Supplementary Material to Robust Structured Estimation with Single-Index Models

Sheng Chen¹ Arindam Banerjee¹

Abstract

In this supplementary material, we present the deferred proofs of the results in the main paper.

1. Proof of Claim 1

Statement of Claim 1: Suppose that each element x_i of \mathbf{x} is sampled i.i.d. from Rademacher distribution, i.e., $\mathbb{P}(x_i = 1) = \mathbb{P}(x_i = -1) = 0.5$. Under model (3) with noise $\epsilon = 0$, there exists $a \bar{\boldsymbol{\theta}} \in \mathbb{S}^{p-1}$ together with a monotone \bar{f} , such that $\operatorname{supp}(\bar{\boldsymbol{\theta}}) = \operatorname{supp}(\boldsymbol{\theta}^*)$ and $y_i = \bar{f}(\langle \bar{\boldsymbol{\theta}}, \mathbf{x}_i \rangle)$ for data $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$ with arbitrarily large sample size n, while $\|\bar{\boldsymbol{\theta}} - \boldsymbol{\theta}^*\|_2 > \delta$ for some constant δ .

Proof: In the noiseless setting with unknown f^* , provided that $S \triangleq \operatorname{supp}(\theta^*)$ is given and |S| = s, the estimation of θ^* is simplified as

Find
$$\boldsymbol{\theta}_{\mathcal{S}} \in \mathbb{S}^{s-1}$$

s.t. sign $(\langle \boldsymbol{\theta}_{\mathcal{S}}, \mathbf{x}_{i\mathcal{S}} - \mathbf{x}_{j\mathcal{S}} \rangle) = \text{sign}(y_i - y_j), \quad (S.1)$
 $\forall 1 \le i < j \le n,$

any of whose solution θ can be true θ^* on the premise that no other information is available, since there always exists a monotone f satisfying $f(\langle \theta, \mathbf{x}_i \rangle) = y_i$. Given the distribution of $\mathbf{x}, \mathbf{x}_{iS} - \mathbf{x}_{jS}$ only has 3^s possibilities even if $n \to +\infty$. We denote the feasible set of (S.1) by C, which is basically an intersection of \mathbb{S}^{s-1} and at most $\min\{n(n-1), 3^p\}$ halfspaces (or hyperplanes if $y_i = y_j$). Depending on the 3 different values of each $\operatorname{sign}(y_i - y_j)$, this feasible set C has at most $3^{\min\{n(n-1), 3^p\}}$ possibilties, which is finite, and the union of them should be \mathbb{S}^{s-1} . When $s \ge 2$ and the constant δ is small enough, we can always find a C, in which there exist two different points away by δ . Specify them as θ_{*S} and $\overline{\theta}_S$ respectively, and we are unable to distinguish between them, as both can be solution to (S.1) for any samples.

2. Proof of Lemma 1

Statement of Lemma 1: Suppose the distribution of y in model (1) depends on **x** through $\langle \theta^*, \mathbf{x} \rangle$ and we define accordingly

$$b_i(z_1, \dots, z_m; \boldsymbol{\theta}^*) = (S.2)$$
$$\mathbb{E}\left[q_i(y_1, \dots, y_m) | \langle \boldsymbol{\theta}^*, \mathbf{x}_1 \rangle = z_1, \dots, \langle \boldsymbol{\theta}^*, \mathbf{x}_m \rangle = z_m\right],$$

With \mathbf{x} being standard Gaussian $\mathcal{N}(\mathbf{0}, \mathbf{I})$, \mathbf{u} defined in (4) satisfies

$$\mathbb{E}\left[\mathbf{u}\left((\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\right)\right] = \beta \boldsymbol{\theta}^* , \qquad (S.3)$$

where $\beta = \sum_{i=1}^{m} \mathbb{E}[b_i(g_1, \dots, g_m; \theta^*) \cdot g_i]$, and g_1, \dots, g_m are *i.i.d.* standard Gaussian.

Proof: Let θ_{\perp} be any vector orthogonal to θ^* . For convenience, we use the shorthand notation **u** for $\mathbf{u}((\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m))$. Then we have

$$\langle \mathbb{E}\mathbf{u}, \boldsymbol{\theta}_{\perp} \rangle = \mathbb{E} \left[\sum_{i=1}^{m} q_i \left(y_1, \dots, y_m \right) \cdot \langle \mathbf{x}_i, \boldsymbol{\theta}_{\perp} \rangle \right]$$

$$= \sum_{i=1}^{m} \mathbb{E} \left[q_i \left(y_1, \dots, y_m \right) \cdot \langle \mathbf{x}_i, \boldsymbol{\theta}_{\perp} \rangle \right]$$

$$= \sum_{i=1}^{m} \mathbb{E} \left[\langle \mathbf{x}_i, \boldsymbol{\theta}_{\perp} \rangle \cdot \mathbb{E} \left[q_i \left(y_1, \dots, y_m \right) | \mathbf{x}_1, \dots, \mathbf{x}_m \right] \right]$$
(*)

