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Abstract

In this supplementary material, we present the
deferred proofs of the results in the main paper.

1. Proof of Claim 1
Statement of Claim 1: Suppose that each element xi of x
is sampled i.i.d. from Rademacher distribution, i.e., P(xi =
1) = P(xi = −1) = 0.5. Under model (3) with noise
ϵ = 0, there exists a θ̄ ∈ Sp−1 together with a monotone
f̄ , such that supp(θ̄) = supp(θ∗) and yi = f̄(⟨θ̄,xi⟩)
for data {(xi, yi)}ni=1 with arbitrarily large sample size n,
while ∥θ̄ − θ∗∥2 > δ for some constant δ.

Proof: In the noiseless setting with unknown f∗, provid-
ed that S , supp(θ∗) is given and |S| = s, the estimation
of θ∗ is simplified as

Find θS ∈ Ss−1

s.t. sign
(
⟨θS ,xiS − xjS⟩

)
= sign(yi − yj), (S.1)

∀ 1 ≤ i < j ≤ n ,

any of whose solution θ can be true θ∗ on the premise
that no other information is available, since there always
exists a monotone f satisfying f(⟨θ,xi⟩) = yi. Given
the distribution of x, xiS − xjS only has 3s possibilities
even if n → +∞. We denote the feasible set of (S.1) by
C, which is basically an intersection of Ss−1 and at most
min{n(n− 1), 3p} halfspaces (or hyperplanes if yi = yj).
Depending on the 3 different values of each sign(yi − yj),
this feasible set C has at most 3min{n(n−1),3p} possibili-
ties, which is finite, and the union of them should be Ss−1.
When s ≥ 2 and the constant δ is small enough, we can
always find a C, in which there exist two different points
away by δ. Specify them as θ∗S and θ̄S respectively, and
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we are unable to distinguish between them, as both can be
solution to (S.1) for any samples.

2. Proof of Lemma 1
Statement of Lemma 1: Suppose the distribution of y in
model (1) depends on x through ⟨θ∗,x⟩ and we define ac-
cordingly

bi (z1, . . . , zm;θ∗) = (S.2)
E [qi (y1, . . . , ym) |⟨θ∗,x1⟩ = z1, . . . , ⟨θ∗,xm⟩ = zm] ,

With x being standard Gaussian N (0, I), u defined in (4)
satisfies

E [u ((x1, y1), . . . , (xm, ym))] = βθ∗ , (S.3)

where β =
∑m
i=1 E[bi (g1, . . . , gm;θ∗) · gi], and

g1, . . . , gm are i.i.d. standard Gaussian.

Proof: Let θ⊥ be any vector orthogonal to θ∗. For
convenience, we use the shorthand notation u for
u ((x1, y1), . . . , (xm, ym)). Then we have

⟨Eu,θ⊥⟩ = E

[
m∑
i=1

qi (y1, . . . , ym) · ⟨xi,θ⊥⟩

]

=
m∑
i=1

E [qi (y1, . . . , ym) · ⟨xi,θ⊥⟩]

=

m∑
i=1

E [⟨xi,θ⊥⟩ · E [qi (y1, . . . , ym) |x1, . . . ,xm]] (∗)

As xi follows N (0, I), ⟨xi,θ∗⟩ and ⟨xi,θ⊥⟩ are two zero-
mean independent Gaussian random variables. Since the
distribution of yi depends on x only via ⟨θ∗,xi⟩, we can
split the expectation and obtain

(∗) =
m∑
i=1

E [⟨xi,θ⊥⟩ · bi (⟨θ∗,x1⟩, . . . , ⟨θ∗,xm⟩;θ∗)]

=

m∑
i=1

E [⟨xi,θ⊥⟩] · E [bi (⟨θ∗,x1⟩, . . . , ⟨θ∗,xm⟩;θ∗)]

= 0 .
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Hence u has to point towards either θ∗ or −θ∗, and note
that

⟨Eu,θ∗⟩ =
m∑
i=1

E [qi (y1, . . . , ym) · ⟨xi,θ∗⟩]

=
m∑
i=1

E [bi (⟨θ∗,x1⟩, . . . , ⟨θ∗,xm⟩;θ∗) · ⟨xi,θ∗⟩]

=
m∑
i=1

E [bi (g1, . . . , gm;θ∗) · gi] = β

We complete the proof by recalling that ∥θ∗∥2 = 1, thus
Eu = βθ∗.

