Supplementary Material to Robust Structured Estimation with Single-Index Models

Sheng Chen ${ }^{1}$ Arindam Banerjee ${ }^{1}$

Abstract

In this supplementary material, we present the deferred proofs of the results in the main paper.

1. Proof of Claim 1

Statement of Claim 1: Suppose that each element x_{i} of \mathbf{x} is sampled i.i.d. from Rademacher distribution, i.e., $\mathbb{P}\left(x_{i}=\right.$ 1) $=\mathbb{P}\left(x_{i}=-1\right)=0.5$. Under model (3) with noise $\epsilon=0$, there exists a $\overline{\boldsymbol{\theta}} \in \mathbb{S}^{p-1}$ together with a monotone \bar{f}, such that $\operatorname{supp}(\overline{\boldsymbol{\theta}})=\operatorname{supp}\left(\boldsymbol{\theta}^{*}\right)$ and $y_{i}=\bar{f}\left(\left\langle\overline{\boldsymbol{\theta}}, \mathbf{x}_{i}\right\rangle\right)$ for data $\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1}^{n}$ with arbitrarily large sample size n, while $\left\|\overline{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}\right\|_{2}>\delta$ for some constant δ.

Proof: In the noiseless setting with unknown f^{*}, provided that $\mathcal{S} \triangleq \operatorname{supp}\left(\boldsymbol{\theta}^{*}\right)$ is given and $|\mathcal{S}|=s$, the estimation of $\boldsymbol{\theta}^{*}$ is simplified as

$$
\begin{gather*}
\text { Find } \boldsymbol{\theta}_{\mathcal{S}} \in \mathbb{S}^{s-1} \\
\text { s.t. } \operatorname{sign}\left(\left\langle\boldsymbol{\theta}_{\mathcal{S}}, \mathbf{x}_{i \mathcal{S}}-\mathbf{x}_{j \mathcal{S}}\right\rangle\right)=\operatorname{sign}\left(y_{i}-y_{j}\right), \tag{S.1}\\
\forall 1 \leq i<j \leq n
\end{gather*}
$$

any of whose solution $\boldsymbol{\theta}$ can be true $\boldsymbol{\theta}^{*}$ on the premise that no other information is available, since there always exists a monotone f satisfying $f\left(\left\langle\boldsymbol{\theta}, \mathbf{x}_{i}\right\rangle\right)=y_{i}$. Given the distribution of $\mathbf{x}, \mathbf{x}_{i \mathcal{S}}-\mathbf{x}_{j_{\mathcal{S}}}$ only has 3^{s} possibilities even if $n \rightarrow+\infty$. We denote the feasible set of (S.1) by \mathcal{C}, which is basically an intersection of \mathbb{S}^{s-1} and at most $\min \left\{n(n-1), 3^{p}\right\}$ halfspaces (or hyperplanes if $y_{i}=y_{j}$). Depending on the 3 different values of each $\operatorname{sign}\left(y_{i}-y_{j}\right)$, this feasible set \mathcal{C} has at most $3^{\min \left\{n(n-1), 3^{p}\right\}}$ possibilities, which is finite, and the union of them should be \mathbb{S}^{s-1}. When $s \geq 2$ and the constant δ is small enough, we can always find a \mathcal{C}, in which there exist two different points away by δ. Specify them as $\boldsymbol{\theta}_{* \mathcal{S}}$ and $\overline{\boldsymbol{\theta}}_{\mathcal{S}}$ respectively, and

[^0]we are unable to distinguish between them, as both can be solution to (S.1) for any samples.

2. Proof of Lemma 1

Statement of Lemma 1: Suppose the distribution of y in model (1) depends on \mathbf{x} through $\left\langle\boldsymbol{\theta}^{*}, \mathbf{x}\right\rangle$ and we define accordingly

$$
\begin{gathered}
b_{i}\left(z_{1}, \ldots, z_{m} ; \boldsymbol{\theta}^{*}\right)= \\
\mathbb{E}\left[q_{i}\left(y_{1}, \ldots, y_{m}\right) \mid\left\langle\boldsymbol{\theta}^{*}, \mathbf{x}_{1}\right\rangle=z_{1}, \ldots,\left\langle\boldsymbol{\theta}^{*}, \mathbf{x}_{m}\right\rangle=z_{m}\right]
\end{gathered}
$$

With \mathbf{x} being standard Gaussian $\mathcal{N}(\mathbf{0}, \mathbf{I}), \mathbf{u}$ defined in (4) satisfies

$$
\begin{equation*}
\mathbb{E}\left[\mathbf{u}\left(\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)\right)\right]=\beta \boldsymbol{\theta}^{*} \tag{S.3}
\end{equation*}
$$

where $\beta=\sum_{i=1}^{m} \mathbb{E}\left[b_{i}\left(g_{1}, \ldots, g_{m} ; \boldsymbol{\theta}^{*}\right) \cdot g_{i}\right]$, and g_{1}, \ldots, g_{m} are i.i.d. standard Gaussian.