As \mathbf{x}_i follows $\mathcal{N}(\mathbf{0}, \mathbf{I})$, $\langle \mathbf{x}_i, \boldsymbol{\theta}^* \rangle$ and $\langle \mathbf{x}_i, \boldsymbol{\theta}_\perp \rangle$ are two zeromean independent Gaussian random variables. Since the distribution of y_i depends on \mathbf{x} only via $\langle \boldsymbol{\theta}^*, \mathbf{x}_i \rangle$, we can split the expectation and obtain

$$\begin{aligned} (*) &= \sum_{i=1}^{m} \mathbb{E} \left[\langle \mathbf{x}_{i}, \boldsymbol{\theta}_{\perp} \rangle \cdot b_{i} \left(\langle \boldsymbol{\theta}^{*}, \mathbf{x}_{1} \rangle, \dots, \langle \boldsymbol{\theta}^{*}, \mathbf{x}_{m} \rangle; \boldsymbol{\theta}^{*} \right) \right] \\ &= \sum_{i=1}^{m} \mathbb{E} \left[\langle \mathbf{x}_{i}, \boldsymbol{\theta}_{\perp} \rangle \right] \cdot \mathbb{E} \left[b_{i} \left(\langle \boldsymbol{\theta}^{*}, \mathbf{x}_{1} \rangle, \dots, \langle \boldsymbol{\theta}^{*}, \mathbf{x}_{m} \rangle; \boldsymbol{\theta}^{*} \right) \right] \\ &= 0 \,. \end{aligned}$$

¹Department of Computer Science & Engineering, University of Minnesota-Twin Cities, Minnesota, USA. Correspondence to: Sheng Chen <shengc@cs.umn.edu>, Arindam Banerjee <banerjee@cs.umn.edu>.

Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 2017. JMLR: W&CP. Copyright 2017 by the author(s).

Hence **u** has to point towards either θ^* or $-\theta^*$, and note that

$$\langle \mathbb{E}\mathbf{u}, \boldsymbol{\theta}^* \rangle = \sum_{i=1}^m \mathbb{E} \left[q_i \left(y_1, \dots, y_m \right) \cdot \langle \mathbf{x}_i, \boldsymbol{\theta}^* \rangle \right]$$

$$= \sum_{i=1}^m \mathbb{E} \left[b_i \left(\langle \boldsymbol{\theta}^*, \mathbf{x}_1 \rangle, \dots, \langle \boldsymbol{\theta}^*, \mathbf{x}_m \rangle; \boldsymbol{\theta}^* \right) \cdot \langle \mathbf{x}_i, \boldsymbol{\theta}^* \rangle \right]$$

$$= \sum_{i=1}^m \mathbb{E} \left[b_i \left(g_1, \dots, g_m; \boldsymbol{\theta}^* \right) \cdot g_i \right] = \beta$$

We complete the proof by recalling that $\|\boldsymbol{\theta}^*\|_2 = 1$, thus $\mathbb{E}\mathbf{u} = \beta \boldsymbol{\theta}^*$.

3. Proof of Theorem 1

We first provide a lemma that is useful for bounding the Gaussian width of unions of sets, which originates in Maurer et al. (2014).

Lemma A (Lemma 2 in Maurer et al. (2014)) Let M > 4, $\mathcal{A}_1, \dots, \mathcal{A}_M \subset \mathbb{R}^p$, and $\mathcal{A} = \bigcup_m \mathcal{A}_m$. The Gaussian width of \mathcal{A} satisfies

$$w(\mathcal{A}) \le \max_{1 \le m \le M} w(\mathcal{A}_m) + 2 \sup_{\mathbf{z} \in \mathcal{A}} \|\mathbf{z}\|_2 \sqrt{\log M} \quad (S.4)$$

Statement of Theorem 1: Suppose that the optimization (9) can be solved to global minimum. Then the following error bound holds for the minimizer $\hat{\theta}$ with probability at least $1 - C'' \exp(-w^2 (\mathcal{A}_{\mathcal{K}}(\theta^*)))$,

$$\left\|\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^*\right\|_2 \le \frac{C\kappa m^{\frac{3}{2}}}{\beta} \cdot \frac{w(\mathcal{A}_{\mathcal{K}}(\boldsymbol{\theta}^*)) + C'}{\sqrt{n}}, \qquad (S.5)$$

where κ is the sub-Gaussian norm of a standard Gaussian random variable, and C, C', C'' are all absolute constant. Proof: We use the shorthand notation $\mathcal{A}_{\mathcal{K}}$ for the set $\mathcal{A}_{\mathcal{K}}(\boldsymbol{\theta}^*)$. As $\hat{\boldsymbol{\theta}}$ attains the global minimum of (9), we have

$$\begin{split} \langle \hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^*, \hat{\mathbf{u}} \rangle &\geq 0 \iff \left\langle \hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^*, \frac{\hat{\mathbf{u}}}{\beta} - \boldsymbol{\theta}^* + \boldsymbol{\theta}^* \right\rangle \geq 0 \\ \implies \left\langle \hat{\boldsymbol{\theta}}, \boldsymbol{\theta}^* \right\rangle &\geq 1 - \left\langle \hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^*, \frac{\hat{\mathbf{u}}}{\beta} - \boldsymbol{\theta}^* \right\rangle \\ &\geq 1 - \| \hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^* \|_2 \cdot \sup_{\mathbf{v} \in \mathcal{A}_{\mathcal{K}} \cup \{\mathbf{0}\}} \left\langle \mathbf{v}, \frac{\hat{\mathbf{u}}}{\beta} - \boldsymbol{\theta}^* \right\rangle \end{split}$$