3. Proof of Theorem 1
We first provide a lemma that is useful for bounding the
Gaussian width of unions of sets, which originates in
Maurer et al. (2014).

Lemma A (Lemma 2 in Maurer et al. (2014)) Let M >
4, A1, · · · ,AM ⊂ Rp, and A = ∪mAm. The Gaussian
width of A satisfies

w(A) ≤ max
1≤m≤M

w(Am) + 2 sup
z∈A

∥z∥2
√
logM (S.4)

Statement of Theorem 1: Suppose that the optimization
(9) can be solved to global minimum. Then the following
error bound holds for the minimizer θ̂ with probability at
least 1− C ′′ exp

(
−w2 (AK(θ

∗))
)
,

∥∥∥θ̂ − θ∗
∥∥∥
2
≤ Cκm

3
2

β
· w(AK(θ

∗)) + C ′
√
n

, (S.5)

where κ is the sub-Gaussian norm of a standard Gaussian
random variable, and C, C ′, C ′′ are all absolute constan-
t. Proof: We use the shorthand notation AK for the set
AK(θ

∗). As θ̂ attains the global minimum of (9), we have

⟨θ̂ − θ∗, û⟩ ≥ 0 ⇐⇒
⟨
θ̂ − θ∗,

û

β
− θ∗ + θ∗

⟩
≥ 0

=⇒ ⟨θ̂,θ∗⟩ ≥ 1−
⟨
θ̂ − θ∗,

û

β
− θ∗

⟩
≥ 1− ∥θ̂ − θ∗∥2 · sup

v∈AK∪{0}

⟨
v,

û

β
− θ∗

⟩
In order to bound the supremum above, we use the result
from generic chaining. We define the stochastic process
{Zv = ⟨v, û/β − θ∗⟩}v∈AK∪{0}. First, we need to check
the process has sub-Gaussian incremental. For simplici-
ty, we denote u ((xi1 , yi1), . . . , (xim , yim)) by ui1,...,im .
By the definitions and properties of sub-Gaussian norm

(Vershynin, 2012), the sub-Gaussian norm of ui1,...,im sat-
isfies

∥ui1,...,im∥ψ2
= sup

v∈Sp−1

∥∥∥∥∥∥
m∑
j=1

qj (y11 , . . . , yim) · ⟨xj ,v⟩

∥∥∥∥∥∥
ψ2

≤ sup
v∈Sp−1

∥∥∥∥∥∥
m∑
j=1

|⟨xj ,v⟩|

∥∥∥∥∥∥
ψ2

≤ m · sup
v∈Sp−1

∥|⟨xj ,v⟩|∥ψ2
≤ κm ,

thus we know ∥⟨ui1,...,im ,v − w⟩∥ψ2 ≤ κm · ∥v − w∥2.
By Lemma 2, we have

P (|Zv − Zw| > δ) = P
(∣∣∣∣⟨v −w,

û

β
− θ∗

⟩∣∣∣∣ > δ

)
= P

(∣∣∣∣ (n−m)!

n!

