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A. Proofs of Main Results
In this section we present proofs of the results from Section 5.

A.1. Proof of Theorem 5.5 and Corollaries

We first demonstrate how we decompose the estimation error in the unbiased Lasso Granger estimator θ̂u into the sum of
two components:

θ̂u − θ∗ = θ̂ +
1

T − p
MX̃>(X̃θ∗ + ε− X̃θ̂)− θ∗

=
1

T − p
MX̃>ε+

1

T − p
MX̃>X̃(θ∗ − θ̂)− (θ∗ − θ̂)

=
1

T − p
MX̃>ε+ (MΣ̃n − I)(θ∗ − θ̂).

Letting Z = MX̃>ε/
√
T − p and ∆ =

√
T − p(MΣ̃n − I)(θ∗ − θ̂), we have√

T − p(θ̂u − θ∗) = Z + ∆. (A.1)

Note that, clearly, E[Z] = 0. Thus, ∆ encapsulates the bias in θ̂u. We divide this proof into two parts. We first establish in
Lemma A.1 that θ̂u is an asymptotically unbiased estimator of θ∗ by proving that ‖∆‖∞ = o(1). We then proceed to prove
in Lemma A.2 that Z is asymptotically normally distributed.

Lemma A.1. Suppose Assumptions 5.3 and 5.4 are satisfied. Let s0 = supp(θ̂) � (
√
T − p)/ log(pd) and µ �√

log(pd)/(T − p). Then ‖∆‖∞ = o(1), where ∆ =
√
T − p(MΣ̃n − I)(θ∗ − θ̂).

The proof of Lemma A.1, presented in Appendix B.1, uses Hőlder’s inequality to decompose ‖∆‖1 into the product√
T − p‖MΣ̃n − I‖∞ · ‖θ∗ − θ̂‖1. We bound ‖MΣ̃n − I‖∞ by constructing a martingale difference sequence (see

Definition G.1 in Appendix G) and applying a Bernstein-type inequality (Lemma F.8) to this sequence. We then bound
‖θ∗ − θ̂‖1 via a standard argument for Lasso-type estimators that relies on the restricted eigenvalue condition. We amend
this argument to work in our non-i.i.d. setting by appealing to martingale theory and present a restricted eigenvalue condition
for martingale difference sequences in Appendix F.

Lemma A.2. Suppose Assumptions 5.3 and 5.4 are satisfied. Let s0 = supp(θ̂) � (
√
T − p)/ log(pd) and µ �√

log(pd)/(T − p). Then we have Z/(σ[MΣ̃nM>]1/2) = MX̃>ε/(σ
√
T − p[MΣ̃nM>]1/2)

D−→ N(0, Ipd×pd).

The proof of Lemma A.2, deferred to Appendix B.2, relies on constructing a martingale difference sequence equal to
Z/(σ[MΣ̃nM>]1/2), and applying the Martingale Central Limit Theorem (Hall & Heyde, 1980).

Having established Lemmas A.1 and A.2, we are now ready to present a proof of Theorem 5.5.

Proof of Theorem 5.5. We write the estimation error of the unbiased Lasso Granger estimator as√
T − p(θ̂u − θ∗) = Z + ∆.

where Z = MX̃>ε/
√
T − p and ∆ =

√
T − p(MΣ̃n − I)(θ∗ − θ̂). Then, by Lemma A.1 we have that ∆

P−→ 0. By
Lemma A.2, we have that Z/(σ[MΣ̃nM>]1/2)

D−→ N(0, I). Therefore, by the Slutsky Theorem (Van der Vaart, 2000), we
have that

√
T − p(θ̂u − θ∗)/(σ[MΣ̃nM>]1/2)

D−→ N(0, Ipd×pd), as desired.

Theorem 5.5 allows us to demonstrate the asymptotic validity of the confidence intervals we present in Corollary 5.6 as
follows:
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Proof of Corollary 5.6. By Theorem 5.5, the asymptotic normality of θ̂ui implies

lim
T−p→∞

P
(
θ∗i ∈ Ii

)
= lim
T−p→∞

P
(
θ̂ui − θ∗i ≤ δ(α, T − p)

)
− lim
T−p→∞

P
(
θ̂ui − θ∗i ≤ −δ(α, T − p)

)
= lim
T−p→∞

P
(√

T − p(θ̂ui − θ∗i )

σ[MΣ̃nM>]
1/2
i,i

≤ Φ−1(1− α/2)

)

− lim
T−p→∞

P
(√

T − p(θ̂ui − θ∗i )

σ[MΣ̃nM>]
1/2
i,i

≤ −Φ−1(1− α/2)

)
= 1− α. (A.2)

In a similar manner, Theorem 5.5 also permits us to prove the several desirable properties of hypothesis test ΨZ(α), which
we introduce in (4.7), that we present in Corollary 5.7.

Proof of Corollary 5.7. By (4.3), we have

P(ΨZ(α) = 1|Hi
0) = P(−|Ẑi| < zα/2) = α

where zα/2 = Φ−1(α/2), since Ẑi converges in distribution to the standard normal distribution. Similarly, for any u ∈ (0, 1),
we see that

P(Pi < u) = P(2(1− Φ(|Ẑi|)) < u) = P
(

Φ(|Ẑi|) > 1−
u

2

)
= P

(
|Ẑi| > Φ−1

(
1−

u

2

))
(T−p)→∞−−−−−−−→ u

since, again, Ẑi converges in distribution to the standard normal distribution.

In Section 4.1, we claim that the Scaled Lasso noise estimator (Sun & Zhang, 2012) σ̂, as given by (4.4), is a consistent
estimator of the true noise level σ. We note that while Sun & Zhang (2012) prove the consistency in the i.i.d. case, σ̂ is
nevertheless still consistent in our non-i.i.d. case as well. This result follows directly from Theorem 1 in Sun & Zhang
(2012), which we paraphrase in the following lemma.

Lemma A.3. Let (θ̂(λ), σ̂(λ)) be the Scaled Lasso estimator from (4.4) and λ = 8Cσ
√

log(pd)/(T − p). Furthermore,
let the assumptions of Theorem 5.5 hold. Then,

P
(∣∣∣∣ σ̂(λ)

σ
− 1

∣∣∣∣ > ε

)
→ 0,

for all ε > 0 as (T − p, pd)→∞.

We present a proof of this lemma in Appendix B.3.

A.2. Proof of Theorem 5.9

We first present a property and three lemmas that will allow us to prove Theorem 5.9. For ease of presentation, let
G(t) = 2(1− Φ(t)) and G−1(t) = Φ−1(1− t/2).

Property 1. Recall that Σ̃ = [σi,j ] ∈ Rpd×pd is the true covariance matrix of our design matrix X̃. Now let ρi,j =
σi,j/

√
σi,iσj,j , and for δ, ε > 0, let B(δ) = {(i, j)||ρi,j | ≥ δ, i 6= j} and A(ε) = B([log(pd)]−2−ε). By a similar argument

to that made by Liu et al. (2013b), since we assume that supp(θ̂) �
√
T − p/ log(pd) in Theorem 5.5, we have∑

(i,j)∈A(ε)

(pd)a1 = O((pd)2/(log(pd)2),



Uncertainty Assessment and False Discovery Rate Control in High-Dimensional Granger Causal Inference

where a1 = 2|ρi,j |/(1 + |ρi,j |) + δ.

Property 1 amounts to a sparsity assumption on the true covariance matrix and allows us to cope with the correlation among
test statistics.
Lemma A.4. Suppose Assumptions 5.3, 5.4, the conditions of Theorem 5.9, and Property 1 are satisfied. Then we can
bound ν̂ from (4.9) as follows:

P(0 ≤ ν̂ ≤ xpd)→ 1

where xpd = G−1(ypd/(pd)), and ypd is a sequence such that ypd
pd−→∞ and ypd = o(pd).

Lemma A.4 bounds ν̂ with high probability. We use this bound in the following lemma:
Lemma A.5. Suppose Assumptions 5.3, 5.4, and Property 1 are satisfied. Then for xpd as defined in Lemma A.4, we have:

sup
0≤ν≤xpd

∣∣∣∣
∑
i∈H0

1(|Ẑi| ≥ ν)

|H0|G(ν)
− 1

∣∣∣∣ P−→ 0.

Lemma A.6. Suppose Assumptions 5.3 and 5.4 are satisfied. Then we have:

(pd)G(ν̂)

max{
∑

1≤j≤pd 1(|Ẑi ≥ ν̂), 1}
= α.

In the interest of clarity, we defer the proofs of Lemmas A.4, A.5, and A.6 to Appendices B.4, B.5, and B.6, respectively.

The proof of Theorem 5.9 proceeds in three parts. We first bound ν̂ with high probability in Lemma A.4, and then prove in
Lemma A.5 that for any ν within those bounds ∑

i∈H0
1(|Ẑi| ≥ ν̂)

|H0|G(ν̂)

P−→ 1.

The result of Theorem 5.9 then follows naturally by Lemma B.6 .

Proof of Theorem 5.9. By Lemma A.4, P(0 ≤ ν̂ ≤ xpd)→ 1. Then by Lemma A.5, we have∣∣∣∣
∑
i∈H0

1(|Ẑi| ≥ ν̂)

|H0|G(ν̂)
− 1

∣∣∣∣ ≤ sup
0≤ν≤xpd

∣∣∣∣
∑
i∈H0

1(|Ẑi| ≥ ν)

|H0|G(ν)
− 1

∣∣∣∣ P−→ 0.

Thus, we have ∑
i∈H0

1(|Ẑi| ≥ ν̂)

|H0|G(ν̂)

P−→ 1.

From this result, we see that by the definition of FDP(ν),

FDP(ν̂)

α|H0|/(pd)
=

(pd)
∑
i∈H0

1(|Ẑi| ≥ ν̂)

α|H0|max{
∑

1≤j≤pd 1(|Ẑi ≥ ν̂), 1}
P−→

(pd)|H0|G(ν̂)

α|H0|max{
∑

1≤j≤pd 1(|Ẑi ≥ ν̂), 1}
. (A.3)

By Lemma A.6,

(pd)G(ν̂)

max{
∑

1≤j≤pd 1(|Ẑi ≥ ν̂), 1}
= α. (A.4)

Thus, by (A.3) and (A.4)

FDP(ν̂)

α|H0|/(pd)

P−→ 1,

as (T − p, pd) −→∞. This result clearly then implies that

FDR(ν̂)

α|H0|/(pd)

P−→ 1,

as (T − p, pd) −→∞, as desired.
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B. Proofs of Technical Lemmas in Appendix A
In this section we present the proofs of technical lemmas introduced in Appendix A.

B.1. Proof of Lemma A.1

We first present two auxiliary lemmas that we will use in the proof of Lemma A.1.

Lemma B.1. If Assumption 5.3 holds and we additionally assume that the rows of X̃Σ̃−1/2 are sub-Gaussian with
sub-Gaussian norm of κ = ‖Σ̃−1/2X̃i‖ψ2

, then

‖MΣ̃n − I‖∞ ≤ a

√
log(pd)

T − p
,

holds with probability at least 1− 2(pd)−c2 , where c2 =
a2Cmin

24e2κ4Cmax
− 2 and a is some constant.

The proof of Lemma B.1, which we defer to Appendix C.1, relies constructing a martingale difference sequence (see
Definition G.1 in Appendix G) and applying a Bernstein-type inequality (Lemma F.8) to this sequence.