In order to bound the supremum above, we use the result from generic chaining. We define the stochastic process $\{Z_{\mathbf{v}} = \langle \mathbf{v}, \hat{\mathbf{u}}/\beta - \boldsymbol{\theta}^* \rangle\}_{\mathbf{v} \in \mathcal{A}_{\mathcal{K}} \cup \{\mathbf{0}\}}$. First, we need to check the process has sub-Gaussian incremental. For simplicity, we denote $\mathbf{u}((\mathbf{x}_{i_1}, y_{i_1}), \dots, (\mathbf{x}_{i_m}, y_{i_m}))$ by $\mathbf{u}_{i_1,\dots,i_m}$. By the definitions and properties of sub-Gaussian norm (Vershynin, 2012), the sub-Gaussian norm of $\mathbf{u}_{i_1,...,i_m}$ satisfies

$$\begin{aligned} \|\mathbf{u}_{i_1,\ldots,i_m}\|_{\psi_2} &= \sup_{\mathbf{v}\in\mathbb{S}^{p-1}} \left\| \sum_{j=1}^m q_j\left(y_{1_1},\ldots,y_{i_m}\right)\cdot \langle \mathbf{x}_j,\mathbf{v} \rangle \right\|_{\psi_2} \\ &\leq \sup_{\mathbf{v}\in\mathbb{S}^{p-1}} \left\| \sum_{j=1}^m |\langle \mathbf{x}_j,\mathbf{v} \rangle| \right\|_{\psi_2} \\ &\leq m\cdot \sup_{\mathbf{v}\in\mathbb{S}^{p-1}} \left\| |\langle \mathbf{x}_j,\mathbf{v} \rangle| \right\|_{\psi_2} \leq \kappa m \;, \end{aligned}$$

thus we know $\|\langle \mathbf{u}_{i_1,\dots,i_m}, \mathbf{v} - \mathbf{w} \rangle\|_{\psi_2} \leq \kappa m \cdot \|\mathbf{v} - \mathbf{w}\|_2$. By Lemma 2, we have

$$\begin{split} \mathbb{P}\left(|Z_{\mathbf{v}} - Z_{\mathbf{w}}| > \delta\right) &= \mathbb{P}\left(\left|\left\langle \mathbf{v} - \mathbf{w}, \frac{\hat{\mathbf{u}}}{\beta} - \boldsymbol{\theta}^*\right\rangle\right| > \delta\right) \\ &= \mathbb{P}\left(\left|\frac{(n-m)!}{n!} \sum_{\substack{1 \le i_1, \dots, i_m \le n \\ i_1 \ne \dots \ne i_m}} \frac{1}{\beta} \cdot \langle \mathbf{u}_{i_1, \dots, i_m}, \mathbf{v} - \mathbf{w} \rangle \right. \\ &- \left\langle \mathbf{v} - \mathbf{w}, \boldsymbol{\theta}^* \right\rangle \left| > \delta \right) \\ &\leq 2 \exp\left(-C \left\lfloor \frac{n}{m} \right\rfloor \cdot \frac{\beta^2 \delta^2}{m^2 \kappa^2 \cdot \|\mathbf{v} - \mathbf{w}\|_2^2}\right) \\ &\leq 2 \exp\left(-C' \cdot \frac{n\beta^2 \delta^2}{m^3 \kappa^2 \cdot \|\mathbf{v} - \mathbf{w}\|_2^2}\right), \end{split}$$

where we set C' = C/2. Therefore we can conclude that $\{Z_{\mathbf{v}}\}$ has sub-Gaussian incremental w.r.t. the metric $s(\mathbf{v}, \mathbf{w}) \triangleq \kappa m^{\frac{3}{2}} \cdot \|\mathbf{v} - \mathbf{w}\|_2 / \beta \sqrt{n}$. Now applying Lemma 3 to $\{Z_{\mathbf{v}}\}$, we obtain

$$\mathbb{P}\left(\sup_{\mathbf{v},\mathbf{w}\in\mathcal{A}_{\mathcal{K}}\cup\{\mathbf{0}\}}|Z_{\mathbf{v}}-Z_{\mathbf{w}}|\geq C_{1}\left(\gamma_{2}\left(\mathcal{A}_{\mathcal{K}}\cup\{\mathbf{0}\},s\right)\right)$$
$$+\delta\cdot\operatorname{diam}\left(\mathcal{A}_{\mathcal{K}}\cup\{\mathbf{0}\},s\right)\right)\leq C_{2}\exp\left(-\delta^{2}\right)$$
$$\Longrightarrow\mathbb{P}\left(\sup_{\mathbf{v}\in\mathcal{A}_{\mathcal{K}}\cup\{\mathbf{0}\}}|Z_{\mathbf{v}}|\geq\frac{C_{1}\kappa m^{\frac{3}{2}}}{\beta\sqrt{n}}\cdot\left(\gamma_{2}\left(\mathcal{A}_{\mathcal{K}}\cup\{\mathbf{0}\},\|\cdot\|_{2}\right)\right)$$
$$+2\delta\right)\leq C_{2}\exp\left(-\delta^{2}\right)$$