∑
1≤i1,...,im≤n
i1 ̸=... ̸=im

1

β
· ⟨ui1,...,im ,v −w⟩

− ⟨v −w,θ∗⟩
∣∣∣∣ > δ

)

≤ 2 exp

(
−C

⌊ n
m

⌋
· β2δ2

m2κ2 · ∥v −w∥22

)
≤ 2 exp

(
−C ′ · nβ2δ2

m3κ2 · ∥v −w∥22

)
,

where we set C ′ = C/2. Therefore we can conclude
that {Zv} has sub-Gaussian incremental w.r.t. the metric
s(v,w) , κm

3
2 · ∥v−w∥2/β

√
n. Now applying Lemma

3 to {Zv}, we obtain

P
(

sup
v,w∈AK∪{0}

|Zv − Zw| ≥ C1

(
γ2 (AK ∪ {0}, s)

+ δ · diam (AK ∪ {0}, s)
))

≤ C2 exp
(
−δ2

)
=⇒ P

(
sup

v∈AK∪{0}
|Zv| ≥

C1κm
3
2

β
√
n

·
(
γ2 (AK ∪ {0}, ∥ · ∥2)

+ 2δ
))

≤ C2 exp
(
−δ2

)
Using Lemma 4 γ2 (AK ∪ {0}, ∥ · ∥2) ≤ C0 ·
w (AK ∪ {0}) and taking δ = w (AK ∪ {0}), we
get

sup
v∈AK∪{0}

⟨
v,

û

β
− θ∗

⟩
≤ sup

v∈AK∪{0}
|Zv|

≤ C3κm
3
2

β
√
n

· w (AK ∪ {0}) ≤ C3κm
3
2

β
· w (AK) + C4√

n

with probability at least 1− C2 exp
(
−w2 (AK)

)
. The last

inequality follows from Lemma A. Now we turn to the
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quantity ∥θ̂ − θ∗∥2,

∥θ̂ − θ∗∥22 ≤ 2− 2⟨θ̂,θ∗⟩

≤ 2− 2

(
1− ∥θ̂ − θ∗∥2 ·

C3κm
3
2

β
· w (AK) + C4√

n

)

≤ ∥θ̂ − θ∗∥2 ·
2C3κm

3
2

β
· w (AK) + C4√

n
.

We finish the proof by letting C = 2C3, C ′ = C4 and
C ′′ = C2.

4. Proof of Theorem 2
Statement of Theorem 2: Define the following set for any
ρ > 1,

Aρ (θ
∗) = cone

{
v
∣∣∣ ∥v + θ∗∥ ≤ ∥θ∗∥+ ∥v∥

ρ

} ∩
Sp−1

(S.6)
If we set λ = ρ ∥û− βθ∗∥∗ = O(ρm3/2w(B∥·∥)/

√
n)

and it satisfies λ < ∥û∥∗, then with probability at least
1− C ′ exp

(
−w2

(
B∥·∥

))
, θ̂ in (10) satisfies

∥∥∥θ̂ − θ∗
∥∥∥
2
≤ C(1 + ρ)κm

3
2

β
·
Ψ(Aρ(θ

∗)) · w
(
B∥·∥

)
√
n

,

(S.7)
where Ψ(Aρ(θ

∗)) = supv∈Aρ(θ∗) ∥v∥ and B∥·∥ =
{v | ∥v∥ ≤ 1} is the unit ball of norm ∥ · ∥.

Proof: Based on the optimality of θ̂, we have

−⟨û, θ̂⟩+ λ∥θ̂∥ ≤ −⟨û,θ∗⟩+ λ∥θ∗∥ =⇒

⟨βθ∗ − û− βθ∗, θ̂⟩+ λ∥θ̂∥
≤ ⟨βθ∗ − û− βθ∗,θ∗⟩+ λ∥θ∗∥ =⇒

β(1− ⟨θ∗, θ̂⟩) ≤ ⟨û− βθ∗, θ̂ − θ∗⟩+ λ(∥θ∗∥ − ∥θ̂∥)

Since ⟨θ∗, θ̂⟩ ≤ 1, we have

⟨û− βθ∗, θ̂ − θ∗⟩+ λ
(
∥θ∗∥ − ∥θ̂∥

)
≥ 0 =⇒

∥θ̂∥ ≤ ∥θ∗∥+ 1

λ
· ⟨û− βθ∗, θ̂ − θ∗⟩

≤ ∥θ∗∥+ 1

λ
· ∥û− βθ∗∥∗∥θ̂ − θ∗∥

= ∥θ∗∥+ 1

ρ
∥θ̂ − θ∗∥ =⇒ θ̂ − θ∗ ∈ Aρ(θ

∗)