Proof: Let $\boldsymbol{\theta}_{\perp}$ be any vector orthogonal to $\boldsymbol{\theta}^{*}$. For convenience, we use the shorthand notation \mathbf{u} for $\mathbf{u}\left(\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)\right)$. Then we have

$$
\begin{align*}
& \left\langle\mathbb{E} \mathbf{u}, \boldsymbol{\theta}_{\perp}\right\rangle=\mathbb{E}\left[\sum_{i=1}^{m} q_{i}\left(y_{1}, \ldots, y_{m}\right) \cdot\left\langle\mathbf{x}_{i}, \boldsymbol{\theta}_{\perp}\right\rangle\right] \\
= & \sum_{i=1}^{m} \mathbb{E}\left[q_{i}\left(y_{1}, \ldots, y_{m}\right) \cdot\left\langle\mathbf{x}_{i}, \boldsymbol{\theta}_{\perp}\right\rangle\right] \\
= & \sum_{i=1}^{m} \mathbb{E}\left[\left\langle\mathbf{x}_{i}, \boldsymbol{\theta}_{\perp}\right\rangle \cdot \mathbb{E}\left[q_{i}\left(y_{1}, \ldots, y_{m}\right) \mid \mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right]\right] \tag{*}
\end{align*}
$$

As \mathbf{x}_{i} follows $\mathcal{N}(\mathbf{0}, \mathbf{I}),\left\langle\mathbf{x}_{i}, \boldsymbol{\theta}^{*}\right\rangle$ and $\left\langle\mathbf{x}_{i}, \boldsymbol{\theta}_{\perp}\right\rangle$ are two zeromean independent Gaussian random variables. Since the distribution of y_{i} depends on \mathbf{x} only via $\left\langle\boldsymbol{\theta}^{*}, \mathbf{x}_{i}\right\rangle$, we can split the expectation and obtain

$$
\begin{aligned}
(*) & =\sum_{i=1}^{m} \mathbb{E}\left[\left\langle\mathbf{x}_{i}, \boldsymbol{\theta}_{\perp}\right\rangle \cdot b_{i}\left(\left\langle\boldsymbol{\theta}^{*}, \mathbf{x}_{1}\right\rangle, \ldots,\left\langle\boldsymbol{\theta}^{*}, \mathbf{x}_{m}\right\rangle ; \boldsymbol{\theta}^{*}\right)\right] \\
& =\sum_{i=1}^{m} \mathbb{E}\left[\left\langle\mathbf{x}_{i}, \boldsymbol{\theta}_{\perp}\right\rangle\right] \cdot \mathbb{E}\left[b_{i}\left(\left\langle\boldsymbol{\theta}^{*}, \mathbf{x}_{1}\right\rangle, \ldots,\left\langle\boldsymbol{\theta}^{*}, \mathbf{x}_{m}\right\rangle ; \boldsymbol{\theta}^{*}\right)\right] \\
& =0
\end{aligned}
$$

Hence \mathbf{u} has to point towards either $\boldsymbol{\theta}^{*}$ or $-\boldsymbol{\theta}^{*}$, and note that

$$
\begin{aligned}
\left\langle\mathbb{E} \mathbf{u}, \boldsymbol{\theta}^{*}\right\rangle & =\sum_{i=1}^{m} \mathbb{E}\left[q_{i}\left(y_{1}, \ldots, y_{m}\right) \cdot\left\langle\mathbf{x}_{i}, \boldsymbol{\theta}^{*}\right\rangle\right] \\
& =\sum_{i=1}^{m} \mathbb{E}\left[b_{i}\left(\left\langle\boldsymbol{\theta}^{*}, \mathbf{x}_{1}\right\rangle, \ldots,\left\langle\boldsymbol{\theta}^{*}, \mathbf{x}_{m}\right\rangle ; \boldsymbol{\theta}^{*}\right) \cdot\left\langle\mathbf{x}_{i}, \boldsymbol{\theta}^{*}\right\rangle\right] \\
& =\sum_{i=1}^{m} \mathbb{E}\left[b_{i}\left(g_{1}, \ldots, g_{m} ; \boldsymbol{\theta}^{*}\right) \cdot g_{i}\right]=\beta
\end{aligned}
$$

We complete the proof by recalling that $\left\|\boldsymbol{\theta}^{*}\right\|_{2}=1$, thus $\mathbb{E} \mathbf{u}=\beta \boldsymbol{\theta}^{*}$.

3. Proof of Theorem 1

We first provide a lemma that is useful for bounding the Gaussian width of unions of sets, which originates in Maurer et al. (2014).

Lemma A (Lemma 2 in Maurer et al. (2014)) Let $M>$ $4, \mathcal{A}_{1}, \cdots, \mathcal{A}_{M} \subset \mathbb{R}^{p}$, and $\mathcal{A}=\cup_{m} \mathcal{A}_{m}$. The Gaussian width of \mathcal{A} satisfies

$$
\begin{equation*}
w(\mathcal{A}) \leq \max _{1 \leq m \leq M} w\left(\mathcal{A}_{m}\right)+2 \sup _{\mathbf{z} \in \mathcal{A}}\|\mathbf{z}\|_{2} \sqrt{\log M} \tag{S.4}
\end{equation*}
$$

Statement of Theorem 1: Suppose that the optimization (9) can be solved to global minimum. Then the following error bound holds for the minimizer $\hat{\boldsymbol{\theta}}$ with probability at least $1-C^{\prime \prime} \exp \left(-w^{2}\left(\mathcal{A}_{\mathcal{K}}\left(\boldsymbol{\theta}^{*}\right)\right)\right)$,

$$
\begin{equation*}
\left\|\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}\right\|_{2} \leq \frac{C \kappa m^{\frac{3}{2}}}{\beta} \cdot \frac{w\left(\mathcal{A}_{\mathcal{K}}\left(\boldsymbol{\theta}^{*}\right)\right)+C^{\prime}}{\sqrt{n}} \tag{S.5}
\end{equation*}
$$

where κ is the sub-Gaussian norm of a standard Gaussian random variable, and $C, C^{\prime}, C^{\prime \prime}$ are all absolute constant. Proof: We use the shorthand notation $\mathcal{A}_{\mathcal{K}}$ for the set $\mathcal{A}_{\mathcal{K}}\left(\boldsymbol{\theta}^{*}\right)$. As $\hat{\boldsymbol{\theta}}$ attains the global minimum of (9), we have

$$
\begin{aligned}
&\left\langle\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}, \hat{\mathbf{u}}\right\rangle \geq 0 \Longleftrightarrow\left\langle\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}, \frac{\hat{\mathbf{u}}}{\beta}-\boldsymbol{\theta}^{*}+\boldsymbol{\theta}^{*}\right\rangle \geq 0 \\
& \Longrightarrow\left\langle\hat{\boldsymbol{\theta}}, \boldsymbol{\theta}^{*}\right\rangle \geq 1-\left\langle\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}, \frac{\hat{\mathbf{u}}}{\beta}-\boldsymbol{\theta}^{*}\right\rangle \\
& \geq 1-\left\|\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}\right\|_{2} \cdot \sup _{\mathbf{v} \in \mathcal{A}_{\mathcal{K}} \cup\{\mathbf{0}\}}\left\langle\mathbf{v}, \frac{\hat{\mathbf{u}}}{\beta}-\boldsymbol{\theta}^{*}\right\rangle
\end{aligned}
$$