Using Lemma 4 $\gamma_2(\mathcal{A}_{\mathcal{K}} \cup \{\mathbf{0}\}, \|\cdot\|_2) \leq C_0 \cdot w(\mathcal{A}_{\mathcal{K}} \cup \{\mathbf{0}\})$ and taking $\delta = w(\mathcal{A}_{\mathcal{K}} \cup \{\mathbf{0}\})$, we get

$$\sup_{\mathbf{v}\in\mathcal{A}_{\mathcal{K}}\cup\{\mathbf{0}\}}\left\langle\mathbf{v},\frac{\hat{\mathbf{u}}}{\beta}-\boldsymbol{\theta}^{*}\right\rangle\leq\sup_{\mathbf{v}\in\mathcal{A}_{\mathcal{K}}\cup\{\mathbf{0}\}}|Z_{\mathbf{v}}|$$

$$\leq\frac{C_{3}\kappa m^{\frac{3}{2}}}{\beta\sqrt{n}}\cdot w\left(\mathcal{A}_{\mathcal{K}}\cup\{\mathbf{0}\}\right)\leq\frac{C_{3}\kappa m^{\frac{3}{2}}}{\beta}\cdot\frac{w\left(\mathcal{A}_{\mathcal{K}}\right)+C_{4}}{\sqrt{n}}$$

with probability at least $1 - C_2 \exp(-w^2(\mathcal{A}_{\mathcal{K}}))$. The last inequality follows from Lemma A. Now we turn to the

quantity $\|\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^*\|_2$,

$$\begin{split} &\|\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^*\|_2^2 \leq 2 - 2\langle \hat{\boldsymbol{\theta}}, \boldsymbol{\theta}^* \rangle \\ \leq 2 - 2\left(1 - \|\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^*\|_2 \cdot \frac{C_3 \kappa m^{\frac{3}{2}}}{\beta} \cdot \frac{w\left(\mathcal{A}_{\mathcal{K}}\right) + C_4}{\sqrt{n}}\right) \\ \leq \|\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^*\|_2 \cdot \frac{2C_3 \kappa m^{\frac{3}{2}}}{\beta} \cdot \frac{w\left(\mathcal{A}_{\mathcal{K}}\right) + C_4}{\sqrt{n}} \,. \end{split}$$

We finish the proof by letting $C = 2C_3$, $C' = C_4$ and $C'' = C_2$.

4. Proof of Theorem 2

Statement of Theorem 2: *Define the following set for any* $\rho > 1$,

$$\mathcal{A}_{\rho}\left(\boldsymbol{\theta}^{*}\right) = \operatorname{cone}\left\{\mathbf{v} \mid \|\mathbf{v} + \boldsymbol{\theta}^{*}\| \leq \|\boldsymbol{\theta}^{*}\| + \frac{\|\mathbf{v}\|}{\rho}\right\} \bigcap_{\substack{(\mathbf{S}.6)\\ (\mathbf{S}.6)}} \mathbb{S}^{p-1}$$
If we set $\lambda = \rho \|\hat{\mathbf{u}} - \beta \boldsymbol{\theta}^{*}\|_{*} = O(\rho m^{3/2} w(\mathcal{B}_{\|\cdot\|}) / \sqrt{n})$

If we set $\lambda = \rho \| \mathbf{u} - \beta \mathbf{\theta}' \|_* = O(\rho m^{-\gamma} w (\mathcal{B}_{\|\cdot\|}) / \sqrt{n})$ and it satisfies $\lambda < \| \hat{\mathbf{u}} \|_*$, then with probability at least $1 - C' \exp\left(-w^2 \left(\mathcal{B}_{\|\cdot\|}\right)\right), \hat{\boldsymbol{\theta}}$ in (10) satisfies

$$\begin{split} \left\| \hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^* \right\|_2 &\leq \frac{C(1+\rho)\kappa m^{\frac{3}{2}}}{\beta} \cdot \frac{\Psi\left(\mathcal{A}_{\rho}(\boldsymbol{\theta}^*)\right) \cdot w\left(\mathcal{B}_{\|\cdot\|}\right)}{\sqrt{n}}, \\ \text{where } \Psi\left(\mathcal{A}_{\rho}(\boldsymbol{\theta}^*)\right) &= \sup_{\mathbf{v} \in \mathcal{A}_{\rho}(\boldsymbol{\theta}^*)} \|\mathbf{v}\| \text{ and } \mathcal{B}_{\|\cdot\|} = \\ \{\mathbf{v} \mid \|\mathbf{v}\| \leq 1\} \text{ is the unit ball of norm } \|\cdot\|. \end{split}$$

Proof: Based on the optimality of $\hat{\theta}$, we have

$$\begin{aligned} -\langle \hat{\mathbf{u}}, \hat{\boldsymbol{\theta}} \rangle + \lambda \| \hat{\boldsymbol{\theta}} \| &\leq -\langle \hat{\mathbf{u}}, \boldsymbol{\theta}^* \rangle + \lambda \| \boldsymbol{\theta}^* \| \implies \\ & \langle \beta \boldsymbol{\theta}^* - \hat{\mathbf{u}} - \beta \boldsymbol{\theta}^*, \hat{\boldsymbol{\theta}} \rangle + \lambda \| \hat{\boldsymbol{\theta}} \| \\ &\leq \langle \beta \boldsymbol{\theta}^* - \hat{\mathbf{u}} - \beta \boldsymbol{\theta}^*, \boldsymbol{\theta}^* \rangle + \lambda \| \boldsymbol{\theta}^* \| \implies \\ & \beta (1 - \langle \boldsymbol{\theta}^*, \hat{\boldsymbol{\theta}} \rangle) \leq \langle \hat{\mathbf{u}} - \beta \boldsymbol{\theta}^*, \hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^* \rangle + \lambda (\| \boldsymbol{\theta}^* \| - \| \hat{\boldsymbol{\theta}} \|) \end{aligned}$$