Lemma B.2. Let λ = 8Cσ
√

log(pd)/(T − p) for some constant C. Then

‖θ∗ − θ̂‖1 ≤
12λs0

κ`
,

with probability at least

1− b1 exp[−b2σ2 log(pd)]− 2 exp(−c20c21c2ω2(B))− L exp

[
− 4

(ω(A))2

α2

]
,

where λmin(Σ̃n|A) = infu∈A
1

T − p
‖X̃u‖22 is the restricted minimum eigenvalue of Σ̃n restricted to A ⊆ Spd−1 (the

unit sphere in Rpd space), B = {ũ : ũ = Σ̃1/2u/‖Σ̃1/2u‖2,u ∈ A} is the normalized set of A, α = diam(A) =
supu,v∈A d(u,v) = supu,v∈A ‖u − v‖2, ω(A) is the Gaussian width of set A as defined in Definition F.5, and
κ`, b1, b2, c0, c1, c2, L > 0 are constants.

The proof of Lemma B.2, which we present in Appendix C.2, relies on the restricted eigenvalue condition to bound ‖θ∗− θ̂‖1
with high probability.

We now present a proof of Lemma A.1.

Proof of Lemma A.1. Hőlder’s inequality allows us to decompose ‖∆‖1 as follows:

‖∆‖∞ ≤ ‖∆‖1 ≤
√
T − p‖MΣ̃n − I‖∞ · ‖θ∗ − θ̂‖1.

We now bound ‖MΣ̃n− I‖∞ and ‖θ∗− θ̂‖1 separately. By Lemma B.1, we find that ‖MΣ̃n− I‖∞ ≤ a
√

log(pd)/T − p
with high probability . Additionally, by Lemma B.2, ‖θ∗ − θ̂‖1 ≤ 12λs0/κ` with high probability

Combining these two high-probability bounds yields the following result:

√
T − p‖MΣ̃n − I‖∞ · ‖θ∗ − θ̂‖1 < as0

96σ

κ`
·

log(pd)
√
T − p

, (B.1)

with high probability. Thus, by (B.1), ‖∆‖∞ = o(s0 log(pd)/
√
T − p). Recall that by assumption, s0 �

√
T − p/ log(pd).

Therefore, ‖∆‖∞ = o(1).
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B.2. Proof of Lemma A.2

We first present an auxiliary lemma that we will use in the proof of Lemma A.2.

Lemma B.3 (Lindeberg condition from Hall & Heyde (1980)). Denote the martingale difference sequence ζi,t =

(εtX̃
>
t mi)/(σ[m>i Σ̃nmi]

1/2) and filtration Ft = σ(X̃1, . . . , X̃t, ε1, . . . , εt). Then,
∑T
t=p+1 E[ζ2i,t 1(‖ζt| ≥ δ)|Ft−1]→

0.

In the interest of clarity, we defer the proof of Lemma B.3 to Appendix C.3.

Proof of Lemma A.2. To prove this lemma, we need to show that

Ẑi

σ[MΣ̃nM>]
1/2
i,i

=
m>i X̃>ε

σ[m>i Σ̃nmi]1/2
D−→ N(0, 1).

Note that

Ẑi = m>i X̃>ε = (m>i X̃>ε)> = ε>X̃mi =

T∑
t=p+1

εtX̃
>
t mi.

Now define filtration Ft = σ(X̃1, . . . , X̃t, ε1, . . . , εt). By (3.1), εt is independent of Ft−1 and conditionally independent
of X̃t given Ft−1. Furthermore, by (4.2), εt is conditionally independent mi given Ft−1. Therefore,

E[εtX̃
>
t mi|Ft−1] = E[εt|Ft−1] · E[X̃>t mi|Ft−1]

= E[εt] · E[X̃>t mi|Ft−1]

= 0,

where the last equality follows since εt∼N(0, σ2). Thus,

{ζi,t}Tt=p+1 =

{
εtX̃

>
t mi

σ[m>i Σ̃nmi]1/2

}T
t=p+1

,

is a martingale difference sequence by Definition G.1 in Appendix G.

Since Ẑi/(σ[m>i Σ̃nmi]
1/2) =

∑T
t=p+1 ζi,t, if we can show that we can apply the Martingale Central Limit Theorem

(MCLT) (Hall & Heyde, 1980) to ζi,t, the result of this lemma will follow. To demonstrate that we can apply the MCLT to
ζi,t, we must prove that the Lindeberg condition holds for this sequence. By Lemma B.3, the Lindeberg condition holds for
ζi,t. Therefore, by the MCLT

T∑
t=p+1

ζi,t =
Ẑi

σ[m>i Σ̃nmi]1/2
D−→ N(0, 1),

as desired.

B.3. Proof of Lemma A.3

We present a variation on the argument made in the Proof of Theorem 1 in Sun & Zhang (2012). The proof of Lemma A.3
requires the following two supporting lemmas from Sun & Zhang (2012), which in turn necessitate introducing some new
notation. Denote the penalized least-squares loss function L(θ) = (2(T − p))−1‖Y − X̃θ‖22 + λ‖θ‖1. We distinguish L(·)
from the Scaled Lasso loss function from (4.4), which we denote Lλ(θ, σ) = (2(T − p))−1‖Y − X̃θ‖22 + σ/2 + λ‖θ‖1.
As Sun & Zhang (2012) note, θ is a critical point of L if and only if it satisfies:{

X̃·,j(Y − X̃θ)/(T − p) = λsign(θj),θj 6= 0

X̃·,j(Y − X̃θ)/(T − p) ∈ [−λ, λ],θj 6= 0
(B.2)
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where X̃·,j is the j-th column of the design matrix X̃. Importantly, Sun & Zhang (2012) note that B.2 is the Karush-Kuhn-
Tucker (KKT) condition for the minimization of L(·) when L(·) is convex in θ. This property will prove important in the
discussion of Lemma B.3 below. We now present the first of two supporting lemmas for the proof of Lemma A.3.

Lemma B.4 (Proposition 1 from Sun & Zhang (2012)). Let θ̂ = θ̂(λ) be a solution path of B.2 and λ0 = λ/σ =
8C
√

log(pd)/(T − p). Then the loss function Lλ(·, ·) is jointly convex in (θ, σ). Furthermore, the derivative of Lλ(·, ·)
with respect to σ is

∂

∂t
Lλ0(θ̂(tλ0), t) =

1

2
−
‖Y − X̃θ(tλ0)‖22

2(T − p)t2
. (B.3)

Lemma B.4 does not rely on the i.i.d.-ness of the rows of X̃, and so we refer readers to the proof of Proposition 1 in Sun &
Zhang (2012) for a proof of Lemma B.4.

The second supporting lemma requires additional notation from Sun & Zhang (2012). Let η(λ, ξ,w, Q) be a prediction
error bound for the estimation of θ∗ via the Scaled Lasso. Let w ∈ Rpd Q ⊂ 1 . . . , pd, and

η(λ, ξ,w, Q) = ‖X̃(θ∗ −w)‖22/(T − p) + 2λ‖wQc‖1(2− 1(w = θ, Q = ∅)) +
4ξ2λ2|Q|

(ξ + 1)2κ(ξ,Q)
, (B.4)

where vS = [vi]i∈S) ∈ R|S| and

κ(ξ,Q) = min

{ |Q|1/2‖X̃u‖2
‖uQ‖1

√
T − p

: u ∈ E(ξ,Q),u 6= 0

}
, (B.5)

where E(ξ,Q) = {u : ‖uQc‖1 ≤ ξ‖uQ‖1}. Now let σ∗ = ‖Y − X̃θ∗‖2/
√
T − p, which Sun & Zhang (2012)

call the oracle estimator for σ. Based on these definitions, let the minimum prediction error bound be η∗(λ, ξ) =

infw,Q η(λ, ξ,w, Q) and define the following related quantity τ0 = η
1/2
∗ (σ∗λ0, ξ)/σ

∗, where recall that λ0 = λ/σ =

8C
√

log(pd)/(T − p). As Sun & Zhang (2012) note, since in (3.2) ε in a Gaussian random vector, σ∗ is the maximum
likelihood estimator for σ when θ is known. Thus, in the proof of Lemma A.3, we bound the quantity σ̂/σ∗ − 1 by τ0 in
order to prove the consistency of σ̂. However, we first require the following intermediate result.

Lemma B.5 (Theorem 4 from Sun & Zhang (2012)). Let θ̂(λ) minimize L(·), ξ > 0, and define η∗(λ, ξ) =
minQ

{
(1/2)(η(λ, ξ,θ∗, Q) + (η(λ, ξ,θ∗, Q) − 16λ2‖θQc‖21)1/2)

}
(not to be confused with η∗(λ, ξ) defined above).

If ‖X̃top(Y − X̃θ∗)‖∞/(T − p) ≤ λ(ξ − 1)/(ξ + 1), then

‖X̃(θ̂ − θ∗)‖22/(T − p) ≤ min
{
η∗(λ, ξ), η

∗(λ, ξ)
}
.

The proof of Lemma B.3 follows directly from the proof of Theorem 4 from Sun & Zhang (2012). The only point of
contention in that proof is that B.2 must be the KKT condition for the minimization of L(·), which as we state above requires
that L(·) is convex in theta. In Lemma C.1 in Appendix C.2, we prove that the restricted eigenvalue condition holds with
high probability for the sample covariance matrix Σ̃n. As we demonstrate in the proof of Lemma B.2 in Appendix C.2,
the restricted eigenvalue condition implies that the unpenalized least-squares loss function (2(T − p))−1‖Y − X̃θ‖22 is
strictly convex for all θ such that the error vector θ − θ∗ falls in the error cone E(3, S), where S is the support of θ∗. Since
E(3, S) actually encompasses all possible error vectors, a property we prove in the proof of Lemma B.2, we see that the
unpenalized loss function is convex with respect to θ. Since the derivative of penalty term λ‖θ‖1 with respect to θ is a
strictly positive vector, given that the unpenalized loss function is convex in θ, so is the pealized loss function. Thus, B.2 is
the KKT condition for the minimization of L(·), and Lemma follows immediately from the proof of Theorem 4 in Sun &
Zhang (2012). We refer the reader to that paper for the full proof.

We are now ready to present the proof of Lemma A.3.

