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1 Parameter Settings
All approaches need to specify K, the number of clusters.

When applying our MCVC to the synthetic and benchmark datasets:
• If there is only one ground-truth expert view, we set K to be the true number of clusters in that view.
• If there are more than one ground-truth expert view, we set K to be the maximal value among the true

number of clusters in all expert views.

For SemiCrowd, ITML, MPCKMeans, CSPA, since we only apply them to one expert view, we set K to be
the true number of clusters in that view.

For COPD data, we set K = 4 for all approaches according to a recent study on COPD [3].

Besides the number of clusters, the parameters that are specific to each approach are set as follows.

1.1 Proposed Approach: MCVC

For variational inference in our approach, we use the following parameter settings
1. G, the number of components in truncated Dirichlet Process, is set to be M/2, where M is the total

number of experts. In this way, we try to enforce the constraint that on average, there should be at least
two experts in each view. In all experiments, the number of expert views recovered by our approach is
smaller than G = M/2. Therefore, the value of G we use is large enough to discover the true number
of expert views.

2. For the parameters of prior distributions:
• p(αm), p(βm): set the parameters of prior Beta distributions to be (10, 1) to incorporate the prior

knowledge that each expert’s accuracy parameters should be far away from 0.5 (random guess) and
close to 1. The choice can be illustrated from Figure 1. Under this setting, there is very small
probability that the accuracy parameters can be close to 0.5.
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Figure 1: Probability density function of Beta distribution Beta(α, 1), α = 10 can effectively make the accuracy
parameters have very small probability to be close to 0.5.

• p(νg): set its concentration parameter γ = 1, the recovered number of experts is stable across a
range of different γ values (from 0.5 to 10).

• p(W (g)
ij ), p(b

(g)
i ): set the mean and standard deviation of prior Gaussian distributions to be 0 and 1

respectively.
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3. Initializations of variational parameters:
• the parameters of variational Beta distribution are initialized to be equal to those of the prior distri-

bution;
• the means of variational Gaussian distributions are initialized by randomly drawing samples from

Gaussian distribution N (0, 1
D ), the standard deviations of variational Gaussian distributions are

initialized to be 0.001. This initialization strategy is similar to Xavier initialization [5] in order to
avoid gradient saturation;

• η(g)i,: are initialized using W (g), b(g) according to the discriminative clustering model described in
the main paper;

• φm,: are initialized by sampling from a Dirichlet distribution with all its parameters being equal to
1, introducing most randomness for the initialization.

4. The number of random initializations for optimization is set to be 50 and the results are stable across
different runs in all our experiments.

5. Cluster samples in the testing set:
After learning our model using the training set, we can obtain the variational distributions of weight
q(W (g)) and offset q(b(g)). We can cluster xt, a sample from the testing set by integrating outW (g), b(g)

through Monte Carlo approximation to the integration:

p(Z
(g)
t = k|xt) =

∫ ∫
p(Z

(g)
t |W (g), b(g);xt)q(W

(g))q(b(g))dW (g)db(g) (1)

≈ 1

L

L∑
l=1

p(Z
(g)
t |Ŵ (g)

l, b̂(g)l;xt) (2)

where Ŵ (g)
l, b̂(g)l are the l-th sample from q(W (g)) and q(b(g)) respectively. We set L = 100 in all

experiments. xt is assigned to the cluster corresponding to the largest probability:

ŷt = arg max
k=1,···K

p(Z
(g)
t = k|xt) (3)

where ŷt is the predicted cluster label for xt.

1.2 Meta Clustering

After computing the similarity matrix between multiple experts, we apply spectral clustering [6] to assign
experts to different views. The number of views are automatically determined using the eigen-gap heuristic
[7].

1.3 SemiCrowd

We follow parameter settings recommended by the author in [9]. In particular, d0, d1, two thresholds used
to filter out uncertain sample pairs in the average similarity matrix, are set to be 0 and 0.8 respectively.
Parameters of the `1 regularized matrix completion algorithm is set according to heuristics in the literature
[8].