In order to bound the supremum above, we use the result from generic chaining. We define the stochastic process $\left\{Z_{\mathbf{v}}=\left\langle\mathbf{v}, \hat{\mathbf{u}} / \beta-\boldsymbol{\theta}^{*}\right\rangle\right\}_{\mathbf{v} \in \mathcal{A}_{\mathcal{K}} \cup\{0\}}$. First, we need to check the process has sub-Gaussian incremental. For simplicity, we denote $\mathbf{u}\left(\left(\mathbf{x}_{i_{1}}, y_{i_{1}}\right), \ldots,\left(\mathbf{x}_{i_{m}}, y_{i_{m}}\right)\right)$ by $\mathbf{u}_{i_{1}, \ldots, i_{m}}$. By the definitions and properties of sub-Gaussian norm
(Vershynin, 2012), the sub-Gaussian norm of $\mathbf{u}_{i_{1}, \ldots, i_{m}}$ satisfies

$$
\begin{aligned}
\left\|\mathbf{u}_{i_{1}, \ldots, i_{m}}\right\|_{\psi_{2}} & =\sup _{\mathbf{v} \in \mathbb{S}^{p-1}}\left\|\sum_{j=1}^{m} q_{j}\left(y_{1_{1}}, \ldots, y_{i_{m}}\right) \cdot\left\langle\mathbf{x}_{j}, \mathbf{v}\right\rangle\right\|_{\psi_{2}} \\
& \leq \sup _{\mathbf{v} \in \mathbb{S}^{p-1}}\left\|\sum_{j=1}^{m}\left|\left\langle\mathbf{x}_{j}, \mathbf{v}\right\rangle\right|\right\|_{\psi_{2}} \\
& \leq m \cdot \sup _{\mathbf{v} \in \mathbb{S}^{p-1}}\left\|\left|\left\langle\mathbf{x}_{j}, \mathbf{v}\right\rangle\right|\right\|_{\psi_{2}} \leq \kappa m
\end{aligned}
$$

thus we know $\left\|\left\langle\mathbf{u}_{i_{1}, \ldots, i_{m}}, \mathbf{v}-\mathbf{w}\right\rangle\right\|_{\psi_{2}} \leq \kappa m \cdot\|\mathbf{v}-\mathbf{w}\|_{2}$. By Lemma 2, we have

$$
\begin{aligned}
& \mathbb{P}\left(\left|Z_{\mathbf{v}}-Z_{\mathbf{w}}\right|>\delta\right)=\mathbb{P}\left(\left|\left\langle\mathbf{v}-\mathbf{w}, \frac{\hat{\mathbf{u}}}{\beta}-\boldsymbol{\theta}^{*}\right\rangle\right|>\delta\right) \\
& =\mathbb{P}\left(\left\lvert\, \frac{(n-m)!}{n!} \sum_{\substack{1 \leq i_{1}, \ldots, i_{m} \leq n \\
i_{1} \neq \ldots \neq i_{m}}} \frac{1}{\beta} \cdot\left\langle\mathbf{u}_{i_{1}, \ldots, i_{m}}, \mathbf{v}-\mathbf{w}\right\rangle\right.\right. \\
& \left.\quad-\left\langle\mathbf{v}-\mathbf{w}, \boldsymbol{\theta}^{*}\right\rangle \mid>\delta\right) \\
& \leq 2 \exp \left(-C\left\lfloor\frac{n}{m}\right\rfloor \cdot \frac{\beta^{2} \delta^{2}}{m^{2} \kappa^{2} \cdot\|\mathbf{v}-\mathbf{w}\|_{2}^{2}}\right) \\
& \leq 2 \exp \left(-C^{\prime} \cdot \frac{n \beta^{2} \delta^{2}}{m^{3} \kappa^{2} \cdot\|\mathbf{v}-\mathbf{w}\|_{2}^{2}}\right)
\end{aligned}
$$

where we set $C^{\prime}=C / 2$. Therefore we can conclude that $\left\{Z_{\mathbf{v}}\right\}$ has sub-Gaussian incremental w.r.t. the metric $s(\mathbf{v}, \mathbf{w}) \triangleq \kappa m^{\frac{3}{2}} \cdot\|\mathbf{v}-\mathbf{w}\|_{2} / \beta \sqrt{n}$. Now applying Lemma 3 to $\left\{Z_{\mathbf{v}}\right\}$, we obtain

$$
\begin{aligned}
& \mathbb{P}\left(\sup _{\mathbf{v}, \mathbf{w} \in \mathcal{A}_{\mathcal{K}} \cup\{\mathbf{0}\}}\left|Z_{\mathbf{v}}-Z_{\mathbf{w}}\right| \geq C_{1}\left(\gamma_{2}\left(\mathcal{A}_{\mathcal{K}} \cup\{\mathbf{0}\}, s\right)\right.\right. \\
& \left.\left.\quad+\delta \cdot \operatorname{diam}\left(\mathcal{A}_{\mathcal{K}} \cup\{\mathbf{0}\}, s\right)\right)\right) \leq C_{2} \exp \left(-\delta^{2}\right) \\
& \Longrightarrow \mathbb{P}\left(\sup _{\mathbf{v} \in \mathcal{A}_{\mathcal{K}} \cup\{\mathbf{0}\}}\left|Z_{\mathbf{v}}\right| \geq \frac{C_{1} \kappa m^{\frac{3}{2}}}{\beta \sqrt{n}} \cdot\left(\gamma_{2}\left(\mathcal{A}_{\mathcal{K}} \cup\{\mathbf{0}\},\|\cdot\|_{2}\right)\right.\right. \\
& \quad+2 \delta)) \leq C_{2} \exp \left(-\delta^{2}\right)
\end{aligned}
$$