Proof of Lemma A.3. We present an amended version of the Proof of Theorem 1 from Sun & Zhang (2012). Let z∗ =
‖X̃>(Y − X̃θ∗)/(T − p)‖∞/σ∗. Without loss of generality, assume τ0 < 1 and let t ≥ σ∗(1 − τ0) and let λ1 = tλ0,
where λ0 is as defined above. Now note that

z∗σ∗ ≤ σ∗(1− τ0)λ0
ξ − 1

ξ + 1
≤ tλ0

ξ − 1

ξ + 1
= λ1

ξ − 1

ξ + 1
.
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Then by this inequality, the definition of σ∗, the Cauchy-Schwarz inequality, and Lemma B.3, we have∣∣∣∣‖Y − X̃θ̂(λ1)‖2√
T − p

− σ∗
∣∣∣∣ ≤ ‖X̃(θ̂(λ1)− θ∗)‖2√

T − p
≤ η1/2∗ (λ1, ξ). (B.6)

Now observe that B.3 in Lemma B.4 yields

2t2
∂

∂t
Lλ0

(θ̂(tλ0), t) = t2 −
‖Y − X̃θ̂(tλ0)‖22

(T − p)
≤ t2 − (σ∗)2(1− τ0)2,

where the last inequality follows from B.6 and the definition of τ0, which implies η1/2∗ (λ1, ξ) ≤ σ∗τ0 for t < σ∗, since
λ1 = tλ0. Note that when t = σ∗(1− τ0), the expression on the right-hand side of the last inequality equals zero. Note
further that Lλ(·, ·) is strictly convex in σ. Then the negativity of 2t2∂/(∂t)Lλ0

(θ̂(tλ0), t) implies that σ̂ ≥ σ∗(1 − τ0).
On the other hand, at t = σ∗/(1− τ0) > σ∗, we have

t2 −
‖Y − X̃θ̂(tλ0)‖22

(T − p)
≥ t2 − (σ + tτ0)2 ≥ 0,

since for t > σ∗, we have η1/2∗ (λ1, ξ) ≤ tτ0. This result implies σ∗ ≥ σ̂(1 − τ0) by the strict convexity of Lλ(·, ·) in σ.
Therefore,

max

(
1−

σ̂

σ∗
, 1−

σ∗

σ̂

)
≤ τ0. (B.7)

As Sun & Zhang (2012) argue, η1/2∗ (λ1, ξ)/σ → 0 as (T − p, pd)→∞. Thus,

P
(∣∣∣∣ σ̂(λ)

σ
− 1

∣∣∣∣ > ε

)
→ 0,

for all ε > 0 as (T − p, pd)→∞.

B.4. Proof of Lemma A.4

We will need the following lemma, which is a modified version on Lemma 6.1 from Liu et al. (2013b) to prove Lemma A.4.

Lemma B.6. Let ξ1, . . . , ξn ∈ Rp have mean zero. Suppose that p ≤ nr, log(p) = o(
√
n), and E[‖ξi‖bpr+2+ε

2 ] ≤ ∞, for
r, b, ε > 0. Furthermore, assume that ‖Cov(ξi)− Ip×p‖2 ≤ C(log(p))−2−γ , where Cov(ξi) = E[(1/n)

∑n
i=1 ξiξ

>
i ] and

γ > 0. Define ‖ · ‖min as ‖v‖min = min1≤i≤p{|vi|}. Then,

sup
0≤t≤b

√
log(p)

∣∣∣∣P(‖
∑n
i=1 ξi‖min ≥ t

√
n)

(G(t))p
− 1

∣∣∣∣ ≤ C(log(p))−1−γ1 ,

where γ1 = min{γ, 1/2}.

Note that we make the assumptions p ≤ nr, r > 0 and log(p) = o(
√
n), in the statement of Theorem 5.9. The former

assumption is clearly satisfied in our setting, as we can have r > 1. As noted by Liu & Luo (2014), given that p ≤ nr, for
r > 0, our assumption 5.4 of X̃ having bounded sub-Gaussian rows is equivalent to E[‖ξi‖bpr+2+ε

2 ] ≤ ∞, for b, ε > 0.
Additionally, the assumption of ‖Cov(ξi)− Ip×p‖2 ≤ C(log(p)−2−γ is satisfied by Property 1, the sparsity property of the
covariance matrix. Whereas Liu et al. (2013b) prove Lemma B.6 for the i.i.d. case, we present a proof that draws on the
Bernstein inequality for martingale difference sequences (Lemma F.8) to prove this lemma when ξ1, . . . , ξn ∈ Rp are not
independent. We defer the proof of Lemma B.6 to Appendix C.4. Having established Lemma B.6, we now present the proof
of Lemma A.4.

Proof of Lemma A.4. By Lemma B.6, we know that

max
1≤i≤pd

sup
0≤ν≤4

√
log(pd)

∣∣∣∣P(Ẑi ≥ ν)

G(ν)
− 1

∣∣∣∣ ≤ C(log(pd))−1−γ1 , (B.8)
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for positive constants C and γ1. Then by (B.8), we have that P(|Ẑi| ≥
√

2 log(pd)) → 1 for all i ∈ B =

{i||θ∗i |/(σΣ̃
−1/2
i,i ) ≥

√
c log(pd)/(T − p)}. Thus,∑

i∈B P(|Ẑi| ≥
√

2 log(pd))

|B|
P−→ 1, (B.9)

since we assumed by Assumption 5.8 that |B| =
∑
i∈H1

1{|θ∗i |/(σΣ̃
−1/2
i,i ) ≥

√
c log(pd)/(T − p)} −→ ∞. If the number

of true alternatives were fixed, this convergence would clearly not occur. Now note that by Markov’s inequality

P
(∑
i∈B

1{|Ẑi| ≥
√

2 log(pd))} ≥ |B|
)
≤

E
[∑

i∈B 1{|Ẑi| ≥
√

2 log(pd))}
]

|B|

=

∑
i∈B P(|Ẑi| ≥

√
2 log(pd)))

|B|
P−→ 1,

where the convergence follows by (B.9). Therefore, since
∑
i∈B 1{|Ẑi| ≥

√
2 log(pd))} ≤ |B|, we have∑

i∈B 1{|Ẑi| ≥
√

2 log(pd))}
|B|

P−→ 1.

This line implies that for 0 ≤ ν̂ ≤ xpd, our FDR control procedure will correctly identify all true positives that meet a
certain minimum signal condition. The result of this lemma then follows from the definition of ν̂ Section 4.2.

B.5. Proof of Lemma A.5

We will need the following lemma, which is a modified version on Lemma 6.2 from Liu et al. (2013b) to prove Lemma A.5.
Lemma B.7. Let η1, . . . ,ηn have mean zero, where ηt = (ηt,1, ηt,2)>. Suppose that p ≤ nr, log(p) = o(

√
n), and

E[‖ξi‖bpr+2+ε
2 ] ≤ ∞, for r, b, ε > 0. Furthermore, assume that V [ηt,1] = V [ηt,2] and |Cov(ηt,1, ηt,2)| ≤ δ, for some

0 ≤ δ ≤ 1. Then

P
(∣∣∣∣ n∑

i=1

ηi,1

∣∣∣∣ ≥ t√n, ∣∣∣∣ n∑
i=1

ηi,2

∣∣∣∣ ≥ t√n) ≤ C(t+ 1)−2 exp[−t2/(1 + δ)],

for 0 ≤ t ≤ b log(2), where C depends only on b, r, ε, δ.

The proof of Lemma B.7 follows almost exactly the Proof of Lemma 6.2 in Liu et al. (2013b). The only difference is that
whereas Lemma 6.2 in Liu et al. (2013b) requires i.i.d. ηt vectors in order to cite the Proof of Lemma 6.1 in Liu et al.
(2013b), we do not require i.i.d. ηt vectors and instead appeal to the proof of Lemma B.6. We refer the reader to Liu et al.
(2013b) for more details. Having established Lemma B.7, we now present the proof of Lemma A.5.

Proof of Lemma A.5. Let b0 < b1 < . . . < bk and νi = G−1(bi), where b0 = ypd/(pd), bi = ypd/(pd) + y
2/3
pd e

iδ/(pd),

k = [log((pd − ypd)/y
2/3
pd )]1/δ, and 0 < δ < 1. Then we have G(νi)/G(νi+1) = 1 + o(1) for all 0 ≤ i ≤ k, and

ν0/
√

2 log(pd/ypd) = 1 + o(1). One can easily verify that 0 ≤ j ≤ k ↔ 0 ≤ ν ≤ ypd. So we see that to prove this lemma
it suffices to show that

max
0≤j≤k

∣∣∣∣
∑
i∈H0

[1(|Ẑi| ≥ νj)−G(νj)]

|H0|G(νj)

∣∣∣∣ P−→ 0. (B.10)

Observe that for all ε > 0,

P
(

max
0≤j≤k

∣∣∣∣
∑
i∈H0

[1(|Ẑi| ≥ νj)−G(νj)]

|H0|G(νj)

∣∣∣∣ ≥ ε) ≤ P
(

max
0≤j≤k

∣∣∣∣
∑
i∈H0

[1(|Ẑi| ≥ νj)−G(νj)]

|H0|G(νj)

∣∣∣∣ ≥ ε

2

)
≤

k∑
j=0

P
(∣∣∣∣
∑
i∈H0

[1(|Ẑi| ≥ νj)−G(νj)]

|H0|G(νj)

∣∣∣∣ ≥ ε

2

)
. (B.11)
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Now let

I(ν) =

∑
i∈H0

[1(|Ẑi| ≥ ν)− P(|Ẑi| ≥ ν)]

|H0|G(ν)
.

Note that

I(ν) =

∑
i∈H0

[1(|Ẑi| ≥ ν)− P(|Ẑi| ≥ ν)]

|H0|G(ν)

P−→
∑
i∈H0

[1(|Ẑi| ≥ νj)−G(νj)]

|H0|G(νj)
,

by (B.8) in the proof of Lemma A.4 in Appendix B.4. Clearly, E[I(ν)] = 0, so if we can show that V [I(ν)] = E[I2(ν)]→ 0,
we will have that I(ν)

P−→ 0. By (B.11), this convergence will prove (B.10). We now decompose V [I(ν)] = E[I2(ν)] as
follows:

E[I2(ν)] =

∑
i∈H0

[P(|Ẑi| ≥ ν)− P2(|Ẑi| ≥ ν)]

|H0|2G2(ν)
+

∑
i,j∈H0,i6=j [P(|Ẑi| ≥ ν, |Ẑj | ≥ ν)− P(|Ẑi| ≥ ν)P(|Ẑj | ≥ ν)]

|H0|2G2(ν)

≤
C|H0|G(ν)

(|H0|G(ν))2
+

1

G2(ν)|H0|2
∑

(i,j)∈A(ε)

P(|Ẑi| ≥ ν, |Ẑj | ≥ ν) +
1

|H0|2
∑

i,j∈H0
⋂
A(ε)c

(P(|Ẑi| ≥ ν, |Ẑj | ≥ ν)

G2(ν)
− 1

)
,

(B.12)

where the equality follows by direct computation, and the inequality holds by (B.8) in the proof of Lemma A.4 in Appendix
B.4. If we let

I1,1(ν) =
1

G2(ν)|H0|2
∑

(i,j)∈A(ε)

P(|Ẑi| ≥ ν, |Ẑj | ≥ ν),

and

I1,2(ν) =
1

|H0|2
∑

i,j∈H0
⋂
A(ε)c

(P(|Ẑi| ≥ ν, |Ẑj | ≥ ν)

G2(ν)
− 1

)
,

then (B.12) yields

E[I2(ν)] ≤ C

|H0|G(ν)
+ I1,1(ν) + I1,2(ν). (B.13)

Applying Lemma B.6 to I1,2(ν) yields the following result for all 0 ≤ t ≤
√

2 log(pd) for some δ > 0:

|I1,2(ν)| ≤ C(log(pd))−1−δ. (B.14)

Furthermore, Lemma B.7 yields

P(|Ẑi| ≥ ν, |Ẑj | ≥ ν) ≤ C exp

[
−ν2

1 + |ρi,j |+ δ1

]
, (B.15)

for all (i, j) ∈ A(ε) and i, j ∈ H0, where δ1, C > 0. Lastly, the proceeding result follows from (B.15) and Property 1

I1,1(ν) ≤ C(log(pd))−2. (B.16)

Then by (F.2), (B.14), and (B.16), we have that
k∑
j=0

E[I(νj)]
2 ≤ Ck[(log(pd))1−δ + (log(pd))−2] + C

k∑
j=0

(pdG(νj))
−1

≤ C
k∑
j=0

1

ypd + y
2/3
pd e

jδ
+ o(1)

= o(1).