1.4 ITML

As is suggested by the author [4], we set lower and upper bounds associated with the constraint terms to
be the 5th and 95th percentiles of the observed distribution of distances between pairs of points within the
dataset. Other parameters related to the convergence of the algorithm are set to be default.

1.5 MPCKMeans

We specify the constraints according to the instructions listed on the author’s website and directly run the
author’s Java implementation [1]
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1.6 CSPA

After computing the average similarity matrix, we use spectral clustering [6] to obtain the cluster labels.

2 Variational Inference
2.1 Variational Distribution

Denote h = {α1:M , β1:M , c1:M , ν1:G, Z
(1:G),W (1:G), b(1:G)} as the collection of latent variables, where G

is the number of components of the truncated Dirichlet Process. We assume the variational distribution has
the following factorization formula:

q(α1:M , β1:M , c1:M , ν1:G, Z
(1:G),W (1:G), b(1:G)) (4)

= q(α1:M ) · q(β1:M ) · q(c1:M ) · q(ν1:G) · q(Z(1:G)) · q(W (1:G)) · q(b(1:G)) (5)

=

M∏
m=1

[q(αm) · q(βm) · q(cm)]

G∏
g=1

[
q(νg)q(Z

(g))q(W (g))q(b(g))
]

(6)

=

M∏
m=1

[q(αm) · q(βm) · q(cm)]

G∏
g=1

q(νg) n∏
i=1

q(Z
(g)
i )

d∏
i=1

K∏
j=1

q(W
(g)
ij )

K∏
i=1

q(b
(g)
i )

 (7)

where the marginal variational distribution of each random variable is
• q(αm) = Beta(τ

(m)
α1 , τ

(m)
α2 );

• q(βm) = Beta(τ
(m)
β1 , τ

(m)
β2 );

• q(cm) = Cat(φm,:);
• q(νg) = Beta(τ

(g)
ν1 , τ

(g)
ν2 );

• q(Z(g)
i ) = Cat(η

(g)
i,: );

• q(W (g)
ij ) = N (µ

(g)
Wij

, σ
(g)2
Wij

);

• q(b(g)i ) = N (µ
(g)
bi
, σ

(g)2
bi

).

We use θ to denote all the variational parameters, which consist of the following
• For m = 1 · · ·M , consider {τ (m)

α1 , τ
(m)
α2 , τ

(m)
β1 , τ

(m)
β2 , φm,: ∈ ∆G−1}, where ∆G−1 is a simplex in G-

dimensional space.
• For g = 1 · · ·G, consider τ (g)ν1 , τ

(g)
ν2 , η

(g)
i,: ∈ ∆K−1(i = 1 · · ·n), µ

(g)
Wij

, σ
(g)2
Wij

(i = 1 · · · d, j = 1 · · ·K),

µ
(g)
bi
, σ

(g)2
bi

(i = 1 · · ·K)

Besides the simplex constraints on the parameters of categorical distribution, both the parameters of Beta
distribution and the standard deviation of Gaussian distribution should have positive constraints.

2.2 Evidence Lower Bound

Given variational distribution q(h; θ), the log-likelihood log p(S(1:M)) can be decomposed as

log p(S(1:M)) = Lq(h;θ) +KL
[
q(h; θ) | p(h|S(1:M))

]
(8)

≥ Lq(h;θ) (9)

= Eq(h;θ)

[
log p(h, S(1:M))− log q(h; θ)

]
(10)

= Eq(h;θ)

[
log p(S(1:M)|h) + log p(h)− log q(h; θ)

]
(11)

= Eq(h;θ)

[
log p(S(1:M)|h)

]
−KL [q(h; θ) | p(h)] (12)
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The first term prefers the variational distribution q(h; θ) that maximizes the expected conditional likelihood,
the second term forces the variational distribution to be close to the prior distribution.

The overall objective of variational inference is to maximize the evidence lower bound (ELBO) Lq(h;θ)
w.r.t. θ.