Using Lemma $4 \gamma_{2}\left(\mathcal{A}_{\mathcal{K}} \cup\{\mathbf{0}\},\|\cdot\|_{2}\right) \leq C_{0}$. $w\left(\mathcal{A}_{\mathcal{K}} \cup\{\mathbf{0}\}\right)$ and taking $\delta=w\left(\mathcal{A}_{\mathcal{K}} \cup\{\mathbf{0}\}\right)$, we get

$$
\begin{aligned}
& \sup _{\mathbf{v} \in \mathcal{A}_{\mathcal{K}} \cup\{\mathbf{0}\}}\left\langle\mathbf{v}, \frac{\hat{\mathbf{u}}}{\beta}-\boldsymbol{\theta}^{*}\right\rangle \leq \sup _{\mathbf{v} \in \mathcal{A}_{\mathcal{K}} \cup\{\mathbf{0}\}}\left|Z_{\mathbf{v}}\right| \\
& \leq \frac{C_{3} \kappa m^{\frac{3}{2}}}{\beta \sqrt{n}} \cdot w\left(\mathcal{A}_{\mathcal{K}} \cup\{\mathbf{0}\}\right) \leq \frac{C_{3} \kappa m^{\frac{3}{2}}}{\beta} \cdot \frac{w\left(\mathcal{A}_{\mathcal{K}}\right)+C_{4}}{\sqrt{n}}
\end{aligned}
$$

with probability at least $1-C_{2} \exp \left(-w^{2}\left(\mathcal{A}_{\mathcal{K}}\right)\right)$. The last inequality follows from Lemma A. Now we turn to the
quantity $\left\|\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}\right\|_{2}$,

$$
\begin{aligned}
& \left\|\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}\right\|_{2}^{2} \leq 2-2\left\langle\hat{\boldsymbol{\theta}}, \boldsymbol{\theta}^{*}\right\rangle \\
\leq & 2-2\left(1-\left\|\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}\right\|_{2} \cdot \frac{C_{3} \kappa m^{\frac{3}{2}}}{\beta} \cdot \frac{w\left(\mathcal{A}_{\mathcal{K}}\right)+C_{4}}{\sqrt{n}}\right) \\
\leq & \left\|\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}\right\|_{2} \cdot \frac{2 C_{3} \kappa m^{\frac{3}{2}}}{\beta} \cdot \frac{w\left(\mathcal{A}_{\mathcal{K}}\right)+C_{4}}{\sqrt{n}} .
\end{aligned}
$$

We finish the proof by letting $C=2 C_{3}, C^{\prime}=C_{4}$ and $C^{\prime \prime}=C_{2}$.

4. Proof of Theorem 2

Statement of Theorem 2: Define the following set for any $\rho>1$,
$\mathcal{A}_{\rho}\left(\boldsymbol{\theta}^{*}\right)=\operatorname{cone}\left\{\mathbf{v} \left\lvert\,\left\|\mathbf{v}+\boldsymbol{\theta}^{*}\right\| \leq\left\|\boldsymbol{\theta}^{*}\right\|+\frac{\|\mathbf{v}\|}{\rho}\right.\right\} \bigcap \mathbb{S}^{p-1}$
If we set $\lambda=\rho\left\|\hat{\mathbf{u}}-\beta \boldsymbol{\theta}^{*}\right\|_{*}=O\left(\rho m^{3 / 2} w\left(\mathcal{B}_{\|\cdot\|}\right) / \sqrt{n}\right)$ and it satisfies $\lambda<\|\hat{\mathbf{u}}\|_{*}$, then with probability at least $1-C^{\prime} \exp \left(-w^{2}\left(\mathcal{B}_{\|\cdot\|}\right)\right), \hat{\boldsymbol{\theta}}$ in (10) satisfies

$$
\begin{equation*}
\left\|\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}\right\|_{2} \leq \frac{C(1+\rho) \kappa m^{\frac{3}{2}}}{\beta} \cdot \frac{\Psi\left(\mathcal{A}_{\rho}\left(\boldsymbol{\theta}^{*}\right)\right) \cdot w\left(\mathcal{B}_{\|\cdot\|}\right)}{\sqrt{n}}, \tag{S.7}
\end{equation*}
$$

where $\Psi\left(\mathcal{A}_{\rho}\left(\boldsymbol{\theta}^{*}\right)\right)=\sup _{\mathbf{v} \in \mathcal{A}_{\rho}\left(\boldsymbol{\theta}^{*}\right)}\|\mathbf{v}\|$ and $\mathcal{B}_{\|\cdot\|}=$ $\{\mathbf{v} \mid\|\mathbf{v}\| \leq 1\}$ is the unit ball of norm $\|\cdot\|$.
Proof: Based on the optimality of $\hat{\boldsymbol{\theta}}$, we have