The second inequality holds by the definition of the sequence νi and since k = o(log(pd)). The third inequality follows
since 1/(ypd + y

2/3
pd e

jδ) = o(1/ypd) = o(1/(pd)). Our desired result (B.10) follows naturally from this last set of
inequalities.
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B.6. Proof of Lemma A.6

We present a variation on the argument made in the Proof of Theorem 3.1 in Liu et al. (2013b).

Proof of Lemma A.6. Since by the definition of ν̂ in 4.9, ν̂ is the infimum of all values ν > 0 such that FDP(ν) ≤ α, for
ν < ν̂ ∑

i∈H0
1(|Ẑi| ≥ ν)

max{
∑

1≤j≤pd 1(|Ẑi ≥ ν), 1}
> α.

Using the asymptotic normality of Ẑi, which holds by Theorem 5.5, we can approximate
∑
i∈H0

1(|Ẑi| ≥ ν) by (pd)G(ν),
yielding

(pd)G(ν)

max{
∑

1≤j≤pd 1(|Ẑi ≥ ν), 1}
> α,

for ν < ν̂. Note that (pd)G(ν)/max{
∑

1≤j≤pd 1(|Ẑi ≥ ν), 1} is decreasing in ν. Then by letting ν approach ν̂, we obtain

(pd)G(ν̂)

max{
∑

1≤j≤pd 1(|Ẑi ≥ ν̂), 1}
≥ α. (B.17)

Now to prove the reverse bound, we note that the definition of infimum implies the existence of a sequence νk, where
νk ≥ ν̂ and νk

k→∞−−−−→ ν̂. Since νk ≥ ν̂, we have

(pd)G(νk)

max{
∑

1≤j≤pd 1(|Ẑi ≥ νk), 1}
≤ α.

Thus, by letting νk → ν̂, we see that

(pd)G(ν̂)

max{
∑

1≤j≤pd 1(|Ẑi ≥ ν̂), 1}
≤ α. (B.18)

Therefore, by (B.17) and (B.18)

(pd)G(ν̂)

max{
∑

1≤j≤pd 1(|Ẑi ≥ ν̂), 1}
= α,

as desired.

C. Proofs of Auxiliary Lemmas in Appendix B
In this section we present the proofs of auxiliary lemmas introduced in Appendix B.

C.1. Proof of Lemma B.1

Here we present a modified version of the proof for Theorem 7.(b) from Javanmard & Montanari (2014).

Proof of Lemma B.1. Clearly ‖MΣ̃n − I‖∞ ≤ ‖Σ̃−1Σ̃n − I‖∞. LetXt = Σ̃−1/2X̃t, where X̃t is as defined in Section
3. Now define Z ∈ Rpd×pd as follows:

Z = Σ̃−1Σ̃n − I =
1

T − p

T∑
t=p+1

(
Σ̃−1X̃tX̃

>
t − I

)
=

1

T − p

T∑
t=p+1

(
Σ̃−1/2XtX

>
t Σ̃1/2 − I

)
.

For any given pair 1 ≤ i, j ≤ pd, denote γ(ij)t = 〈Σ̃−1/2i,· ,Xt〉 · 〈Σ̃1/2
j,· ,Xt〉 − δi,j , where p + 1 ≤ t ≤ T , and

δi,j represents the Kronecker delta: δi,j = 1(i = j). Let Ft be the filtration Ft = σ(X1, . . . ,Xt). Then note that
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E[γ
(ij)
t |Ft−1] = 0, so by Definition G.1 in Appendix G, γ(ij)t forms a martingale difference sequence. Note further that

Zi,j = (T − p)−1
∑T
t=p+1 γ

(ij)
t . Thus, to bound ‖Σ̃−1Σ̃n − I‖∞, and by transitivity ‖MΣ̃n − I‖∞, we need only bound

Zi,j .

We refer the reader to Definition G.2 in Appendix G for the definition of the sub-exponential norm. By Remark 5.18
(Centering) from Vershynin (2012), we can bound the sub-exponential norm of γ(ij)t as follows:

‖γ(ij)t ‖ψ1 ≤ 2‖〈Σ̃−1/2i,· ,Xt〉 · 〈Σ̃1/2
j,· ,Xt〉‖ψ1 . (C.1)

Now note that, as shown by Javanmard & Montanari (2014) we can bound the sub-exponential norm of the product of two
random variables X and Y by:

‖XY ‖ψ1
≤ sup

q≥1
q−1
(
E
[
|XY |q

])1/q

≤ sup
q≥1

q−1
(
E
[
|X|2q

])1/2q(
E
[
|Y |2q

])1/2q

≤ 2

(
sup
r≥2

r−1/2
(
E
[
|X|r

])1/r)(
sup
r≥2

r−1/2
(
E
[
|Y |r

])1/r)
≤ 2‖X‖ψ2 · ‖Y ‖ψ2 .

Therefore, by (C.1)

‖γ(ij)t ‖ψ1 ≤ 2‖〈Σ̃−1/2i,· ,Xt〉 · 〈Σ̃1/2
j,· ,Xt〉‖ψ1 ≤ 2‖〈Σ̃−1/2i,· ,Xt〉‖ψ2 · ‖〈Σ̃

1/2
j,· ,Xt〉‖ψ2 ,

and by assumption

2‖〈Σ̃−1/2i,· ,Xt〉‖ψ2 · ‖〈Σ̃
1/2
j,· ,Xt〉‖ψ2 ≤ 2‖Σ̃−1/2i,· ‖ψ2 · ‖Σ̃

1/2
j,· ‖ψ2κ

2 ≤ 2κ2

√
Cmax

Cmin
.

Thus, if we let κ′ = 2κ2
√
Cmax/Cmin, then ‖γ(ij)t ‖ψ1

≤ κ′. Now, since γ(ij)t is a martingale difference sequence, we can
apply the Bernstein inequality for martingale difference sequences (Lemma F.8 in Appendix F) to obtain:

P
(

1

T − p

∣∣∣∣ T∑
t=p+1

γ
(ij)
t

∣∣∣∣ ≥ ε) ≤ 2 exp

[
−
T − p

6
min

((
ε

eκ′

)2

,
ε

eκ′

)]
.

Let ε = a
√

log(pd)/(T − p), and assume that T − p ≥ (a/(eκ′))2 log(pd) so that (ε/(eκ′))2 ≤ (ε/(eκ′)) ≤ 1. Then,

P

(
1

T − p

∣∣∣∣ T∑
t=p+1

γ
(ij)
t

∣∣∣∣ ≥ a
√

log(pd)

T − p

)
= P

(∣∣∣∣Zi,j∣∣∣∣ ≥ a
√

log(pd)

T − p

)
≤ 2(pd)−a

2/(6e2κ′2)

= 2(pd)−(a
2Cmin)/(24e

2κ4Cmax).

Taking the union over all (pd)2 pairs and letting c2 = (a2Cmin)/(24e2κ4Cmax)− 2 yields the result:

P

‖MΣ̃n − I‖∞ ≤ a

√
log(pd)

T − p

 ≥ 1− 2(pd)−c2 .
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C.2. Proof of Lemma B.2

The proof of Lemma B.2 relies on two lemmas. First, the following lemma asserts that the restricted eigenvalue condition
(RE condition) holds true for our design matrix X̃. As we will see in the proof of Lemma B.2 below, the restricted eigenvalue
condition implies the restricted strong convexity condition when the loss function is the least squares loss function. This
property will prove instrumental in bounding ‖θ̂ − θ∗‖1.
Lemma C.1. Under Assumptions 5.3 and 5.4, we have

inf
θ̂−θ∗∈Er

1

T − p
‖X̃(θ̂ − θ∗)‖22 > 0

with probability at least

1− 2 exp(−c20c21c2ω2(B))− L exp

[
− 4

(ω(A))2

α2

]
,

where where λmin(Σ̃n|A) = infu∈A
1

T − p
‖X̃u‖22 is the restricted minimum eigenvalue of Σ̃n restricted to A ⊆ Spd−1

(the unit sphere in Rpd space), B = {ũ : ũ = Σ̃1/2u/‖Σ̃1/2u‖2,u ∈ A} is the normalized set of A, α = diam(A) =
supu,v∈A d(u,v) = supu,v∈A ‖u− v‖2, and c0, c1, c2, L > 0 are constants.

The RE condition has been studied extensively in the setting where the rows of the design matrix are independent. However,
since the rows of the design matrix are dependent in this setting, we must appeal to martingale theory to prove the RE
condition. We construct a martingale difference sequence equal to 1/(T − p)‖X̃(θ̂ − θ∗)‖22, and then bound the minimum
restricted eigenvalue of that sequence using the results from Appendix F. We defer the proof of Lemma C.1 to Appendix
D.1.

Second, the following lemma establishes with high-probability a property of the regularization parameter λ.
Lemma C.2. Denote the least-squares loss function L(θ) = (2(T − p))−1‖Y − X̃θ‖22. If Assumption 5.4 holds and
λ = 8Cσ

√
log(pd)/(T − p) for some constant C, then

λ ≥ 2‖∇L(θ∗)‖∞,

holds with probability at least 1− b1 exp[−b2σ2 log(pd)], for constants b1 and b2.

We defer the proof of Lemma C.2 to Appendix D.2.

We now present a proof of Lemma B.2.

Proof of Lemma B.2. To prove this lemma, we first recall the form of the biased Lasso Granger estimator from (3.3):

θ̂ = arg min
θ

1

2(T − p)
‖Y − X̃θ‖22 + λ‖θ‖1.

For brevity, we denote the loss function L(θ) = (2(T − p))−1‖Y − X̃θ‖22. We immediately realize that the optimality of θ̂
yields the following inequality:

L(θ̂) + λ‖θ̂‖1 ≤ L(θ∗) + λ‖θ∗‖1. (C.2)

To establish a lower bound on L(θ̂), we will appeal to the restricted strong convexity condition (RSC condition), which
provides a lower bound on the first-degree Taylor approximation of L(θ̂):

δL(θ̂) := L(θ̂)− L(θ∗)− 〈∇L(θ∗), θ̂ − θ∗〉 ≥ κ`‖θ̂ − θ∗‖22 > 0, (C.3)

for some constant κ′`. As noted by Negahban et al. (2012), when L(·) is the least-squares loss function, as it is in our setting,
we obtain

δL(θ̂) =
1

T − p
‖X̃(θ̂ − θ∗)‖22 ≥ κ′`‖θ̂ − θ∗‖22. (C.4)
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Note that

inf
θ̂−θ∗∈Er

1

T − p
‖X̃(θ̂ − θ∗)‖22 = λmin

(
1

T − p
X̃>X̃|Er

)
= λmin(Σ̃n|Er), (C.5)

where Er is the set the error vector θ̂ − θ∗ can fall in, and λmin(Σ̃n|Er) is the minimum restricted eigenvalue of the
sample covariance matrix. So we see that when L(·) is the least-squares loss function, the restricted strong convexity
condition collapses into the RE condition. The RE condition holds for X̃ with high probability by Lemma C.1. Thus,
λmin(Σ̃n|Er) > 0, and so the RSC condition holds. Then, rearranging (C.3), we see that

L(θ̂) ≥ L(θ∗) + 〈∇L(θ∗), θ̂ − θ∗〉+
κ`

2
‖θ̂ − θ∗‖22, (C.6)

where κ` = 2κ′`.