Let f(h; θ) = log p(S(1:M)|h) + log p(h)− log q(h; θ), the evidence lower bound can be expressed as

Lq(h;θ) = Eq(h;θ)
[
f(h; θ)

]
(13)

We first compute the three terms in f(h; θ) and then evaluate their expectations w.r.t. the variational distri-
bution q(h; θ).

2.3 ELBO: The First Term log p(S(1:M)|h)

Consider the first term:

log p(S(1:M)|h) = log

 M∏
m=1

∏
(i,j)∈E(m)

p(S
(m)
ij |h)

 (14)

=

M∑
m=1

∑
(i,j)∈E(m)

log p(S
(m)
ij |h) (15)

=

M∑
m=1

{( ∑
(i,j)∈E(m)

1
)

log βm +
( ∑

(i,j)∈E(m)

S
(m)
ij

)
log
(1− βm

βm

)
(16)

+
( ∑

(i,j)∈E(m)

S
(m)
ij A

(m)
ij

)
log
[ αmβm

(1− αm)(1− βm)

]
+
( ∑

(i,j)∈E(m)

A
(m)
ij

)
log(

1− αm
βm

)

}

To compute Eq(h;θ)[log p(S(1:M) |h)], the following formulas can be used:

Eq(h;θ)[logαm] = Eq(αm)[logαm] = ψ(τ
(m)
α1 )− ψ(τ

(m)
α1 + τ

(m)
α2 ) (17)

Eq(h;θ)[log(1− αm)] = Eq(αm)[log(1− αm)] = ψ(τ
(m)
α2 )− ψ(τ

(m)
α1 + τ

(m)
α2 ) (18)

Eq(h;θ)[log βm] = Eq(βm)[log βm] = ψ(τ
(m)
β1 )− ψ(τ

(m)
β1 + τ

(m)
β2 ) (19)

Eq(h;θ)[log(1− βm)] = Eq(βm)[log(1− βm)] = ψ(τ
(m)
β2 )− ψ(τ

(m)
β1 + τ

(m)
β2 ) (20)

Eq(h;θ)[A
(m)
ij ] = Eq(cm,Z(cm))[I(Z

(cm)
i = Z

(cm)
j )] (21)

= Eq(cm)

[
Eq(Z(cm))[I(Z

(cm)
i = Z

(cm)
j )]

]
(22)

= Eq(cm)

[ K∑
k=1

η
(cm)
ik η

(cm)
jk

]
(23)

=

G∑
g=1

[
φmg

K∑
k=1

ηgikη
g
jk

]
(24)
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2.4 ELBO: The Second Term log p(h)

Consider the second term:

log p(h) = log

( M∏
m=1

(
p(αm)p(βm)p(cm|ν1:∞)

) ∞∏
g=1

(
p(νg)p(Z

(g)|W (g), b(g))p(W (g))p(b(g))
))

(25)

=

M∑
m=1

(
log p(αm) + log p(βm) + log p(cm|ν1:∞)

)
(26)

+

∞∑
g=1

(
log p(νg) + log p(Z(g)|W (g), b(g)) + log p(W (g)) + log p(b(g))

)
where

log p(αm) = (τ
(m)
α10 − 1) logαm + (τ

(m)
α20 − 1) log(1− αm)− log

(
Γ(τ

(m)
α10 )Γ(τ

(m)
α20 )

Γ(τ
(m)
α10 + τ

(m)
α20 )

)
(27)

log p(βm) = (τ
(m)
β10 − 1) log βm + (τ

(m)
β20 − 1) log(1− βm)− log

(
Γ(τ

(m)
β10 )Γ(τ

(m)
β20 )

Γ(τ
(m)
β10 + τ

(m)
β20 )

)
(28)

log p(cm|ν1:∞) =

∞∑
g=1

cmg

(
log νg +

g−1∑
j=1

log(1− νj)
)

(29)

log p(νg) = (γ − 1) log(1− νg)− log

(
Γ(γ)

Γ(1 + γ)

)
(30)