Since $\langle \boldsymbol{\theta}^*, \hat{\boldsymbol{\theta}} \rangle \leq 1$, we have

$$\begin{aligned} \langle \hat{\mathbf{u}} - \beta \boldsymbol{\theta}^*, \hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^* \rangle + \lambda \left(\|\boldsymbol{\theta}^*\| - \|\hat{\boldsymbol{\theta}}\| \right) &\geq 0 \implies \\ \|\hat{\boldsymbol{\theta}}\| &\leq \|\boldsymbol{\theta}^*\| + \frac{1}{\lambda} \cdot \langle \hat{\mathbf{u}} - \beta \boldsymbol{\theta}^*, \hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^* \rangle \\ &\leq \|\boldsymbol{\theta}^*\| + \frac{1}{\lambda} \cdot \|\hat{\mathbf{u}} - \beta \boldsymbol{\theta}^*\|_* \|\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^*\| \\ &= \|\boldsymbol{\theta}^*\| + \frac{1}{\rho} \|\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^*\| \implies \hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^* \in \mathcal{A}_{\rho}(\boldsymbol{\theta}^*) \end{aligned}$$

Therefore it follows that

$$1 - \langle \boldsymbol{\theta}^{*}, \hat{\boldsymbol{\theta}} \rangle \leq \langle \frac{\hat{\mathbf{u}}}{\beta} - \boldsymbol{\theta}^{*}, \hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{*} \rangle + \frac{\lambda}{\beta} \left(\|\boldsymbol{\theta}^{*}\| - \|\hat{\boldsymbol{\theta}}\| \right)$$

$$\leq \|\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{*}\|_{2} \left(\left\| \frac{\hat{\mathbf{u}}}{\beta} - \boldsymbol{\theta}^{*} \right\|_{*} \cdot \frac{\|\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{*}\|}{\|\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{*}\|_{2}} + \frac{\lambda}{\beta} \cdot \frac{\|\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{*}\|}{\|\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{*}\|_{2}} \right)$$

$$\leq (1 + \rho) \|\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{*}\|_{2} \cdot \left\| \frac{\hat{\mathbf{u}}}{\beta} - \boldsymbol{\theta}^{*} \right\|_{*} \cdot \sup_{\mathbf{v} \in \mathcal{A}_{\rho}(\boldsymbol{\theta}^{*})} \|\mathbf{v}\|$$

$$= (1 + \rho) \|\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{*}\|_{2} \cdot \left\| \frac{\hat{\mathbf{u}}}{\beta} - \boldsymbol{\theta}^{*} \right\|_{*} \cdot \Psi \left(\mathcal{A}_{\rho}(\boldsymbol{\theta}^{*}) \right)$$
(S.8)

Now we try to bound $\left\|\frac{\hat{\mathbf{u}}}{\hat{\beta}} - \boldsymbol{\theta}^*\right\|_*$. We first rewrite it as $\left\|\frac{\hat{\mathbf{u}}}{\hat{\beta}} - \boldsymbol{\theta}^*\right\|_* = \sup_{\mathbf{v} \in \mathcal{B}_{\|\cdot\|}} \left\langle \frac{\hat{\mathbf{u}}}{\hat{\beta}} - \boldsymbol{\theta}^*, \mathbf{v} \right\rangle$. Construct the s-tochastic process $\{Z_{\mathbf{v}} = \langle \mathbf{v}, \hat{\mathbf{u}}/\beta - \boldsymbol{\theta}^* \rangle\}_{\mathbf{v} \in \mathcal{B}_{\|\cdot\|}}$, and it is not difficult to verify that $\{Z_{\mathbf{v}}\}$ has sub-Gaussian incremental using the proof in Theorem 1. Now applying Lemma 3 and 4, we have

$$\sup_{\mathbf{v}\in\mathcal{B}_{\|\cdot\|}} \left\langle \frac{\hat{\mathbf{u}}}{\beta} - \boldsymbol{\theta}^*, \mathbf{v} \right\rangle = \frac{1}{2} \cdot \sup_{\mathbf{v},\mathbf{w}\in\mathcal{B}_{\|\cdot\|}} |Z_{\mathbf{v}} - Z_{\mathbf{w}}| \\ \leq \frac{C_1 \kappa m^{\frac{3}{2}}}{\beta} \cdot \frac{w\left(\mathcal{B}_{\|\cdot\|}\right)}{\sqrt{n}},$$
(S.9)

with probability at least $1 - C' \exp\left(-w^2 \left(\mathcal{B}_{\|\cdot\|}\right)\right)$. Therefore we know that λ satisfies

$$\lambda = O\left(\frac{\rho m^{3/2} w(\mathcal{B}_{\|\cdot\|})}{\sqrt{n}}\right)$$

If $\hat{\theta} = 0$ is the minimizer, the first-order optimality should hold, i.e.,

$$\hat{\mathbf{u}} \in \lambda \cdot \partial \|\mathbf{0}\| \implies \|\hat{\mathbf{u}}\|_* \leq \lambda$$

Hence if $\lambda < \|\hat{\mathbf{u}}\|_*$, **0** cannot be the minimizer, which means that the minimum of (10) must be negative. So we can assert that $\|\hat{\boldsymbol{\theta}}\|_2 = 1$, otherwise we can normalize $\hat{\boldsymbol{\theta}}$ to get a smaller objective value. Combining (S.8) and (S.9), we finally get

$$\begin{split} \|\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^*\| &= \frac{2 - 2\langle \boldsymbol{\theta}, \boldsymbol{\theta}^* \rangle}{\|\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^*\|} \\ &\leq \frac{Cm\kappa(1+\rho)}{\beta} \cdot \frac{\Psi\left(\mathcal{A}_{\rho}(\boldsymbol{\theta}^*)\right) \cdot w\left(\mathcal{B}_{\|\cdot\|}\right)}{\sqrt{n}} \,, \end{split}$$

where the equality uses the fact that $\|\hat{\theta}\|_2 = 1$.