As a consequence of (C.2) and (C.6), we have

L(θ∗) + 〈∇L(θ∗), θ̂ − θ∗〉+ λ‖θ̂‖1 ≤ L(θ̂) + λ‖θ̂‖1 ≤ L(θ∗) + λ‖θ∗‖1.

Furthermore, since 〈∇L(θ∗), θ̂ − θ∗〉 ≤ ‖∇L(θ∗)‖∞ · ‖θ̂ − θ∗‖1 by Holder’s inequality, we achieve the following result:

−‖∇L(θ∗)‖∞ · ‖θ̂ − θ∗‖1 + λ‖θ̂‖1 ≤ λ‖θ∗‖1. (C.7)

We apply Lemma C.2 to establish that λ ≥ 2‖∇L(θ)‖∞ with probability at least 1− b1 exp[−b2σ2 log(pd)], for constants
b1 and b2. Thus, since λ ≥ 2‖∇L(θ∗)‖∞ with high probability, (C.7) implies

−
1

2
λ‖θ̂ − θ∗‖1 + λ‖θ̂‖1 ≤ λ‖θ∗‖1.

Now denote S to be the support of θ∗, so that θ∗ = θ∗S and θ∗Sc = 0. Then, based on the previous inequality, we have

−
1

2
λ‖(θ̂ − θ∗)S‖1 −

1

2
λ‖(θ̂ − θ∗)Sc‖1 + λ‖θ̂S‖1 + λ‖θ̂Sc‖1 ≤ λ‖θ∗S‖1.

Rearranging these terms yields:

−
1

2
λ‖(θ̂ − θ∗)S‖1 −

1

2
λ‖(θ̂ − θ∗)Sc‖1 + λ‖(θ̂ − θ∗)Sc‖1 ≤ λ‖θ∗S‖1 − λ‖θ̂S‖1

≤ λ‖(θ̂ − θ∗)S‖1,

where the second inequality follows by the triangle inequality. Rearranging terms once more produces the following result:

λ‖(θ̂ − θ∗)Sc‖1 ≤ 3λ‖(θ̂ − θ∗)S‖1. (C.8)

We use (C.8) to bound λ‖θ̂ − θ∗‖1. Note that (C.2) and (C.6) together imply

−
1

2
λ‖θ̂ − θ∗‖1 + λ‖θ̂‖1 +

κ`

2
‖θ̂ − θ∗‖22 ≤ λ‖θ∗‖1,

and thus,

κ`

2
‖θ̂ − θ∗‖22 ≤ λ‖θ∗‖1 − λ‖θ̂‖1 +

1

2
λ‖θ̂ − θ∗‖1.

Applying the triangle inequality yields

κ`

2
‖θ̂ − θ∗‖22 ≤ λ‖θ̂ − θ∗‖1 +

1

2
λ‖θ̂ − θ∗‖1

=
3

2
λ‖(θ̂ − θ∗)‖1. (C.9)
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Note that by (C.8), we have ‖θ̂ − θ∗‖1 ≤ 4‖(θ̂ − θ∗)S‖1. Substituting this result into (C.9) allows us to conclude that

κ`

2
‖θ̂ − θ∗‖22 ≤ 6λ‖(θ̂ − θ∗)S‖1 ≤ 6λ

√
s0‖(θ̂ − θ∗)S‖2 ≤ 6λ

√
s0‖θ̂ − θ∗‖2.

Thus, ‖θ̂ − θ∗‖2 ≤ 12λ
√
s0/κ`, which offers us the result of this lemma:

‖θ̂ − θ∗‖1 ≤
√
s0‖θ̂ − θ∗‖2 ≤

12λs0

κ`
.

We note that this result holds with high probability by Lemma C.2.

C.3. Proof of Lemma B.3

Here we verify that the Lindeberg condition (Hall & Heyde, 1980) holds for ζi,t.

Proof of Lemma B.3. Note that for some random variable Q ∼ N(0, 1), C = [(εtX̃
>
t mi)

2/(σ2[m>i Σ̃nmi])]
−1/2, some

positive, fixed constant δ > 0, and t ≥ p:

E[ζ2t 1(‖ζt| ≥ δ)|Ft−1] =
(εtX̃

>
t mi)

2E[Q2 1(|Q| > δC)]

σ2[m>i Σ̃nmi]
. (C.10)

By the properties of the truncated standard normal, we can see that E[Q2|Q > c] = 1 + c(φ(c)/Φ(c)), where φ(c) is the
PDF of the standard normal. Thus,

E[Q2 1(Q > c)] = 2Φ(c)

(
1 + c

φ(c)

Φ(c)

)
= 2(Φ(c) + cφ(c)) ≤ 2φ(c)

(
c+ c2

c

)
.

Now the proceeding inequality follows from the union bound and a standard bound on the normal CDF:

max
p+1≤t≤T

|εtX̃>t mi| > v,

with probability at most 2(T − p) exp[−v2/(2m>i Σ̃mi)]. If we let v = 2

√
log(T − p)m>i Σ̃mi, the we obtain the

following bound:

max
p+1≤t≤T

|εtX̃>t mi| ≤ 2

√
log(T − p)m>i Σ̃mi,

with probability at least 1− 2/(T − p). Returning to (C.10), we now see that for D =
√

(T − p)/(4 log(T − p):

E[ζ2t 1(‖ zetat‖ ≥ δ)|Ft−1] ≤ 8 log(T − P )φ(δD)((δD)−1 + δD)

T − p
,

since φ(z)(z−1 + z) is a decreasing function. Therefore, if we sum over all t, we attain

T∑
t=p+1

E[ζ2t 1(‖ζt| ≥ δ)|Ft−1] ≤ 8 log(T − P )φ(δD)((δD)−1 + δD)→ 0,

which demonstrates that the Lindeberg condition does indeed hold for ζt.
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C.4. Proof of Lemma B.6

We present a modified version of the proof of Lemma 6.1 from Liu et al. (2013b).

Proof of Lemma B.6. Define filtration Ft = σ(ξ1, . . . , ξt). For 1 ≤≤ p, let:

ξ̂t = ξt 1{‖ξt‖2 ≤
√
n/(log(p))4} − E[ξt 1{‖ξt‖2 ≤

√
n/(log(p))4}|Ft],

ξ̃t = ξt − ξ̂t. (C.11)

Note that by Definition G.1, ξ̂i forms a martingale difference sequence (MDS). Now we have by the triangle inequality

P
(∥∥∥∥ n∑

t=1

ξt

∥∥∥∥
min

≥ t
√
n

)
≤P
(∥∥∥∥ n∑

t=1

ξ̂t ≥ t
√
n−
√
n/(log(p))2

∥∥∥∥
min

)

+ P
(∥∥∥∥ n∑

t=1

ξ̃t ≥
√
n/(log(p))2

∥∥∥∥
min

)
, (C.12)

and

P
(∥∥∥∥ n∑

t=1

ξt

∥∥∥∥
min

≥ t
√
n

)
≥P
(∥∥∥∥ n∑

t=1

ξ̂t ≥ t
√
n+
√
n/(log(p))2

∥∥∥∥
min

)

− P
(∥∥∥∥ n∑

t=1

ξ̃t ≥
√
n/(log(p))2

∥∥∥∥
min

)
. (C.13)

By our assumption that log(p) = o(
√
n), we have that,

n∑
t=1

E[ξt 1{‖ξt‖2 ≤
√
n/(log(p))4}|Ft] = o(

√
n/(log(p))2).

So by our assumption that E[‖ξt‖bpr+2+ε
2 ] ≤ ∞, for r, b, ε > 0, the previous line implies that:

P
(∥∥∥∥ n∑

t=1

ξ̃t ≥
√
n/(log(p))2

∥∥∥∥
min

)
≤ nP( max

1≤t≤n
‖ξt‖ ≥

√
n/(log(p))4) ≤ C(log(p))−3/2(G(t))p,

for 0 ≤ t ≤ b
√

log(p). Thus, by (C.13) and (C.12), we obtain:

P
(∥∥∥∥ n∑

t=1

ξt

∥∥∥∥
min

≥ t
√
n

)
≥P
(∥∥∥∥ n∑

t=1

ξ̂t ≥ t
√
n+
√
n/(log(p))2

∥∥∥∥
min

)
− C(log(p))−3/2(G(t))p,

and

P
(∥∥∥∥ n∑

t=1

ξt

∥∥∥∥
min

≥ t
√
n

)
≤P
(∥∥∥∥ n∑

t=1

ξ̂t ≥ t
√
n−
√
n/(log(p))2

∥∥∥∥
min

)
+ C(log(p))−3/2(G(t))p,

for constant C > 0 Therefore, it suffices to prove

sup
0≤t≤b

√
log(p)

∣∣∣∣P(‖
∑n
t=1 ξ̂t‖min ≥ (t± (log(p)−2)

√
n)

(G(t))p
− 1

∣∣∣∣ ≤ C(log(p))−1−γ1 (C.14)

in order to prove this lemma. To prove this line, we appeal to Theorem 1.1 from Zaitsev (1987). The original version of
Theorem 1.1 requires i.i.d. vectors only in order to leverage the Bernstein inequality. However, since in this application ξ̂t
form a MDS, the proof of Theorem 1.1 holds by our Bernstein inequality for MDS (Lemma F.8). In the interest of clarity,
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since Theorem 1.1 requires introducing a significant amount of new material from probability theory, we refer the reader to
Zaitsev (1987) for more details. Thus, by application of Theorem 1.1 from Zaitsev (1987) to ξ̂t, we obtain

P
(∥∥∥∥ n∑

t=1

ξ̂t

∥∥∥∥
min

≥ (t+ (log(p)−2)
√
n

)
≤ P(‖W ‖min ≥ t− 2(log(p))−2) + c1,p exp[−c2,d(log(p))2],

and

P
(∥∥∥∥ n∑

t=1

ξ̂t

∥∥∥∥
min

≥ (t− (log(p)−2)
√
n

)
≤ P(‖W ‖min ≥ t+ 2(log(p))−2)− c1,p exp[−c2,d(log(p))2],

where c1,p, c2,p > 0 are constants that depend only on p andW ∼ N
(

0, Cov
(∑n

t=1 ξ̂i/
√
n

))
. By our assumption that

‖Cov(ξi)− Ip×p‖2 ≤ C(log(p)−2−γ , one can easily show that,

P(‖W ‖min ≥ t− 2(log(p))−2) ≤ (1 + C(log(p))−1−γ1)(G(t))p,

and

P(‖W ‖min ≥ t+ 2(log(p))−2) ≤ (1− C(log(p))−1−γ1)(G(t))p,

for 0 ≤ t ≤ b
√

log(p). Since for 0 ≤ t ≤ b
√

log(p) we have c1,p exp[−c2,p(log(p))2] ≤ C(log(p))−1−γ1(G(t))p, the
following holds:

P
(∥∥∥∥ n∑

t=1

ξ̂t

∥∥∥∥
min

≥ (t− (log(p)−2)
√
n

)
≤ (1 + C(log(p))−1−γ1)(G(t))p, (C.15)

and

P
(∥∥∥∥ n∑

t=1

ξ̂t

∥∥∥∥
min

≥ (t+ (log(p)−2)
√
n

)
≤ (1− C(log(p))−1−γ1)(G(t))p, (C.16)

for 0 ≤ t ≤ b
√

log(p). Therefore, (C.15) and (C.16) imply (C.14), which concludes the proof.