Therefore it follows that

1− ⟨θ∗, θ̂⟩ ≤ ⟨ û
β
− θ∗, θ̂ − θ∗⟩+ λ

β

(
∥θ∗∥ − ∥θ̂∥

)
≤ ∥θ̂ − θ∗∥2

(∥∥∥∥ ûβ − θ∗
∥∥∥∥
∗
· ∥θ̂ − θ∗∥
∥θ̂ − θ∗∥2

+
λ

β
· ∥θ̂ − θ∗∥
∥θ̂ − θ∗∥2

)

≤ (1 + ρ)∥θ̂ − θ∗∥2 ·
∥∥∥∥ ûβ − θ∗

∥∥∥∥
∗
· sup
v∈Aρ(θ∗)

∥v∥

= (1 + ρ)∥θ̂ − θ∗∥2 ·
∥∥∥∥ ûβ − θ∗

∥∥∥∥
∗
·Ψ(Aρ(θ

∗))

(S.8)

Now we try to bound
∥∥∥ û
β − θ∗

∥∥∥
∗
. We first rewrite it as∥∥∥ û

β − θ∗
∥∥∥
∗
= supv∈B∥·∥

⟨
û
β − θ∗,v

⟩
. Construct the s-

tochastic process {Zv = ⟨v, û/β − θ∗⟩}v∈B∥·∥ , and it is
not difficult to verify that {Zv} has sub-Gaussian incre-
mental using the proof in Theorem 1. Now applying Lem-
ma 3 and 4, we have

sup
v∈B∥·∥

⟨
û

β
− θ∗,v

⟩
=

1

2
· sup
v,w∈B∥·∥

|Zv − Zw|

≤ C1κm
3
2

β
·
w
(
B∥·∥

)
√
n

,

(S.9)

with probability at least 1 − C ′ exp
(
−w2

(
B∥·∥

))
. There-

fore we know that λ satisfies

λ = O

(
ρm3/2w(B∥·∥)√

n

)

If θ̂ = 0 is the minimizer, the first-order optimality should
hold, i.e.,

û ∈ λ · ∂∥0∥ =⇒ ∥û∥∗ ≤ λ

Hence if λ < ∥û∥∗, 0 cannot be the minimizer, which
means that the minimum of (10) must be negative. So we
can assert that ∥θ̂∥2 = 1, otherwise we can normalize θ̂ to
get a smaller objective value. Combining (S.8) and (S.9),
we finally get

∥θ̂ − θ∗∥ =
2− 2⟨θ̂,θ∗⟩
∥θ̂ − θ∗∥

≤ Cmκ(1 + ρ)

β
·
Ψ(Aρ(θ

∗)) · w
(
B∥·∥

)
√
n

,

where the equality uses the fact that ∥θ̂∥2 = 1.

5. Proof of Corollary 1
Statement of Corollary 1: Assume that {(xi, yi)}ni=1 fol-
low 1-bit CS model in (2) and û is given as (14). For any
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s-sparse θ∗, with high probability, θ̂ produced by both (15)
and (17) (i.e., θ̂ks and θ̂ps) satisfy

∥∥∥θ̂ − θ∗
∥∥∥
2
≤ O

(√
s log p

n

)
(S.10)

Proof: For the k-support norm estimator, the cone
AK(θ

∗) is given by

AK(θ
∗) = cone

{
θ̂ − θ∗

∣∣∣ ∥θ̂∥0 ≤ s, ∥θ̂∥2 ≤ 1
} ∩

Sp−1

=⇒ AK(θ
∗) ⊆ S = {v | ∥v∥0 ≤ 2s} ∩ Sp−1

Using (19) from (Chen & Banerjee, 2015), we have

w(AK(θ
∗)) ≤ w(S) ≤ O

(√
s log p

)
.