5. Proof of Corollary 1

Statement of Corollary 1: Assume that $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$ follow 1-bit CS model in (2) and $\hat{\mathbf{u}}$ is given as (14). For any

s-sparse θ^* , with high probability, $\hat{\theta}$ produced by both (15) and (17) (i.e., $\hat{\theta}^{ks}$ and $\hat{\theta}^{ps}$) satisfy

$$\left\|\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^*\right\|_2 \le O\left(\sqrt{\frac{s\log p}{n}}\right)$$
 (S.10)

Proof: For the *k*-support norm estimator, the cone $\mathcal{A}_{\mathcal{K}}(\boldsymbol{\theta}^*)$ is given by

$$\mathcal{A}_{\mathcal{K}}(\boldsymbol{\theta}^*) = \operatorname{cone} \left\{ \hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^* \mid \| \hat{\boldsymbol{\theta}} \|_0 \le s, \| \hat{\boldsymbol{\theta}} \|_2 \le 1 \right\} \bigcap_{s = 1}^{\infty} \mathbb{S}^{p-1}$$
$$\implies \mathcal{A}_{\mathcal{K}}(\boldsymbol{\theta}^*) \subseteq \mathcal{S} = \left\{ \mathbf{v} \mid \| \mathbf{v} \|_0 \le 2s \right\} \cap \mathbb{S}^{p-1}$$

Using (19) from (Chen & Banerjee, 2015), we have

$$w(\mathcal{A}_{\mathcal{K}}(\boldsymbol{\theta}^*)) \leq w(\mathcal{S}) \leq O\left(\sqrt{s\log p}\right)$$
.

By Theorem 1, the error of k-support norm estimator satisfies

$$\left\|\hat{\boldsymbol{\theta}}^{\mathrm{ks}} - \boldsymbol{\theta}^*\right\|_2 \le O\left(\sqrt{\frac{s\log p}{n}}\right)$$

For the passive algorithm, if we choose $\rho = 2$, the restricted norm compatibility $\Psi(\mathcal{A}_{\rho}(\boldsymbol{\theta}^*))$ for L_1 norm satisfies

$$\Psi\left(\mathcal{A}_{\rho}(\boldsymbol{\theta}^*)\right) \le 4\sqrt{s} \tag{S.11}$$

according to the results in (Negahban et al., 2012; Banerjee et al., 2014). Chen & Banerjee (2015) also show that the Gaussian width of the L_1 -norm ball is bounded by

$$w(\mathcal{B}_{L_1}) \le O\left(\sqrt{\log p}\right)$$
 . (S.12)

Now combining (S.11), (S.12) and Theorem 2, we can conclude that

$$\left\|\hat{\boldsymbol{\theta}}^{\mathsf{ps}} - \boldsymbol{\theta}^*\right\|_2 \le O\left(\sqrt{\frac{s\log p}{n}}\right)$$

which completes the proof.

6. Proof of Proposition 1

Statement of Proposition 1: Given $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$, let π^{\downarrow} be the permutation of $\{1, \ldots, n\}$ such that $y_{\pi_1^{\downarrow}} > y_{\pi_2^{\downarrow}} > \ldots > y_{\pi_n^{\downarrow}}$. Then we have

$$\hat{\mathbf{h}} = \frac{2}{n(n-1)} \sum_{i=1}^{n} (n+1-2i) \cdot \mathbf{x}_{\pi_{i}^{\downarrow}}$$
(S.13)

Proof: We rearrange the terms inside the summation of (21) based on π^{\downarrow} ,

$$\begin{split} \hat{\mathbf{h}} &= \frac{1}{n(n-1)} \sum_{\substack{1 \leq i,j \leq n \\ i \neq j}} \operatorname{sign}(y_i - y_j) \cdot (\mathbf{x}_i - \mathbf{x}_j) \\ &= \frac{2}{n(n-1)} \sum_{\substack{1 \leq i,j \leq n \\ i \neq j}} \operatorname{sign}(y_i - y_j) \cdot \mathbf{x}_i \\ &= \frac{2}{n(n-1)} \sum_{i=1}^n \sum_{j \neq \pi_i^{\downarrow}} \operatorname{sign}\left(y_{\pi_i^{\downarrow}} - y_j\right) \cdot \mathbf{x}_{\pi_i^{\downarrow}} \\ &= \frac{2}{n(n-1)} \sum_{i=1}^n (n+1-2i) \cdot \mathbf{x}_{\pi_i^{\downarrow}} , \end{split}$$

where the last inequality uses the fact that there are $(i-1) y_j$ larger than and (n-i) smaller than $y_{\pi_i^{\downarrow}}$, thus $\sum_{j \neq \pi_i^{\downarrow}} \operatorname{sign} \left(y_{\pi_i^{\downarrow}} - y_j \right) = (n-i) - (i-1) = n + 1 - 2i.$

7. Proof of Proposition 2

Statement of Proposition 2: For s-fused-sparse θ^* , the Gaussian width of set $\mathcal{A}_{\mathcal{K}}(\theta^*)$ with $\mathcal{K} = \{\theta \mid |\mathcal{F}(\theta)| \leq s, \|\theta\|_2 = 1\}$ satisfies

$$w(\mathcal{A}_{\mathcal{K}}(\boldsymbol{\theta}^*)) \le O(\sqrt{s\log p}) \tag{S.14}$$