D. Proofs of Supporting Lemmas in Appendix C
In this section we present proofs for the supporting Lemmas of Lemma B.2.

D.1. Proof of Lemma C.1

We present a variation of the proof of Theorem 5 from Johnson et al. (2016). This proof will rely on lower bounding

inf θ̂−θ∗∈Er
1

T − p
‖X̃(θ̂−θ∗)‖22 by infu∈A 1/(T −p)

∑T
t=p+1〈X̃t−µt,u〉2− supu∈A 2/(T −p)

∑T
t=p+1〈X̃t−µt,u〉.

We lower bound infu∈A 1/(T−p)
∑T
t=p+1〈X̃t−µt,u〉2 in Lemma D.1 and upper bound supu∈A 2/(T−p)

∑T
t=p+1〈X̃t−

µt,u〉 in Lemma D.2 below.

Lemma D.1. Let Zt = X̃t − µt, for µt = E[X̃t|Ft−1], where Ft is the filtration Ft = σ(X̃p+1, . . . , X̃t), and Z =

[Zp+1, . . . ,ZT ]>. Furthermore, let E[Z>Z/(T − p)] = ΣZ and ‖Σ−1/2Z Zt‖ψ2
≤ κ′. Then,

P
(

inf
u∈A

1

T − p

T∑
t=p+1

〈X̃t − µt,u〉2 ≥ λmin(ΣZ |A)

(
1−

2c0c1κ
′2ω(B)

√
T − p

)
> 0

)
≥ 1− 2 exp(−c20c21c2ω2(B))

where λmin(Σ|A) = infu∈A u>Σu is the restricted minimum eigenvalue of Σ restricted to A ⊆ Spd−1 (the unit sphere in
Rpd space), and B = {ũ : ũ = Σ1/2u/‖Σ1/2u‖2,u ∈ A} is the normalized set of A.

The proof of Lemma D.1 relies on the restricted eigenvalue condition for martingale difference sequences from Appendix F.
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Lemma D.2. Let µt = E[X̃t|Ft−1], where Ft is the filtration Ft = σ(X̃p+1, . . . , X̃t), A ⊆ Spd−1 (the unit sphere in
Rpd space), and α = diam(A) = supu,v∈A d(u,v). Then,

P
(

sup
u∈A

2

T − p

T∑
t=p+1

〈X̃t − µt,u〉 ≤ 0

)
≥ 1− L exp

[
− 4

(ω(A))2

α2

]
.

The proof of Lemma D.2 employs a generic chaining argument (Talagrand, 2006). We defer the proofs of Lemmas D.1 and
D.2 to Appendicies E.1 and E.2. We now present the proof of Lemma C.1.

Proof of Lemma C.1. We seek to prove that,

inf
θ̂−θ∗∈Er

1

T − p
‖X̃(θ̂ − θ∗)‖22 > 0. (D.1)

From Negahban et al. (2012), we note that the error set Er is actually a cone, and that the magnitude of the error vector
θ̂ − θ∗ in (D.1) does not matter, only the direction does. Thus, we consider set A = Spd−1 ∩ Er and reformulate our
problem as

inf
u∈A

1

T − p
‖X̃u‖22 > 0. (D.2)

It suffices to prove (D.2) to prove the result of this lemma.

We now construct a martingale difference sequence that we will bound in order to prove (D.2). Let µt = E[X̃t|Ft−1],
where Ft is the filtration Ft = σ(X̃p+1, . . . , X̃t), so that by Definition G.1 in Appendix G, X̃t − µt forms a martingale
difference sequence (MDS). Then we have,

1

T − p
‖X̃u‖22 =

1

T − p

T∑
t=p+1

〈X̃t,u〉

=
1

T − p

T∑
t=p+1

(
(X̃>t u)2 − 2(X̃>t u)(µ>t u) + 2(X̃>t u)(µ>t u)− (µ>t u)2 + (µ>t u)2

)

=
1

T − p

T∑
t=p+1

(
(X̃>t u− µ>t u)2 − (µ>t u)2 + 2(X̃>t u)(µ>t u)

)
.

Distributing the summation in the last line then yields:

1

T − p
‖X̃u‖22 =

1

T − p

T∑
t=p+1

〈X̃t − µt,u〉2 −
1

T − p

T∑
t=p+1

〈µt,u〉2 +
2

T − p

T∑
t=p+1

〈X̃t,u〉〈µt,u〉

=
1

T − p

T∑
t=p+1

〈X̃t − µt,u〉2 +
1

T − p

T∑
t=p+1

〈µt,u〉2 +
2

T − p

T∑
t=p+1

〈X̃t − µt,u〉〈µt,u〉

≥
1

T − p

T∑
t=p+1

〈X̃t − µt,u〉2 +
2

T − p

T∑
t=p+1

〈X̃t − µt,u〉〈µt,u〉.

Hence,

inf
u∈A

1

T − p
‖X̃u‖22 ≥ inf

u∈A

1

T − p

T∑
t=p+1

〈X̃t − µt,u〉2 + inf
u∈A

2

T − p

T∑
t=p+1

〈X̃t − µt,u〉〈µt,u〉 (D.3)

≥ inf
u∈A

1

T − p

T∑
t=p+1

〈X̃t − µt,u〉2 − sup
u∈A

2

T − p

T∑
t=p+1

〈X̃t − µt,u〉, (D.4)
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where the second inequality holds since we can scale the design matrix to fall in the L2 unit ball so that 〈µt,u〉 <= 1.
Thus, to prove (D.2), we must lower bound infu∈A 1/(T − p)

∑T
t=p+1〈X̃t − µt,u〉2 and upper bound supu∈A 2/(T −

p)
∑T
t=p+1〈X̃t − µt,u〉. We bound infu∈A 1/(T − p)

∑T
t=p+1〈X̃t − µt,u〉2 with Lemma D.1, and supu∈A 2/(T −

p)
∑T
t=p+1〈X̃t − µt,u〉 with Lemma D.2. Thus, by application of Lemmas D.1 and D.2 to (D.3), we have that

inf
u∈A

1

T − p
‖X̃u‖22 ≥ inf

u∈A

1

T − p

T∑
t=p+1

〈X̃t − µt,u〉2 − sup
u∈A

2

T − p

T∑
t=p+1

〈X̃t − µt,u〉

≥ λmin(ΣZ |A)

(
1−

2c0c1κ
′2ω(B)

√
T − p

)
> 0,

with probability at least

1− 2 exp(−c20c21c2ω2(B))− L exp

[
− 4

(ω(A))2

α2

]
.

Thus, X̃ satisfies that restricted eigenvalue condition with high probability.

D.2. Proof of Lemma C.2

Here we prove Lemma C.2.

Proof of Lemma C.2. To prove this lemma, we first note that 2‖∇L(θ∗)‖∞ = 4
∥∥∥(T − p)−1X̃>ε

∥∥∥
∞

. Let ε be the error

vector from (3.2), so ε = Y − X̃θ∗. Then Assumption 5.4 implies that ε (3.2) is sub-Gaussian. Note that since Assumption
5.4 ensures that ‖X̃i‖ψ2

≤ κ, for i ∈ {1, 2, . . . , T − p}, we can scale the columns of any X̃ so that ‖X̃·,j‖2/
√
T − p ≤ 1,

for 1 ≤ k ≤ pd. Then the sub-Gaussian tails of ε guarantee that for all t > 0

1

T − p
‖〈X̃, ε〉‖2 < t,

with probability at least 1− 2 exp[−(T − p)t2/(2σ2)]. Bounding over all pd columns yields:∥∥∥∥∥ 1

T − p
X̃>ε

∥∥∥∥∥
∞

< t,

holds with probability at least 1 − 2 exp[−(T − p)t2/(2σ2) + log(pd)]. Setting t = 2σ
√

log(pd)/(T − p) allows us to
conclude that

λ = 8σ

√
log(pd)

T − p
≥ 2‖∇L(θ∗)‖∞ = 4

∥∥∥∥∥ 1

T − p
X̃>ε

∥∥∥∥∥
∞

,

holds with probability at least 1− b1 exp[−b2σ2 log(pd)].

E. Proofs of Supporting Lemmas in Appendix D
In this section, we present proofs of the supporting lemmas for Lemma C.1.

E.1. Proof of Lemma D.1

We seek to bound infu∈A 1/(T − p)
∑T
t=p+1〈X̃t − µt,u〉2. Since {X̃t − µt} is a martingale difference sequence (MDS)

by Definition G.1 in Appendix G, we will appeal to the restricted eigenvalue condition for MDS that we present in Theorem
F.6 in Appendix F. We reproduce Theorem F.6 here for the convenience of the reader:
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Theorem E.1. Let X = (X1, · · · ,Xn)> be a n × d design matrix whose anisotropic sub-Gaussian rows form a vector
valued martingale difference sequence. Let E[X>X/n] = Σ and ‖Σ−1/2Xi‖ψ2 ≤ κ. Then for absolute constants
c0, c1, c2 > 0, with probability at least 1− 2 exp(−c20c21c2ω2(B)), we have

λmin(Σ|A)

(
1− 2c0c1κ

2ω(B)√
n

)
≤ inf

u∈A

1

n
‖Xu‖22,

where λmin(Σ|A) = infu∈A u>Σu is the restricted minimum eigenvalues of Σ restricted to A ⊆ Sd−1 (the unit sphere in
Rd space), and B = {ũ : ũ = Σ1/2u/‖Σ1/2u‖2,u ∈ A} is the normalized set of A.

Proof of Lemma D.1. Let Zt = X̃t − µt for µt = E[X̃t|Ft−1], where Ft is the filtration Ft = σ(X̃p+1, . . . , X̃t), as
defined in Appendix D.1. Then let Z = [Zp+1, . . . ,ZT ]>. Clearly the rows of Z form a vector-values MDS, and by
Assumption 5.4, they are sub-Gaussian as well. The definition of X̃ in Section 3 implies that the rows or Z are anisotropic.
Let E[Z>Z/(T − p)] = ΣZ be the true covariance matrix of Z, and ‖Σ−1/2Z Zt‖ψ2

≤ κ′. Then by Theorem F.6 we have
that,

inf
u∈A

1

T − p

T∑
t=p+1

〈X̃t − µt,u〉2 = inf
u∈A

1

n
‖Zu‖22 ≥ λmin(ΣZ |A)

(
1−

2c0c1κ
′2ω(B)

√
T − p

)
,

with high probability. Thus, to prove Lemma D.1, it suffices to demonstrate that λmin(ΣZ |A), the restricted minimum
eigenvalue of ΣZ , is positive. In this endeavor, we will draw upon the argument made by Johnson et al. (2016) in a similar
context.