$$
\begin{gathered}
-\langle\hat{\mathbf{u}}, \hat{\boldsymbol{\theta}}\rangle+\lambda\|\hat{\boldsymbol{\theta}}\| \leq-\left\langle\hat{\mathbf{u}}, \boldsymbol{\theta}^{*}\right\rangle+\lambda\left\|\boldsymbol{\theta}^{*}\right\| \quad \Longrightarrow \\
\left\langle\beta \boldsymbol{\theta}^{*}-\hat{\mathbf{u}}-\beta \boldsymbol{\theta}^{*}, \hat{\boldsymbol{\theta}}\right\rangle+\lambda\|\boldsymbol{\theta}\| \\
\leq\left\langle\beta \boldsymbol{\theta}^{*}-\hat{\mathbf{u}}-\beta \boldsymbol{\theta}^{*}, \boldsymbol{\theta}^{*}\right\rangle+\lambda\left\|\boldsymbol{\theta}^{*}\right\| \Longrightarrow \\
\beta\left(1-\left\langle\boldsymbol{\theta}^{*}, \hat{\boldsymbol{\theta}}\right\rangle\right) \leq\left\langle\hat{\mathbf{u}}-\beta \boldsymbol{\theta}^{*}, \hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}\right\rangle+\lambda\left(\left\|\boldsymbol{\theta}^{*}\right\|-\|\hat{\boldsymbol{\theta}}\|\right)
\end{gathered}
$$

Since $\left\langle\boldsymbol{\theta}^{*}, \hat{\boldsymbol{\theta}}\right\rangle \leq 1$, we have

$$
\begin{aligned}
\langle\hat{\mathbf{u}} & \left.-\beta \boldsymbol{\theta}^{*}, \hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}\right\rangle+\lambda\left(\left\|\boldsymbol{\theta}^{*}\right\|-\|\hat{\boldsymbol{\theta}}\|\right) \geq 0 \Longrightarrow \\
\|\hat{\boldsymbol{\theta}}\| & \leq\left\|\boldsymbol{\theta}^{*}\right\|+\frac{1}{\lambda} \cdot\left\langle\hat{\mathbf{u}}-\beta \boldsymbol{\theta}^{*}, \hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}\right\rangle \\
& \leq\left\|\boldsymbol{\theta}^{*}\right\|+\frac{1}{\lambda} \cdot\left\|\hat{\mathbf{u}}-\beta \boldsymbol{\theta}^{*}\right\|_{*}\left\|\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}\right\| \\
& =\left\|\boldsymbol{\theta}^{*}\right\|+\frac{1}{\rho}\left\|\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}\right\| \Longrightarrow \hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*} \in \mathcal{A}_{\rho}\left(\boldsymbol{\theta}^{*}\right)
\end{aligned}
$$

Therefore it follows that

$$
\begin{align*}
& 1-\left\langle\boldsymbol{\theta}^{*}, \hat{\boldsymbol{\theta}}\right\rangle \leq\left\langle\frac{\hat{\mathbf{u}}}{\beta}-\boldsymbol{\theta}^{*}, \hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}\right\rangle+\frac{\lambda}{\beta}\left(\left\|\boldsymbol{\theta}^{*}\right\|-\|\hat{\boldsymbol{\theta}}\|\right) \\
& \leq\left\|\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}\right\|_{2}\left(\left\|\frac{\hat{\mathbf{u}}}{\beta}-\boldsymbol{\theta}^{*}\right\|_{*} \cdot \frac{\left\|\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}\right\|}{\left\|\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}\right\|_{2}}+\frac{\lambda}{\beta} \cdot \frac{\left\|\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}\right\|}{\left\|\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}\right\|_{2}}\right) \\
& \leq(1+\rho)\left\|\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}\right\|_{2} \cdot\left\|\frac{\hat{\mathbf{u}}}{\beta}-\boldsymbol{\theta}^{*}\right\|_{*} \cdot \sup _{\mathbf{v} \in \mathcal{A}_{\rho}\left(\boldsymbol{\theta}^{*}\right)}\|\mathbf{v}\| \\
& =(1+\rho)\left\|\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}\right\|_{2} \cdot\left\|\frac{\hat{\mathbf{u}}}{\beta}-\boldsymbol{\theta}^{*}\right\|_{*} \cdot \Psi\left(\mathcal{A}_{\rho}\left(\boldsymbol{\theta}^{*}\right)\right) \tag{S.8}
\end{align*}
$$

Now we try to bound $\left\|\frac{\hat{\mathrm{u}}}{\beta}-\boldsymbol{\theta}^{*}\right\|_{*}$. We first rewrite it as $\left\|\frac{\hat{\mathrm{u}}}{\beta}-\boldsymbol{\theta}^{*}\right\|_{*}=\sup _{\mathbf{v} \in \mathcal{B}_{\|\cdot\|}}\left\langle\frac{\hat{\mathrm{u}}}{\beta}-\boldsymbol{\theta}^{*}, \mathbf{v}\right\rangle$. Construct the stochastic process $\left\{Z_{\mathbf{v}}=\left\langle\mathbf{v}, \hat{\mathbf{u}} / \beta-\boldsymbol{\theta}^{*}\right\rangle\right\}_{\mathbf{v} \in \mathcal{B}_{\|\cdot\|},}$, and it is not difficult to verify that $\left\{Z_{\mathrm{v}}\right\}$ has sub-Gaussian incremental using the proof in Theorem 1. Now applying Lemma 3 and 4 , we have

$$
\begin{align*}
\sup _{\mathbf{v} \in \mathcal{B}_{\|\cdot\|}}\left\langle\frac{\hat{\mathbf{u}}}{\beta}-\boldsymbol{\theta}^{*}, \mathbf{v}\right\rangle & =\frac{1}{2} \cdot \sup _{\mathbf{v}, \mathbf{w} \in \mathcal{B}_{\|\cdot\|}}\left|Z_{\mathbf{v}}-Z_{\mathbf{w}}\right| \\
& \leq \frac{C_{1} \kappa m^{\frac{3}{2}}}{\beta} \cdot \frac{w\left(\mathcal{B}_{\|\cdot\|}\right)}{\sqrt{n}}, \tag{S.9}
\end{align*}
$$

with probability at least $1-C^{\prime} \exp \left(-w^{2}\left(\mathcal{B}_{\|\cdot\|}\right)\right)$. Therefore we know that λ satisfies

$$
\lambda=O\left(\frac{\rho m^{3 / 2} w\left(\mathcal{B}_{\|\cdot\|}\right)}{\sqrt{n}}\right)
$$