Proof: Define the following sets

$$\mathcal{T}_{i,j} = \left\{ \alpha \mathbf{u} \in \mathbb{R}^p \ \Big| \ u_1 = \dots = u_{i-1} = u_{j+1} = \dots = u_p = 0 \\ u_i = \dots = u_j = \frac{1}{\sqrt{j-i+1}}, \ |\alpha| \le \sqrt{2s+1} \right\}$$
(S.15)

$$\mathcal{T} = \bigcup_{i \le j} \mathcal{T}_{i,j} \tag{S.16}$$

For each $\mathcal{T}_{i,j}$, its Gaussian width can be calculated as

$$w(\mathcal{T}_{i,j}) = \mathbb{E}\left[\sup_{\mathbf{v}\in\mathcal{T}_{i,j}} \langle \mathbf{v}, \mathbf{g} \rangle\right] = \sqrt{2s+1} \cdot \mathbb{E}\left[|\langle \mathbf{u}, \mathbf{g} \rangle|\right]$$
$$= \sqrt{2s+1} \cdot \mathbb{E}\left|g\right| = O(\sqrt{2s+1}) ,$$

where **u** is defined in (S.15) and g is a standard Gaussian random variable. We apply Lemma A to \mathcal{T} , and obtain

$$w(\mathcal{T}) \leq \max_{i \leq j} w(\mathcal{T}_{i,j}) + 2 \sup_{\mathbf{z} \in \mathcal{T}} \|\mathbf{z}\|_2 \sqrt{\log\left(\binom{p}{2} + p\right)}$$
$$\leq O(\sqrt{2s+1}) + O(\sqrt{2s+1} \cdot \sqrt{\log p})$$
$$= O(\sqrt{s\log p})$$

Next we show that $\mathcal{A}_{\mathcal{K}}(\boldsymbol{\theta}^*) \subseteq \operatorname{conv}(\mathcal{T})$. Since $\mathcal{K} = \{\boldsymbol{\theta} \mid |\mathcal{F}(\boldsymbol{\theta})| \leq s, ||\boldsymbol{\theta}||_2 = 1\}$ and $\mathcal{A}_{\mathcal{K}}(\boldsymbol{\theta}^*) = \operatorname{cone} \{\mathbf{v} \mid \mathbf{v} = \hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^*, \, \hat{\boldsymbol{\theta}} \in \mathcal{K} \} \cap \mathbb{S}^{p-1}$ by definition, we have $|\mathcal{F}(\mathbf{v})| \leq 2s$ for any $\mathbf{v} \in \mathcal{A}_{\mathcal{K}}(\boldsymbol{\theta}^*)$. Suppose $|\mathcal{F}(\mathbf{v})| = t \leq 2s$ and $\mathcal{F}(\mathbf{v}) = \{i_1, i_2, \dots, i_t\}$. For simplicity, we also let $i_0 = 0$ and $i_{t+1} = p$. Then any $\mathbf{v} \in \mathcal{A}_{\mathcal{K}}(\boldsymbol{\theta}^*)$ can be written as a convex combination of t + 2 points in \mathcal{T} . To see this, we rewrite \mathbf{v} as

$$\mathbf{v} = \sum_{r=0}^{t} \mathbf{v}_{i_{r}+1:i_{r+1}} = \sum_{r=0}^{t} \frac{\|\mathbf{v}_{i_{r}+1:i_{r+1}}\|_{2}}{\sqrt{t+1}} \cdot \frac{\sqrt{t+1}\mathbf{v}_{i_{r}+1:i_{r+1}}}{\|\mathbf{v}_{i_{r}+1:i_{r+1}}\|_{2}} + \left(1 - \sum_{r=0}^{t} \frac{\|\mathbf{v}_{i_{r}+1:i_{r+1}}\|_{2}}{\sqrt{t+1}}\right) \cdot \mathbf{0} ,$$
(S.17)

where $\mathbf{v}_{i_r+1:i_{r+1}}$ is obtained from \mathbf{v} by keeping the entries from index $i_r + 1$ to i_{r+1} while zeroing out the rest. Let $\mathbf{u}_{i_r+1:i_{r+1}} = \frac{\sqrt{t+1}\mathbf{v}_{i_r+1:i_{r+1}}}{\|\mathbf{v}_{i_r+1:i_{r+1}}\|_2}$, and we have

$$\|\mathbf{u}_{i_r+1:i_{r+1}}\|_2 = \sqrt{t+1} \le \sqrt{2s+1}$$
$$\implies \mathbf{u}_{i_r+1:i_{r+1}} \in \mathcal{T}_{i_r+1:i_{r+1}} \subseteq \mathcal{T}.$$

It follows from $\|\mathbf{v}\|_2 = 1$ that

$$\sum_{r=0}^{t} \frac{\|\mathbf{v}_{i_{r}+1:i_{r+1}}\|_{2}}{\sqrt{t+1}} \leq \frac{\sqrt{(t+1)\sum_{r=0}^{t}\|\mathbf{v}_{i_{r}+1:i_{r+1}}\|_{2}^{2}}}{\sqrt{t+1}} = 1$$
$$\implies 1 - \sum_{r=0}^{t} \frac{\|\mathbf{v}_{i_{r}+1:i_{r+1}}\|_{2}}{\sqrt{t+1}} \geq 0$$