Let Bpd2 (x, ε) be a L2 ball centered at x with radius ε. Clearly, we can scale the orignial design matrix X̃ so that its rows fall
in a L2 unit ball, in which case the rows of Z fall in a L2 unit ball centered at the origin. So then the set, A = {X̃t − µt},
where X̃t is drawn from the aforementioned L2 ball, is a subset of the L2 ball centered at the origin. Now note that by
definition λmin(ΣZ |A) ≥ λmin(ΣZ), where λmin(ΣZ) is the unrestricted minimum eigenvalue of ΣZ . So it suffices to
show that λmin(ΣZ) > 0. By way of contradiction, assume that λmin(ΣZ) = 0. Then let the eigendecomposition of ΣZ

be ΣZ = QΛQ−1, where Q = [v1, . . . ,vpd] has the eigenvectors of ΣZ for columns, and Λ = diag(λi)
pd
i=1 is a diagonal

matrix of the eigenvalues of ΣZ in descending order. Observe that λpd = 0 implies

Ea∼A[〈a,vpd〉] = 0, (E.1)

since vpd is the eigenvector corresponding to the minimum eigenvalue of 0. Let Avpd = {a ∈ A|〈a,vpd〉 = 0}. Then
clearly, (E.1) implies,

P(a ∈ Avpd) = 1. (E.2)

Note that by (E.2), since there is no probability density outside Avpd , this density is thus concentrated on a subspace of Rpd.
Here we have a contradiction, since the span of Avpd is Rpd. Therefore, λmin(ΣZ |A) ≥ λmin(ΣZ) > 0, and we have

inf
u∈A

1

T − p

T∑
t=p+1

〈X̃t − µt,u〉2 = inf
u∈A

1

n
‖Zu‖22 ≥ λmin(ΣZ |A)

(
1−

2c0c1κ
′2ω(B)

√
T − p

)
> 0,

with probability at least 1− 2 exp(−c20c21c2ω2(B)), as desired.

E.2. Proof of Lemma D.2

In this section we present a proof for Lemma D.2. This proof will make a generic chaining argument, and will thus rely on
the following standard lemmas from Talagrand (2006) and Talagrand (2014).

Lemma E.2 (Theorem 2.1.5 from Talagrand (2006)). Consider two processes {Xt}t∈A and {Yt}t∈A, indexed by the same
set A. Assume {Xt}t∈A is Gaussian, and {Yt}t∈A satisfies the condition:

∀δ > 0,∀u,v ∈ A,P(|Yu − Yv| > δ) ≤ 2 exp

( − δ2

d(u,v)2

)
,
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where d(u,v) is the distance metric associated with Xt (we assume d(u,v) = ‖u− v‖2). Then, for some constant L,

E[ sup
u,v∈A

|Yu − Yv|] ≤ LE[sup
v∈A

Xv]]

Lemma E.3 (Lemma 1.2.8 from Talagrand (2006)). If the process {Xt}t∈A is symmetric, then

E[ sup
u,v∈A

|Xu −Xv|] = 2E[sup
u∈A

Xu]].

Lemma E.4 (Theorem 2.2.27 from Talagrand (2014)). Let {Xt}t∈A be a process that satisfies Lemma E.2. Then for any
δ > 0 and constant L,

P
(

sup
u,v∈A

|Xu −Xv| ≥ L(γ2(A, d(u,v)) + δα)

)
≤ L exp(−δ2),

where α = diam(A) = supu,v∈A d(u,v), and γ2(·, ·) is the γ2-functional defined in F.4.

Lemma E.5 (Theorem 2.2.27 from Talagrand (2014)). For constant L,

1

L
γ2(A, d(u,v)) ≤ E sup

u∈A
Xu ≤ Lγ2(A, d(u,v)).

Having presented these lemmas, we now give the proof of Lemma D.2.

Proof of Lemma D.2. We seek to bound supu∈A
2

T − p
∑T
t=p+1〈X̃t − µt,u〉. Recall that by Assumption 5.4, the sub-

Gaussian norm of each row X̃t is bounded by κ, which implies that ‖X̃t−µt‖ψ2
≤ κ. Thus, X̃t−µt forms a sub-Gaussian

bounded MDS, and so we can apply the Azuma-Hoeffding inequality to obtain

P
(

1
√
T − p

∣∣∣∣ T∑
t=p+1

〈X̃t − µt,u〉
∣∣∣∣ ≥ ε) ≤ 2 exp

[ − ε2

2‖u‖22κ2

]
, (E.3)

for any u ∈ A. Then for u,v ∈ A, we have that

P
(

1
√
T − p

∣∣∣∣ T∑
t=p+1

〈X̃t − µt,u− v〉
∣∣∣∣ ≥ ε) ≤ 2 exp

[ − ε2

2‖u− v‖22κ2

]
. (E.4)

We now make a generic chaining argument to bound supu∈A 1/
√
T − p

∑T
t=p+1〈X̃t − µt,u〉 with high probability.

Let Z = [(X̃p+1−µp+1), . . . , (X̃T−µT )]>. We first note that by (E.3), the processZu = 〈Z,u〉 = 1/
√
T − p〈X̃t−µt,u〉

has sub-Gaussian concentration. Similarly, by (E.4), Zu − Zv is a sub-Gaussian process ∀u,v ∈ A. We now bound
E[supu∈A 1/

√
T − p

∑T
t=p+1〈X̃t − µt,u〉] in terms of the Gaussian width of set A (see Definition F.5), and then prove

that supu∈A 1/
√
T − p

∑T
t=p+1〈X̃t − µt,u〉 concentrates around its expectation with high probability.

To bound E[supu∈A 1/
√
T − p

∑T
t=p+1〈X̃t − µt,u〉], we appeal to Lemma E.2. In our setting, E[supv∈AXv] = ω(A),

the Gaussian width of A. Thus, by Lemma E.2 and (E.4), we achieve the following bound for some constant L:

E[ sup
u,v∈A

|Zu − Zv|] ≤ Lκω(A). (E.5)

Note that by (E.3), the process Zu is symmetric, and so Lemma E.3 applies. Thus, by Lemma E.3 and (E.5), we have that,

E[ sup
u,v∈A

|Zu − Zv|] = 2E[sup
u∈A

Zu]] ≤ Lκω(A). (E.6)
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Thus, the definition of Zu, we can bound E[supu∈A 2/
√
T − p

∑T
t=p+1〈X̃t − µt,u〉] as follows:

2E
[

sup
u∈A

2

T − p

T∑
t=p+1

〈X̃t − µt,u〉
]

= 2E[sup
u∈A

Zu]] ≤ Lκω(A).

Having bound the expectation of E[supu∈A 1/
√
T − p

∑T
t=p+1〈X̃t −µt,u〉] in terms of the Gaussian width of A, we now

seek to bound supu∈A 1/
√
T − p

∑T
t=p+1〈X̃t − µt,u〉 around its expectation with high-probability. To do so, we appeal

to lemma E.4. In this setting, d(u,v) = ‖u− v‖2. Lemma E.4 motivates the following result:

P( sup
u,v∈A

|Zu − Zv| ≥ L(γ2(A, d(u,v)) + δα) = P( sup
u,v∈A

|Zu − Zv| ≥ L(γ2(A, d(u,v)) + ε), (E.7)

where the right-hand side of the inequality follows since, as Taylor et al. (2014) notes, γ2(A, d(u,v)) ≥ α from the
definition of the γ2 functional. We now bound γ2(A, d(u,v)) with Lemma E.5. So by Lemma E.5 and (E.5),

P( sup
u,v∈A

|Zu − Zv| ≥ L(γ2(A, d(u,v)) + ε) ≤ P( sup
u,v∈A

|Zu − Zv| ≥ E[ sup
u,v∈A

|Zu − Zv|] + ε)

= P(sup
u∈A
|Zu| ≥ 2E[sup

u∈A
|Zu|] + ε),

where the equality follows from Lemma E.3. Now substituting in the definition of Zu, and applying (E.6) and Lemma E.4,
we have:

P
(

sup
u∈A

1
√
T − p

T∑
t=p+1

〈X̃t − µt,u〉 ≥ 2Lκω(A) + ε

)
≤ L exp

[
−
(

ε

Lκα

)2]
.

Dividing through by
√
T − p, multiplying by 2, and letting ε = −2Lκαω(A), we achieve the following bound on the

desired quantity

P
(

sup
u∈A

2

T − p

T∑
t=p+1

〈X̃t − µt,u〉 ≥ 0

)
≤ L exp

[
− 4

(ω(A))2

α2

]
. (E.8)

F. Restricted Eigenvalue Condition for Martingale Difference Sequences
In this section, we prove that under mild conditions, the restricted eigenvalue condition will hold for martingale difference
sequences (MDS), which we define in Definition G.1 in Appendix G. We first present the following definitions:

Definition F.1. An isotropic design matrix is one for which the covariance matrix of each row Σ = E[XiX
T
i ] = I.

Definition F.2. An anisotropic design matrix has rows with a general covariance matrix Σ = E[XiX
T
i ], but with corre-

sponding isotropic rowsXi = XiΣ
−1/2.

Definition F.3. For a finite set A ⊂ T , denote the cardinality of A by |A|. An admissible sequence of T is a collection of
subsets of T, {Ts : s ≥ 0}, such that for every s ≥ 1, |Ts| = 22

s

and |T0| = 1.

Definition F.4. (Talagrand, 2006) For a metric space (T, d) and k = 1, 2, define

γk(T, d) = inf sup
t∈T

∞∑
s=0

2s/kd(t, Ts),

where d(t, Ts) is the distance between the set Ts and t, and the infimum is taken with respect to all admissible sequences of
T . In cases where the metric is clear from the context, we will denote the γk functional by γk(T ).

Definition F.5. (Gordon, 1988; Chandrasekaran et al., 2012) The Gaussian width of a set A ∈ Rp is

ω(A) = sup
u∈A

E[〈g,u〉],

where we take the expectation over random vector g ∼ N(0, Ip×p). The Gaussian width is a measure of the size of set A.
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We now present the restricted eigenvalue condition for MDS.

Theorem F.6. Let X = (X1, · · · ,Xn)> be a n × d design matrix whose anisotropic sub-Gaussian rows form a vector
valued martingale difference sequence. Let E[X>X/n] = Σ and ‖Σ−1/2Xi‖ψ2

≤ κ. Then for absolute constants
c0, c1, c2 > 0, with probability at least 1− 2 exp(−c20c21c2ω2(B)), we have

λmin(Σ|A)

(
1− 2c0c1κ

2ω(B)√
n

)
≤ inf

u∈A

1

n
‖Xu‖22,

where λmin(Σ|A) = infu∈A u>Σu is the restricted minimum eigenvalues of Σ restricted to A ⊆ Sd−1 (the unit sphere in
Rd space), and B = {ũ : ũ = Σ1/2u/‖Σ1/2u‖2,u ∈ A} is the normalized set of A.

In the proof of this theorem, we will use the following lemma, which is a MDS version of the sub-Gaussian concentration in
Mendelson et al. (2007).

Lemma F.7. (Mendelson et al., 2007) Let (Ω, µ) be a probability space, and F ⊂ SL2 be a set of functions, where
SL2

:= {f : ‖f‖L2
= 1} is the unit sphere in L2(µ) space. Assume that diam(F, ‖ · ‖ψ2

) = α. Then, for any θ > 0 and
n ≥ 1 satisfying

c1αγ2(F, ‖ · ‖ψ2) ≤ θ
√
n,

we have with probability at least 1− exp(−c2nθ2/α4) that

sup
f∈F

∣∣∣ 1
n

k∑
i=1

f2(Xi)− E[f2]
∣∣∣ ≤ θ,

where c1, c2 are absolute constants.

The detailed proof of Lemma F.7 can be found in Mendelson et al. (2007). We outline the proof of this lemma in Appendix
F.1.