By Theorem 1, the error of k-support norm estimator satis-
fies ∥∥∥θ̂ks − θ∗

∥∥∥
2
≤ O

(√
s log p

n

)

For the passive algorithm, if we choose ρ = 2, the restricted
norm compatibility Ψ(Aρ(θ

∗)) for L1 norm satisfies

Ψ(Aρ(θ
∗)) ≤ 4

√
s (S.11)

according to the results in (Negahban et al., 2012;
Banerjee et al., 2014). Chen & Banerjee (2015) also show
that the Gaussian width of the L1-norm ball is bounded by

w(BL1) ≤ O
(√

log p
)
. (S.12)

Now combining (S.11), (S.12) and Theorem 2, we can con-
clude that ∥∥∥θ̂ps − θ∗

∥∥∥
2
≤ O

(√
s log p

n

)
,

which completes the proof.

6. Proof of Proposition 1
Statement of Proposition 1: Given {(xi, yi)}ni=1, let π↓

be the permutation of {1, . . . , n} such that yπ↓
1
> yπ↓

2
>

. . . > yπ↓
n

. Then we have

ĥ =
2

n(n− 1)

n∑
i=1

(n+ 1− 2i) · xπ↓
i

(S.13)

Proof: We rearrange the terms inside the summation of
(21) based on π↓,

ĥ =
1

n(n− 1)

∑
1≤i,j≤n
i ̸=j

sign(yi − yj) · (xi − xj)

=
2

n(n− 1)

∑
1≤i,j≤n
i ̸=j

sign(yi − yj) · xi

=
2

n(n− 1)

n∑
i=1

∑
j ̸=π↓

i

sign
(
yπ↓

i
− yj

)
· xπ↓

i

=
2

n(n− 1)

n∑
i=1

(n+ 1− 2i) · xπ↓
i
,

where the last inequality uses the fact that there are
(i − 1) yj larger than and (n − i) smaller than yπ↓

i
, thus∑

j ̸=π↓
i

sign
(
yπ↓

i
− yj

)
= (n−i)−(i−1) = n+1−2i.

7. Proof of Proposition 2
Statement of Proposition 2: For s-fused-sparse θ∗, the
Gaussian width of set AK(θ

∗) with K = {θ | |F(θ)| ≤
s, ∥θ∥2 = 1} satisfies

w(AK(θ
∗)) ≤ O(

√
s log p) (S.14)

Proof: Define the following sets

Ti,j =
{
αu ∈ Rp

∣∣∣ u1 = . . . = ui−1 = uj+1 = . . . = up = 0,

ui = . . . = uj =
1√

j − i+ 1
, |α| ≤

√
2s+ 1

}
(S.15)

T =
∪
i≤j

Ti,j (S.16)

For each Ti,j , its Gaussian width can be calculated as

w(Ti,j) = E

[
sup

v∈Ti,j

⟨v,g⟩

]
=

√
2s+ 1 · E [|⟨u,g⟩|]

=
√
2s+ 1 · E |g| = O(

√
2s+ 1) ,

where u is defined in (S.15) and g is a standard Gaussian
random variable. We apply Lemma A to T , and obtain

w(T ) ≤ max
i≤j

w(Ti,j) + 2 sup
z∈T

∥z∥2

√
log

((
p

2

)
+ p

)
≤ O(

√
2s+ 1) +O(

√
2s+ 1 ·

√
log p)

= O(
√
s log p)
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Next we show that AK(θ
∗) ⊆ conv(T ). Since K =

{θ | |F(θ)| ≤ s, ∥θ∥2 = 1} and AK(θ
∗) =

cone
{
v
∣∣∣ v = θ̂ − θ∗, θ̂ ∈ K

} ∩
Sp−1 by definition, we

have |F(v)| ≤ 2s for any v ∈ AK(θ
∗). Suppose |F(v)| =

t ≤ 2s and F(v) = {i1, i2, . . . , it}. For simplicity, we al-
so let i0 = 0 and it+1 = p. Then any v ∈ AK(θ