If $\hat{\boldsymbol{\theta}}=\mathbf{0}$ is the minimizer, the first-order optimality should hold, i.e.,

$$
\hat{\mathbf{u}} \in \lambda \cdot \partial\|\mathbf{0}\| \quad \Longrightarrow \quad\|\hat{\mathbf{u}}\|_{*} \leq \lambda
$$

Hence if $\lambda<\|\hat{\mathbf{u}}\|_{*}, \mathbf{0}$ cannot be the minimizer, which means that the minimum of (10) must be negative. So we can assert that $\|\hat{\boldsymbol{\theta}}\|_{2}=1$, otherwise we can normalize $\hat{\boldsymbol{\theta}}$ to get a smaller objective value. Combining (S.8) and (S.9), we finally get

$$
\begin{aligned}
\left\|\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}\right\| & =\frac{2-2\left\langle\hat{\boldsymbol{\theta}}, \boldsymbol{\theta}^{*}\right\rangle}{\left\|\boldsymbol{\boldsymbol { \theta }}-\boldsymbol{\theta}^{*}\right\|} \\
& \leq \frac{C m \kappa(1+\rho)}{\beta} \cdot \frac{\Psi\left(\mathcal{A}_{\rho}\left(\boldsymbol{\theta}^{*}\right)\right) \cdot w\left(\mathcal{B}_{\|\cdot\|}\right)}{\sqrt{n}},
\end{aligned}
$$

where the equality uses the fact that $\|\hat{\boldsymbol{\theta}}\|_{2}=1$.

5. Proof of Corollary 1

Statement of Corollary 1: Assume that $\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1}^{n}$ follow 1-bit CS model in (2) and $\hat{\mathbf{u}}$ is given as (14). For any
s-sparse $\boldsymbol{\theta}^{*}$, with high probability, $\hat{\boldsymbol{\theta}}$ produced by both (15) and (17) (i.e., $\hat{\boldsymbol{\theta}}^{k s}$ and $\hat{\boldsymbol{\theta}}^{p s}$) satisfy

$$
\begin{equation*}
\left\|\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}\right\|_{2} \leq O\left(\sqrt{\frac{s \log p}{n}}\right) \tag{S.10}
\end{equation*}
$$

Proof: For the k-support norm estimator, the cone $\mathcal{A}_{\mathcal{K}}\left(\boldsymbol{\theta}^{*}\right)$ is given by

$$
\begin{gathered}
\mathcal{A}_{\mathcal{K}}\left(\boldsymbol{\theta}^{*}\right)=\operatorname{cone}\left\{\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*} \mid\|\hat{\boldsymbol{\theta}}\|_{0} \leq s,\|\hat{\boldsymbol{\theta}}\|_{2} \leq 1\right\} \bigcap \mathbb{S}^{p-1} \\
\Longrightarrow \mathcal{A}_{\mathcal{K}}\left(\boldsymbol{\theta}^{*}\right) \subseteq \mathcal{S}=\left\{\mathbf{v} \mid\|\mathbf{v}\|_{0} \leq 2 s\right\} \cap \mathbb{S}^{p-1}
\end{gathered}
$$

Using (19) from (Chen \& Banerjee, 2015), we have

$$
w\left(\mathcal{A}_{\mathcal{K}}\left(\boldsymbol{\theta}^{*}\right)\right) \leq w(\mathcal{S}) \leq O(\sqrt{s \log p})
$$

By Theorem 1, the error of k-support norm estimator satisfies

$$
\left\|\hat{\boldsymbol{\theta}}^{\mathrm{ks}}-\boldsymbol{\theta}^{*}\right\|_{2} \leq O\left(\sqrt{\frac{s \log p}{n}}\right)
$$

For the passive algorithm, if we choose $\rho=2$, the restricted norm compatibility $\Psi\left(\mathcal{A}_{\rho}\left(\boldsymbol{\theta}^{*}\right)\right)$ for L_{1} norm satisfies

$$
\begin{equation*}
\Psi\left(\mathcal{A}_{\rho}\left(\boldsymbol{\theta}^{*}\right)\right) \leq 4 \sqrt{s} \tag{S.11}
\end{equation*}
$$

according to the results in (Negahban et al., 2012; Banerjee et al., 2014). Chen \& Banerjee (2015) also show that the Gaussian width of the L_{1}-norm ball is bounded by

$$
\begin{equation*}
w\left(\mathcal{B}_{L_{1}}\right) \leq O(\sqrt{\log p}) \tag{S.12}
\end{equation*}
$$

Now combining (S.11), (S.12) and Theorem 2, we can conclude that

$$
\left\|\hat{\boldsymbol{\theta}}^{\mathrm{ps}}-\boldsymbol{\theta}^{*}\right\|_{2} \leq O\left(\sqrt{\frac{s \log p}{n}}\right)
$$

which completes the proof.