Hence (S.17) is indeed a convex combination of t+2 points in \mathcal{T} , which implies $\mathcal{A}_{\mathcal{K}}(\boldsymbol{\theta}^*) \subseteq \operatorname{conv}(\mathcal{T})$. Finally, by the properties of Gaussian width, we conclude that

$$w(\mathcal{A}_{\mathcal{K}}(\boldsymbol{\theta}^*)) \le w(\operatorname{conv}(\mathcal{T})) = w(\mathcal{T}) \le O(\sqrt{s \log p})$$

8. Proof of Lemma 2

Statement of Lemma 2: Define the U-statistic

$$U_{n,m}(h) = \frac{(n-m)!}{n!} \sum_{\substack{1 \le i_1, \dots, i_m \le n\\ i_1 \ne i_2 \ne \dots \ne i_m}} h\left(\mathbf{z}_{i_1}, \dots, \mathbf{z}_{i_m}\right)$$
(S.18)

with order m and kernel $h : \mathbb{R}^{d \times m} \to \mathbb{R}$ based on n independent copies of random vector $\mathbf{z} \in \mathbb{R}^d$, denoted by $\mathbf{z}_1, \dots, \mathbf{z}_n$. If $h(\cdot, \dots, \cdot)$ is sub-Gaussian with $||h||_{\psi_2} \leq \kappa$, then the following inequality holds for $U_{n,m}(h)$ with any $\delta > 0$,

$$\mathbb{P}\left(|U_{n,m}(h) - \mathbb{E}U_{n,m}(h)| > \delta\right) \le 2\exp\left(-C\left\lfloor\frac{n}{m}\right\rfloor \cdot \frac{\delta^2}{\kappa^2}\right)$$
(S.19)

in which C is an absolute constant.

Proof: Our proof is based on Hoeffding's decomposition for U-statistics. For simplicity, we use U as shorthand for $U_{n,m}(h)$. Given a permutation π of $\{1, \ldots, n\}$, define

$$W_{\pi} = \frac{1}{\left\lfloor \frac{n}{m} \right\rfloor} \sum_{k=0}^{\left\lfloor \frac{n}{m} \right\rfloor - 1} h\left(\mathbf{z}_{\pi_{mk+1}}, \dots, \mathbf{z}_{\pi_{m(k+1)}} \right) ,$$

The U-statistic can be rewritten as $U = \frac{1}{n!} \sum_{\pi} W_{\pi}$, and the summation is over all possible permutations of $\{1, \ldots, n\}$. As no copy of z appears more than twice in a single W_{π} , W_{π} is an average of $\lfloor \frac{n}{m} \rfloor$ independent sub-Gaussian random variables. Hence the ψ_2 -norm of its centered version satisfies $||W_{\pi} - \mathbb{E}W_{\pi}||_{\psi_2} \leq c\kappa/\sqrt{\lfloor \frac{n}{m} \rfloor}$. Using Chernoff technique, we have for any t > 0,

$$\mathbb{P}\left(U - \mathbb{E}U > \delta\right) \leq e^{-t\delta} \cdot \mathbb{E}\left[\exp\left(t(U - \mathbb{E}U)\right)\right]$$
$$= e^{-t\delta} \cdot \mathbb{E}\left[\exp\left(\frac{t}{n!}\sum_{\pi}(W_{\pi} - \mathbb{E}U)\right)\right]$$
$$\leq e^{-t\delta} \cdot \mathbb{E}\left[\frac{1}{n!}\sum_{\pi}\exp\left(t(W_{\pi} - \mathbb{E}U)\right)\right]$$
$$= e^{-t\delta} \cdot \mathbb{E}\left[\exp\left(t(W_{\pi} - \mathbb{E}W_{\pi})\right)\right]$$
$$\leq \exp\left(-t\delta + ct^{2} \cdot \frac{\kappa^{2}}{\left\lfloor\frac{n}{m}\right\rfloor}\right),$$
(S.20)

where the second inequality is obtained via Jensen's inequality and the last one follows the moment generating function bound for centered sub-Gaussian random variable. Choosing $t = \lfloor \frac{n}{m} \rfloor \delta/2c\kappa^2$ to minimize right-hand side of (S.20), we obtain

$$\mathbb{P}\left(U - \mathbb{E}U > \delta\right) \le \exp\left(-C\left\lfloor\frac{n}{m}\right\rfloor \cdot \frac{\delta^2}{\kappa^2}\right) ,$$

where C = 1/2c. To complete the proof, we just need to repeat the argument above for $\mathbb{P}(U - \mathbb{E}U < -\delta)$.

References

- Banerjee, A., Chen, S., Fazayeli, F., and Sivakumar, V. Estimation with norm regularization. In Advances in Neural Information Processing Systems (NIPS), 2014.
- Chen, S. and Banerjee, A. Structured estimation with atomic norms: General bounds and applications. In *Proceedings of the 28th International Conference on Neural Information Processing Systems*, 2015.
- Maurer, A., Pontil, M., and Romera-Paredes, B. An Inequality with Applications to Structured Sparsity and Multitask Dictionary Learning. In *Conference on Learning Theory (COLT)*, 2014.

- Negahban, S., Ravikumar, P., Wainwright, M. J., and Yu,
 B. A unified framework for the analysis of regularized *M*-estimators. *Statistical Science*, 27(4):538–557, 2012.
- Vershynin, R. Introduction to the non-asymptotic analysis of random matrices. In Eldar, Y. and Kutyniok, G. (eds.), *Compressed Sensing*, chapter 5, pp. 210–268. Cambridge University Press, 2012.