∗) can be
written as a convex combination of t + 2 points in T . To
see this, we rewrite v as

v =
t∑

r=0

vir+1:ir+1 =
t∑

r=0

∥vir+1:ir+1∥2√
t+ 1

·
√
t+ 1vir+1:ir+1

∥vir+1:ir+1∥2

+

(
1−

t∑
r=0

∥vir+1:ir+1∥2√
t+ 1

)
· 0 ,

(S.17)

where vir+1:ir+1 is obtained from v by keeping the entries
from index ir + 1 to ir+1 while zeroing out the rest. Let

uir+1:ir+1 =
√
t+1vir+1:ir+1

∥vir+1:ir+1
∥2

, and we have

∥uir+1:ir+1∥2 =
√
t+ 1 ≤

√
2s+ 1

=⇒ uir+1:ir+1 ∈ Tir+1:ir+1 ⊆ T .

It follows from ∥v∥2 = 1 that

t∑
r=0

∥vir+1:ir+1∥2√
t+ 1

≤

√
(t+ 1)

∑t
r=0 ∥vir+1:ir+1∥22√
t+ 1

= 1

=⇒ 1−
t∑

r=0

∥vir+1:ir+1∥2√
t+ 1

≥ 0

Hence (S.17) is indeed a convex combination of t+2 points
in T , which implies AK(θ

∗) ⊆ conv(T ). Finally, by the
properties of Gaussian width, we conclude that

w(AK(θ
∗)) ≤ w(conv(T )) = w(T ) ≤ O(

√
s log p)

8. Proof of Lemma 2
Statement of Lemma 2: Define the U -statistic

Un,m(h) =
(n−m)!

n!

∑
1≤i1,...,im≤n
i1 ̸=i2 ̸=...̸=im

h (zi1 , . . . , zim)

(S.18)
with order m and kernel h : Rd×m 7→ R based on n in-
dependent copies of random vector z ∈ Rd, denoted by
z1, · · · , zn. If h(·, . . . , ·) is sub-Gaussian with ∥h∥ψ2 ≤ κ,
then the following inequality holds for Un,m(h) with any
δ > 0,

P (|Un,m(h)− EUn,m(h)| > δ) ≤ 2 exp

(
−C

⌊ n
m

⌋
· δ

2

κ2

)
,

(S.19)

in which C is an absolute constant.

Proof: Our proof is based on Hoeffding’s decomposition
for U -statistics. For simplicity, we use U as shorthand for
Un,m(h). Given a permutation π of {1, . . . , n}, define

Wπ =
1⌊
n
m

⌋ ⌊ n
m⌋−1∑
k=0

h
(
zπmk+1

, . . . , zπm(k+1)

)
,

TheU -statistic can be rewritten asU = 1
n!

∑
πWπ , and the

summation is over all possible permutations of {1, . . . , n}.
As no copy of z appears more than twice in a single Wπ ,
Wπ is an average of ⌊ nm⌋ independent sub-Gaussian ran-
dom variables. Hence the ψ2-norm of its centered version
satisfies ∥Wπ − EWπ∥ψ2 ≤ cκ/

√
⌊ nm⌋. Using Chernoff

technique, we have for any t > 0,

P (U − EU > δ) ≤ e−tδ · E [exp(t(U − EU))]

=e−tδ · E

[
exp

(
t

n!

∑
π

(Wπ − EU)

)]

≤e−tδ · E

[
1

n!

∑
π

exp (t(Wπ − EU))

]
=e−tδ · E [exp (t(Wπ − EWπ))]

≤ exp

(
−tδ + ct2 · κ2⌊

n
m

⌋) ,

(S.20)

where the second inequality is obtained via Jensen’s in-
equality and the last one follows the moment generating
function bound for centered sub-Gaussian random variable.
Choosing t =

⌊
n
m

⌋
δ/2cκ2 to minimize right-hand side of

(S.20), we obtain

P (U − EU > δ) ≤ exp

(
−C

⌊ n
m

⌋
· δ

2

κ2

)
,

where C = 1/2c. To complete the proof, we just need to
repeat the argument above for P (U − EU < −δ).
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