6. Proof of Proposition 1

Statement of Proposition 1: Given $\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1}^{n}$, let π^{\downarrow} be the permutation of $\{1, \ldots, n\}$ such that $y_{\pi_{1}^{\downarrow}}>y_{\pi_{2}^{\downarrow}}>$ $\ldots>y_{\pi_{n}^{\downarrow}}$. Then we have

$$
\begin{equation*}
\hat{\mathbf{h}}=\frac{2}{n(n-1)} \sum_{i=1}^{n}(n+1-2 i) \cdot \mathbf{x}_{\pi_{i}^{\downarrow}} \tag{S.13}
\end{equation*}
$$

Proof: We rearrange the terms inside the summation of (21) based on π^{\downarrow},

$$
\begin{aligned}
\hat{\mathbf{h}} & =\frac{1}{n(n-1)} \sum_{\substack{1 \leq i, j \leq n \\
i \neq j}} \operatorname{sign}\left(y_{i}-y_{j}\right) \cdot\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right) \\
& =\frac{2}{n(n-1)} \sum_{\substack{1 \leq i, j \leq n \\
i \neq j}} \operatorname{sign}\left(y_{i}-y_{j}\right) \cdot \mathbf{x}_{i} \\
& =\frac{2}{n(n-1)} \sum_{i=1}^{n} \sum_{j \neq \pi_{i}^{\downarrow}} \operatorname{sign}\left(y_{\pi_{i}^{\downarrow}}-y_{j}\right) \cdot \mathbf{x}_{\pi_{i}^{\downarrow}} \\
& =\frac{2}{n(n-1)} \sum_{i=1}^{n}(n+1-2 i) \cdot \mathbf{x}_{\pi_{i}^{\downarrow}}
\end{aligned}
$$

where the last inequality uses the fact that there are $(i-1) y_{j}$ larger than and $(n-i)$ smaller than $y_{\pi_{i}^{\downarrow}}$, thus $\sum_{j \neq \pi_{i}^{\downarrow}} \operatorname{sign}\left(y_{\pi_{i}^{\downarrow}}-y_{j}\right)=(n-i)-(i-1)=n+1-2 i$.

7. Proof of Proposition 2

Statement of Proposition 2: For s-fused-sparse $\boldsymbol{\theta}^{*}$, the Gaussian width of set $\mathcal{A}_{\mathcal{K}}\left(\boldsymbol{\theta}^{*}\right)$ with $\mathcal{K}=\{\boldsymbol{\theta}| | \mathcal{F}(\boldsymbol{\theta}) \mid \leq$ s, $\left.\|\boldsymbol{\theta}\|_{2}=1\right\}$ satisfies

$$
\begin{equation*}
w\left(\mathcal{A}_{\mathcal{K}}\left(\boldsymbol{\theta}^{*}\right)\right) \leq O(\sqrt{s \log p}) \tag{S.14}
\end{equation*}
$$

Proof: Define the following sets

$$
\begin{gather*}
\mathcal{T}_{i, j}=\left\{\alpha \mathbf{u} \in \mathbb{R}^{p} \mid u_{1}=\ldots=u_{i-1}=u_{j+1}=\ldots=u_{p}=0\right. \\
\left.u_{i}=\ldots=u_{j}=\frac{1}{\sqrt{j-i+1}},|\alpha| \leq \sqrt{2 s+1}\right\} \tag{S.15}
\end{gather*}
$$

$$
\begin{equation*}
\mathcal{T}=\bigcup_{i \leq j} \mathcal{T}_{i, j} \tag{S.16}
\end{equation*}
$$

For each $\mathcal{T}_{i, j}$, its Gaussian width can be calculated as

$$
\begin{aligned}
w\left(\mathcal{T}_{i, j}\right) & =\mathbb{E}\left[\sup _{\mathbf{v} \in \mathcal{T}_{i, j}}\langle\mathbf{v}, \mathbf{g}\rangle\right]=\sqrt{2 s+1} \cdot \mathbb{E}[|\langle\mathbf{u}, \mathbf{g}\rangle|] \\
& =\sqrt{2 s+1} \cdot \mathbb{E}|g|=O(\sqrt{2 s+1})
\end{aligned}
$$

where \mathbf{u} is defined in (S.15) and g is a standard Gaussian random variable. We apply Lemma A to \mathcal{T}, and obtain

$$
\begin{aligned}
w(\mathcal{T}) & \leq \max _{i \leq j} w\left(\mathcal{T}_{i, j}\right)+2 \sup _{\mathbf{z} \in \mathcal{T}}\|\mathbf{z}\|_{2} \sqrt{\log \left(\binom{p}{2}+p\right)} \\
& \leq O(\sqrt{2 s+1})+O(\sqrt{2 s+1} \cdot \sqrt{\log p}) \\
& =O(\sqrt{s \log p})
\end{aligned}
$$

Next we show that $\mathcal{A}_{\mathcal{K}}\left(\boldsymbol{\theta}^{*}\right) \subseteq \operatorname{conv}(\mathcal{T})$. Since $\mathcal{K}=$ $\left\{\boldsymbol{\theta}\left||\mathcal{F}(\boldsymbol{\theta})| \leq s,\|\boldsymbol{\theta}\|_{2}=1\right\}\right.$ and $\mathcal{A}_{\mathcal{K}}\left(\boldsymbol{\theta}^{*}\right)=$ cone $\left\{\mathbf{v} \mid \mathbf{v}=\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}, \hat{\boldsymbol{\theta}} \in \mathcal{K}\right\} \bigcap \mathbb{S}^{p-1}$ by definition, we have $|\mathcal{F}(\mathbf{v})| \leq 2 s$ for any $\mathbf{v} \in \mathcal{A}_{\mathcal{K}}\left(\boldsymbol{\theta}^{*}\right)$. Suppose $|\mathcal{F}(\mathbf{v})|=$ $t \leq 2 s$ and $\mathcal{F}(\mathbf{v})=\left\{i_{1}, i_{2}, \ldots, i_{t}\right\}$. For simplicity, we also let $i_{0}=0$ and $i_{t+1}=p$. Then any $\mathbf{v} \in \mathcal{A}_{\mathcal{K}}\left(\boldsymbol{\theta}^{*}\right)$ can be written as a convex combination of $t+2$ points in \mathcal{T}. To see this, we rewrite \mathbf{v} as

