigma^*_P(I) \), \(CBV^\sigma^*_P(I, a) < CBV^\sigma^*_P(I) \). Let \(i = P(I) \). Let \(\delta = \min_{\sigma^*_i} \left(CBV^\sigma^*_i(I) - CBV^\sigma^*_i(I, a) \right) \) where \(\Sigma^i \) is the set of Nash equilibria. Let \(\sigma^i \leq 1 - \arg \max_{\sigma^i, \in \Sigma^i} \left(CBV^\sigma^*_i(I) - CBV^\sigma^*_i(I, a) \right) \). Since \(\sigma^i \) is not a Nash equilibrium strategy and CFR converges to a Nash equilibrium strategy for both players, so there exists a \(T \) such that for all \(T \geq T \), \(CBV^\sigma^*_i(I) - CBV^\sigma^*_i(I, a) \geq \frac{3}{4} \). Let \(T_{i,a} = \frac{4\delta^2 A_i |A|}{\delta^2} \). For \(T \geq T_{i,a} \) since \(R^T \leq \sum_{i \in I} R^T(I) \), so \(CBV^\sigma^*_i(I, a) - \sum_{t=1}^{T} v_\sigma^T(I) \leq \frac{\delta^2}{4} \). Let \(T_{i,a} = \max(T_{i,a}, T_{i,a}) \) and \(\delta_{i,a} = \frac{\delta}{4} \). Then for \(T \geq T_{i,a} \), \(CBV^\sigma^*_i(I, a) - \sum_{t=1}^{T} v_\sigma^T(I) \leq -\delta_{i,a} \). \(\square \)

D. Proof of Corollary 1

Proof. Let \(I \notin I_S \). Then \(I \in D(I', a') \) for some \(I' \) and \(a' \in A(I') \) such that for every opponent Nash equilibrium strategy \(\sigma^*_P(I') \), \(CBV^\sigma^*_P(I', a') < CBV^\sigma^*_P(I') \). Applying Theorem 2, this means there exists a \(T_{i,a'} \) and \(\delta_{i,a'} \) such that for \(T \geq T_{i,a'} \), \(CBV^\sigma^*_i(I, a') - \sum_{t=1}^{T} v_\sigma^T(I') \leq -\delta_{i,a'} \). So (5) always applies for \(T \geq T_{i,a'} \) for \(I' \) and \(a' \) and \(I \) will always be pruned. Since (8) does not require knowledge of regret, it need not be stored for \(I \).

Since \(D(I', a') \) will always be pruned for \(T \geq T_{i,a'} \), for any \(T \geq (T_{i,a'}^2)^2 \) iterations for some constant \(C > 0 \), \(\pi^T(I) \leq \frac{C}{\sqrt{T}} \), which satisfies the threshold of the average strategy. Thus, the average strategy in \(D(I, a) \) can be discarded. \(\square \)

E. Lemma 2

Lemma 2. If for all \(T \geq T' \) iterations of CFR with BRP, \(T(CBV^\sigma^*(I, a)) - \sum_{t=1}^{T} v^\sigma(I) \leq -\epsilon T \) for some \(x > 0 \), then any history \(h' \) such that \(h \cdot a \subseteq h' \) for some \(h \in I \) need only be traversed at most \(O(\ln(T)) \) times. \(\square \)
Proof. Let \(a \in A(I) \) be an action such that for all \(T \geq T' \), \(T(CBV^{\sigma_T^x}(I,a)) - \sum_{t=1}^{T} v^{\sigma_t^x}(I) \leq -xT \) for some \(x > 0 \). \(\psi^{\sigma_{t+1}}_{T_{t+1}}(I,a) \leq CBV^{\bar{\sigma}_{T_{t+1}}^x}, \) so from Theorem 1, \(D(I,a) \) can be pruned for \(m \geq \lceil \frac{x}{U(I,a) - L(I)} \rceil \) iterations on iteration \(T \). Thus, over iterations \(T \leq t \leq T + m \), only a constant number of traversals must be done. So each iteration requires only \(\frac{C}{m} \) work when amortized, where \(C \) is a constant. Since \(x, U(I,a), \) and \(L(I) \) are constants, so on each iteration \(t \geq T' \), only an average of \(\frac{C}{T'} \) traversals of \(D(I,a) \) is required. Summing over all \(t \leq T \) for \(T \geq T' \), and recognizing that \(T' \) is a constant, we get that action \(a \) is only taken \(O(\ln(T)) \) over \(T \) iterations. Thus, any history \(h' \) such that \(h \cdot a \sqsubseteq h' \) for some \(h \in I \) need only be traversed at most \(O(\ln(T)) \) times.

F. Proof of Theorem 3

Proof. Consider an \(h^* \not\in S \). Then there exists some \(h \cdot a \sqsubseteq h^* \) such that \(h \in S \) but \(h \cdot a \not\in S \). Let \(I = I(h) \) and \(i = P(I) \). Since \(h \cdot a \not\in S \) but \(h \in S \), so for every Nash equilibrium \(\sigma^* \), \(CBV^{\sigma^*}(I,a) < CBV^{\sigma^*}(I) \). From Theorem 2, there exists a \(T_{I,a} \) and \(\delta_{I,a} > 0 \) such that after \(T \geq T_{I,a} \) iterations of CFR, \(CBV^{\bar{\sigma}_{T_{I,a}}^x}(I,a) - \sum_{t=1}^{T} v^{\sigma_t^x}(I) \leq -\delta_{I,a}. \) Thus from Lemma 2, \(h^* \) need only be traversed at most \(O(\ln(T)) \) times.