= (γ − 1) log(1− νg) + log γ (31)

log p(Z(g)|W (g), b(g)) = log

N∏
i=1

p(Z
(g)
i |W

(g), b(g)) (32)

= log

N∏
i=1

K∏
k=1

p
(
Z

(g)
i = k|W (g), b(g)

)I[Z(g)
i =k]

(33)

=

N∑
i=1

K∑
k=1

I[Z(g)
i = k] log p(Z

(g)
i = k|W (g), b(g)) (34)

=

N∑
i=1

K∑
k=1

I[Z(g)
i = k]

(
(w

(g)T
k xi + b

(g)
k )− log

( K∑
j=1

exp(w
(g)T
j xi + b

(g)
j )
))

(35)

log p(W (g)) =

d∑
i=1

K∑
j=1

(
− log(

√
2πσ

(g)
Wij0

)−
(W

(g)
ij − µ

(g)
Wij0

)2

2σ
(g)2
Wij0

)
(36)

log p(b(g)) =

K∑
i=1

(
− log(

√
2πσ

(g)
bi0

)−
(b

(g)
i − µ

(g)
bi0

)2

2σ
(g)2
bi0

)
(37)

To compute Eq(h;θ)[log p(h)], the following formulas can be used besides the formulas used to compute
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Eq(h;θ)[log p(S(1:M) |h)]:

Eq(h;θ)[log νg] = Eq(νg)[log νg] = ψ(τ
(g)
ν1 )− ψ(τ

(g)
ν1 + τ

(g)
ν2 ) (38)

Eq(h;θ)[log(1− νg)] = Eq(νg)[log(1− νg)] = ψ(τ
(g)
ν2 )− ψ(τ

(g)
ν1 + τ

(g)
ν2 ) (39)

Eq(h;θ)[cmg] = Eq(cm)[cmg] = φmg (40)

Eq(h;θ)
[
I[Z(g)

i = k]
]

= η
(g)
ik (41)

Eq(h;θ)[w
(g)
k ] = Eq(W (g))[w

(g)
k ] = µ

(g)
W:k

(42)

Eq(h;θ)[(W
(g)
ij − µ

(g)
Wij0

)2] = σ
(g)2
Wij

+ (µ
(g)
Wij
− µ(g)

Wij0
)2 (43)

Eq(h;θ)[(b
(g)
i − µ

(g)
bi0

)2] = σ
(g)2
bi

+ (µ
(g)
bi
− µ(g)

bi0
)2 (44)

2.4.1 Upper Bound of Log-sum Function

The computation of Eq(h;θ)

[
log
(∑K

j=1 exp(w
(g)T
j xi + bj)

)]
does not have closed form and can only be

approximated through sampling. However, we can use the upper bound of log-sum function based on the
log concavity to derive a lower bound of ELBO [2].

log
( K∑
j=1

exp(w
(g)T
j xi + b

(g)
j )
)
≤ r(g)i

K∑
j=1

exp(w
(g)T
j xi + b

(g)
j )− log(r

(g)
i )− 1 (45)

We need introduce new variational parameters r(g)i > 0 to optimize. The expectation term can also be upper
bounded as follows

Eq(h;θ)

[
log
( K∑
j=1

exp(w
(g)T
j xi + bj)

)]

≤ Eq(h;θ)

[
r
(g)
i

K∑
j=1

exp(w
(g)T
j xi + b

(g)
j )− log(r

(g)
i )− 1

]
(46)

= r
(g)
i

K∑
j=1

Eq(h;θ)[exp(

d∑
l=1

w
(g)
lj xil + b

(g)
j )]− log(r

(g)
i )− 1 (47)

= r
(g)
i

K∑
j=1

(
E
q(b

(g)
j )

[
eb

(g)
j
] d∏
l=1

E
q(W

(g)
lj )

[
ew

(g)
lj xil

])
− log(r

(g)
i )− 1 (48)

where the expectation can be evaluated using the mean of log-normal distribution.