Proof of Theorem F.6. We will apply Lemma F.7 to this proof. First, we define the following class of functions:

F =

{
fu : u ∈ A, fu(·) =

1√
u>Σu

〈·,u〉
}
. (F.1)

We need to verify that F ⊂ SL2
. In fact, for any fu ∈ F , we have

‖fu(X)‖L2 =
1

u>Σu
EX [〈X,u〉2] =

1

u>Σu
EX [u>X>Xu] = 1.

Note that

diam(F, ‖ · ‖ψ2
) = sup

fu,fv∈F
‖fu − fv‖ψ2

≤ 2 sup
fu∈F

‖fu‖ψ2
.

In order to bound the diameter of F according to ‖ · ‖ψ2 , we only need to get a bound on the following term

sup
fu∈F

‖fu‖ψ2
= sup

u∈A

∥∥∥∥ 1√
u>Σu

〈X,u〉
∥∥∥∥
ψ2

= sup
u∈A

∥∥∥∥〈Σ−1/2X,
Σ1/2u

‖Σ1/2u‖2

〉∥∥∥∥
ψ2

.

Thus, we have supfu∈F ‖fu‖ψ2 ≤ ‖Σ−1/2X |ψ2 ≤ κ. By similar argument, we have

‖fu − fv‖ψ2
=

∥∥∥∥〈Σ−1/2X,
Σ1/2u

‖Σ1/2u‖2
− Σ1/2v

‖Σ1/2v‖2

〉∥∥∥∥
ψ2

≤ κ
∥∥∥∥ Σ1/2u

‖Σ1/2u‖2
− Σ1/2v

‖Σ1/2v‖2

∥∥∥∥
2

.

By definition, we also have

‖fu − fv‖L2
= E

[〈
Σ−1/2X,

Σ1/2u

‖Σ1/2u‖2
− Σ1/2v

‖Σ1/2v‖2

〉2]
=

∥∥∥∥ Σ1/2u

‖Σ1/2u‖2
− Σ1/2v

‖Σ1/2v‖2

∥∥∥∥
2

.
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This equality immediately implies ‖fu − fv‖ψ2
≤ κ‖fu − fv‖L2

. Then the γ2-functional in Lemma F.7 can be bounded as

γ2(F ∩ SL2 , ‖ · ‖ψ2) ≤ κγ2(F ∩ SL2 , ‖ · ‖L2) ≤ κc0ω(B),

where the last inequality is due to the majorizing measure theorem in Talagrand (2006), B := {ũ : ũ =
Σ1/2u/‖Σ1/2u‖2,u ∈ A} is the normalized set of A and c0 > 0 is an absolute constant. Now we choose the parameter θ
in Theorem F.7 as

θ =
2c0c1κ

2ω(B)√
n

≥ 2c1κγ2(F, ‖ · ‖ψ2
)√

n
.

Therefore, we have with probability at least 1− exp(−c20c21c2ω(B)2/4) that

sup
u∈A

∣∣∣∣ 1n 1

u>Σu

n∑
i=1

〈Xi,u〉2 − 1

∣∣∣∣ ≤ 2c0c1κ
2ω(B)√
n

,

where c0, c1, c2 are absolute constants and B := {ũ : ũ = Σ1/2u/‖Σ1/2u‖2,u ∈ A}. It follows that

sup
u∈A

(
1− 1

n

1

u>Σu
‖Xu‖22

)
≤ 2c0c1κ

2ω(B)√
n

,

and

1− 2c0c1κ
2ω(B)√
n

≤ inf
u∈A

1

n

1

u>Σu
‖Xu‖22 ≤

1

λmin(Σ|A)
inf
u∈A

1

n
‖Xu‖22.

Thus we obtain that

λmin(Σ|A)

(
1− 2c0c1κ

2ω(B)√
n

)
≤ inf

u∈A

1

n
‖Xu‖22

holds with probability at least 1− exp(−c20c21c2ω(B)2/4), with c0, c1, c2 being absolute constants.

F.1. Sketch of Proof of Lemma F.7

Here we lay the outline of the proof for Lemma F.7, and show that it can be extended to bounded martingale difference
sequence. The only difference in the proof for our MDS version of this lemma from the independent case is the Bernstein
inequality. Whereas the original result leveraged the canonical Bernstein inequality, we here use the following MDS version
of the Bernstein inequality:

Lemma F.8 (Bernstein-Type Inequality for Martingale Difference Sequences). Let X1, . . . , Xn form a sub-exponential
Martingale Difference Sequence (MDS) such that max1≤i≤n ‖Xi‖ψ1

≤ κ. Here ‖ · ‖ψ1
is the sub-Exponential norm defined

in Definition G.2 in Appendix G. Then

P
(∣∣∣∣ n∑

i

aiXi

∣∣∣∣ ≥ t) ≤ 2 exp

[
− C min

{
t2

κ2‖a‖2
,

t

κ‖a‖∞

}]
,

where C is a constant.

We defer the proof of Lemma F.8 to Appendix F.2. With the Bernstein inequality for MDS, we can now outline the proof of
Lemma F.7.

LetX1, . . . ,Xn be a bounded martingale difference sequence. We first define the empircal processes

Zf = 1/n

n∑
i=1

f2(Xi)− E[f2] Wf =

(
1/n

n∑
i=1

f2(Xi)

)2

.

The following lemma from Mendelson et al. (2007) can be easily obtained from Lemma F.8.
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Lemma F.9. There exists an absolute constant c1 > 0 for which the following holds. Let F ⊂ SL2
, α = diam(F, ‖ · ‖ψ2

)
and set n ≥ 1. For every f, g ∈ F and every u ≥ 2 we have

P(Wf−g ≥ u‖f − g‖ψ2) ≤ exp(−c1nu2).

Also, for every u > 0,

P(|Zf − Zg| ≥ uα‖f − g‖ψ2
) ≤ exp(−c1nu2),

and

P(|Zf | ≥ uα2) ≤ 2 exp(−c1nu2).

The following two lemmas from Mendelson et al. (2007) hold in our setting since they do not require i.i.d. observations.

Lemma F.10. There exists an absolute constant C for which the following holds. Let F ⊂ SL2
, α = diam(F, ‖ · ‖ψ2

) and
n ≥ 1. There is F ′ ⊂ F such that |F ′| ≤ 4n and with probability at least 1− exp(−n), we have, for every f ∈ F ,

Wf−πF ′ (f) ≤
Cγ2(F, ‖ · ‖ψ2

)
√
n

,

where πF ′(f) is a nearest point to f in F ′ with respect to the ψ2 metric.

Lemma F.11. There exist absolute constants C and c′ > 0 for which the following holds. Let F ⊂ SL2
and α =

diam(F, ‖ · ‖ψ2
). Let n ≥ 1 and F ′ ⊂ F such that |F ′| ≤ 4n. Then for every w > 0,

sup
f∈F ′

|Zf | ≤ Cα
γ2(F, ‖ · ‖ψ2

)√
n

+ α2w,

with probability at least 1− 3 exp(−c′nmin(w,w2)).

Based on the above lemmas, the rest of proof of Theorem F.7 is stated as the proof of Theorem 1.4 in Mendelson et al.
(2007).

F.2. Proof of Berstein Inequality for MDS (Lemma F.8)

We first present the following lemma from Vershynin (2012).

Lemma F.12 (Lemma 5.15 from Vershynin (2012)). If X is a sub-exponential random variable such that E[X] = 0, then
for every t such that |t| ≤ c/‖X‖ψ1

, we have

E[exp(tX)] ≤ exp(Ct2‖X‖ψ1 ],

where C, c > 0 are constants.

We now prove the Berstein Inequality for MDS.

Proof of Lemma F.8. We begin by bounding the moment-generating function of
∑n
i aiXi as follows:

E
[

exp

(
t ·

n∑
i

aiXi

)]
= E

[ n∏
i

exp[taiXi]

]

= E
[
E
[

exp[tanXn]

n−1∏
i

exp[taiXi]

∣∣∣∣X1, . . . , Xn−1

]]

= E
[
E
[

exp[tanXn]

∣∣∣∣X1, . . . , Xn−1

]
· E
[ n−1∏

i

exp[taiXi]

∣∣∣∣X1, . . . , Xn−1

]]

≤ E
[

exp(Ct2a2nκ
2) · E

[ n−1∏
i

exp[taiXi]

∣∣∣∣X1, . . . , Xn−1

]]
,
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where the second inequality holds by the Law of Iterated Expectations. Furthermore, the last inequality holds by Lemma
F.12 since E[Xn|X1, . . . , Xn−1] = E[Xn|Fn−1] = 0 by the definition of a MDS (recall Definition G.1 in Appendix G). By
iteratively repeating this process, we obtain

E
[

exp

(
t ·

n∑
i

aiXi

)]
≤ E

[ n∏
i

exp(Ct2a2iκ
2)

]

= exp

(
Ct2

n∑
i

a2iκ
2

)
= exp

(
Ct2‖a‖22κ2

)
. (F.2)

Now note that by the Chernoff bound, for all λ such that |λ| ≤ C/‖a‖∞ we have

P
( n∑

i

aiXi ≥ t
)

= P
(

exp

(
λ

n∑
i

aiXi

)
≥ exp(λt)

)

≤
E[exp[λ

∑n
i aiXi]]

exp[λt]

≤
exp[Cλ2‖a‖22κ2]

exp[λt]

= exp[Cλ2‖a‖22κ2 − λt],

where the last inequality holds by F.2. Now if we let λ = min{t/(2C‖a‖22κ2), c/(‖a‖∞κ)}, then we see that if
t/(2C‖a‖22κ2) < c/(‖a‖∞κ), then

P
( n∑

i

aiXi ≥ t
)
≤ exp

[
t2

4C‖a‖22κ2
−

t2

2κ2C‖a‖22

]
= exp

[ − t2

4C‖a‖22κ2

]
. (F.3)

Similarly, if c/(‖a‖∞κ) < t/(2C‖a‖22κ2), then

P
( n∑

i

aiXi ≥ t
)
≤ exp

[
Cc‖a‖22κ
‖a‖∞

·
c

‖a‖∞κ
−

ct

‖a‖∞κ

]
≤ exp

[
−

ct

2‖a‖∞κ

]
, (F.4)

where the second inequality holds since Cc‖a‖22κ/‖a‖∞ ≤ t/2. Combining F.3 and F.4 yields

P
( n∑

i

aiXi ≥ t
)
≤ exp

(
min

{ − t2

4C‖a‖22κ2
,
− ct

2‖a‖∞κ

})
.

Note that we can repeat this process and replace each Xi with −Xi to obtain this same bound for P(−
∑n
i aiXi ≥ t). This

lemma then follows as a result of these two bounds.

G. Auxiliary Definitions
In this section we present definitions used in the Appendix sections.

Definition G.1. A stochastic process {ξt} is a martingale difference sequence with respect to filtration Ft if:

1. ξt is Ft-measurable, and

2. E[ξt|Ft−1] = 0.

Definition G.2. The sub-Exponential norm of a random scalar variable X , ‖X‖ψ1 , is:

‖X‖ψ1
= sup

q≥1
q−1
(
E
[
|X|q

])1/q

.
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The sub-Exponential norm of a random vectorX ∈ Rn is:

‖X‖ψ1
= sup

u∈Sn−1

‖〈X,u〉‖ψ1
,

where Sn−1 is the unit sphere in Rn space.