E
q(b

(g)
j )

[
eb

(g)
j
]

= exp
(
µ
(g)
bj

+
σ
(g)2
bj

2

)
(49)

E
q(W

(g)
lj )

[
ew

(g)
lj xil

]
= exp

(
µ
(g)
Wlj

xil +
σ
(g)2
Wlj

x2il

2

)
(50)

Therefore, the upper bound can be written as

Eq(h;θ)

[
log
( K∑
j=1

exp(w
(g)T
j xi + bj)

)]

≤ r(g)i

K∑
j=1

(
exp

(
µ
(g)
bj

+
σ
(g)2
bj

2
+

d∑
l=1

(
µ
(g)
Wlj

xil +
σ
(g)2
Wlj

x2il

2

)))
− log(r

(g)
i )− 1 (51)
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The upper bound becomes minimal when

r
(g)
i =

1∑K
j=1

(
exp

(
µ
(g)
bj

+
σ
(g)2
bj

2 +
∑d
l=1

(
µ
(g)
Wlj

xil +
σ
(g)2
Wlj

x2
il

2

))) (52)

Then the upper bound becomes

Eq(h;θ)

[
log
( K∑
j=1

exp(w
(g)T
j xi + bj)

)]
(53)

≤ log

K∑
j=1

(
exp

(
µ
(g)
bj

+
σ
(g)2
bj

2
+

d∑
l=1

(
µ
(g)
Wlj

xil +
σ
(g)2
Wlj

x2il

2

)))
(54)

To avoid numerical overflow when computing this bound due to the potential large exponent of the expo-
nential function, we can use the logsumexp() function implemented in Scipy. The idea is to extract the
maximal value in the sequence and compute its log, then each exponent in the sequence will be less than 1,
leading to stable numerical behavior.

2.5 ELBO: The Third Term log q(h; θ)

Consider the third term:

log q(h; θ) =

M∑
m=1

(
log q(αm) + log q(βm) + log q(cm)

)
(55)

+

G∑
g=1

(
log q(νg) +

n∑
i=1

K∑
k=1

I[Z(g)
i = k] log q(Z

(g)
i = k) +

d∑
i=1

K∑
j=1

log q(W
(g)
ij ) +

K∑
i=1

log q(b
(g)
i )

)
(56)

where

log q(αm) = (τ
(m)
α1 − 1) logαm + (τ

(m)
α2 − 1) log(1− αm)− log

(Γ(τ
(m)
α1 )Γ(τ

(m)
α2 )

Γ(τ
(m)
α1 + τ

(m)
α2 )

)
(57)

log q(βm) = (τ
(m)
β1 − 1) log βm + (τ

(m)
β2 − 1) log(1− βm)− log

(Γ(τ
(m)
β1 )Γ(τ

(m)
β2 )

Γ(τ
(m)
β1 + τ

(m)
β2 )

)
(58)

log q(cm) =

G∑
g=1

cmg log φmg (59)

log q(νg) = (τ
(g)
ν1 − 1) log νg + (τ

(g)
ν2 − 1) log(1− νg)− log

(Γ(τ
(g)
ν1 )Γ(τ

(g)
ν2 )

Γ(τ
(g)
ν1 + τ

(g)
ν2 )

)
(60)

log q(Z
(g)
i = k) = log η

(g)
ik (61)

log q(W
(g)
ij ) = − log(

√
2πσ

(g)
Wij

)−
(W

(g)
ij − µ

(g)
Wij

)2

2σ
(g)2
Wij

(62)

log q(b
(g)
i ) = − log(

√
2πσ

(g)
bi

)−
(b

(g)
i − µ

(g)
bi

)2

2σ
(g)2
bi

(63)

The computation of Eq(h;θ)[log q(h; θ)] can be done using formulas from the previous two subsections.
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3 Weights of Different Experts
As we can see from the derivation of the first-term log p(S(1:M)|h) of ELBO, if we view Equation (16) as
a function of A(m)

ij , the weight of S(m)
ij (constraints provided by the m-th expert) is: log αmβm

(1−αm)(1−βm) .
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