$$
\begin{align*}
\mathbf{v}=\sum_{r=0}^{t} \mathbf{v}_{i_{r}+1: i_{r+1}}= & \sum_{r=0}^{t} \frac{\left\|\mathbf{v}_{i_{r}+1: i_{r+1}}\right\|_{2}}{\sqrt{t+1}} \cdot \frac{\sqrt{t+1} \mathbf{v}_{i_{r}+1: i_{r+1}}}{\left\|\mathbf{v}_{i_{r}+1: i_{r+1}}\right\|_{2}} \\
& +\left(1-\sum_{r=0}^{t} \frac{\left\|\mathbf{v}_{i_{r}+1: i_{r+1}}\right\|_{2}}{\sqrt{t+1}}\right) \cdot \mathbf{0} \tag{S.17}
\end{align*}
$$

where $\mathbf{v}_{i_{r}+1: i_{r+1}}$ is obtained from \mathbf{v} by keeping the entries from index $i_{r}+1$ to i_{r+1} while zeroing out the rest. Let $\mathbf{u}_{i_{r}+1: i_{r+1}}=\frac{\sqrt{t+1} \mathbf{v}_{i_{r}+1: i_{r+1}}}{\left\|\mathbf{v}_{i_{r}+1: i_{r+1}}\right\|_{2}}$, and we have

$$
\begin{aligned}
& \left\|\mathbf{u}_{i_{r}+1: i_{r+1}}\right\|_{2}=\sqrt{t+1} \leq \sqrt{2 s+1} \\
& \Longrightarrow \quad \mathbf{u}_{i_{r}+1: i_{r+1}} \in \mathcal{T}_{i_{r}+1: i_{r+1}} \subseteq \mathcal{T}
\end{aligned}
$$

It follows from $\|\mathbf{v}\|_{2}=1$ that

$$
\begin{gathered}
\sum_{r=0}^{t} \frac{\left\|\mathbf{v}_{i_{r}+1: i_{r+1}}\right\|_{2}}{\sqrt{t+1}} \leq \frac{\sqrt{(t+1) \sum_{r=0}^{t}\left\|\mathbf{v}_{i_{r}+1: i_{r+1}}\right\|_{2}^{2}}}{\sqrt{t+1}}=1 \\
\Longrightarrow 1-\sum_{r=0}^{t} \frac{\left\|\mathbf{v}_{i_{r}+1: i_{r+1}}\right\|_{2}}{\sqrt{t+1}} \geq 0
\end{gathered}
$$

Hence (S.17) is indeed a convex combination of $t+2$ points in \mathcal{T}, which implies $\mathcal{A}_{\mathcal{K}}\left(\boldsymbol{\theta}^{*}\right) \subseteq \operatorname{conv}(\mathcal{T})$. Finally, by the properties of Gaussian width, we conclude that

$$
w\left(\mathcal{A}_{\mathcal{K}}\left(\boldsymbol{\theta}^{*}\right)\right) \leq w(\operatorname{conv}(\mathcal{T}))=w(\mathcal{T}) \leq O(\sqrt{s \log p})
$$

8. Proof of Lemma 2

Statement of Lemma 2: Define the U-statistic

$$
\begin{equation*}
U_{n, m}(h)=\frac{(n-m)!}{n!} \sum_{\substack{1 \leq i_{1}, \ldots, i_{m} \leq n \\ i_{1} \neq i_{2} \neq \ldots \neq i_{m}}} h\left(\mathbf{z}_{i_{1}}, \ldots, \mathbf{z}_{i_{m}}\right) \tag{S.18}
\end{equation*}
$$

with order m and kernel $h: \mathbb{R}^{d \times m} \mapsto \mathbb{R}$ based on n independent copies of random vector $\mathbf{z} \in \mathbb{R}^{d}$, denoted by $\mathbf{z}_{1}, \cdots, \mathbf{z}_{n}$. If $h(\cdot, \ldots, \cdot)$ is sub-Gaussian with $\|h\|_{\psi_{2}} \leq \kappa$, then the following inequality holds for $U_{n, m}(h)$ with any $\delta>0$,
$\mathbb{P}\left(\left|U_{n, m}(h)-\mathbb{E} U_{n, m}(h)\right|>\delta\right) \leq 2 \exp \left(-C\left\lfloor\frac{n}{m}\right\rfloor \cdot \frac{\delta^{2}}{\kappa^{2}}\right)$,
in which C is an absolute constant.
Proof: Our proof is based on Hoeffding's decomposition for U-statistics. For simplicity, we use U as shorthand for $U_{n, m}(h)$. Given a permutation π of $\{1, \ldots, n\}$, define

$$
W_{\pi}=\frac{1}{\left\lfloor\frac{n}{m}\right\rfloor} \sum_{k=0}^{\left\lfloor\frac{n}{m}\right\rfloor-1} h\left(\mathbf{z}_{\pi_{m k+1}}, \ldots, \mathbf{z}_{\pi_{m(k+1)}}\right)
$$

The U-statistic can be rewritten as $U=\frac{1}{n!} \sum_{\pi} W_{\pi}$, and the summation is over all possible permutations of $\{1, \ldots, n\}$. As no copy of \mathbf{z} appears more than twice in a single W_{π}, W_{π} is an average of $\left\lfloor\frac{n}{m}\right\rfloor$ independent sub-Gaussian random variables. Hence the ψ_{2}-norm of its centered version satisfies $\left\|W_{\pi}-\mathbb{E} W_{\pi}\right\|_{\psi_{2}} \leq c \kappa / \sqrt{\left[\frac{n}{m}\right\rfloor}$. Using Chernoff technique, we have for any $t>0$,

$$
\begin{align*}
\mathbb{P}(U-\mathbb{E} U> & \delta) \leq e^{-t \delta} \cdot \mathbb{E}[\exp (t(U-\mathbb{E} U))] \\
& =e^{-t \delta} \cdot \mathbb{E}\left[\exp \left(\frac{t}{n!} \sum_{\pi}\left(W_{\pi}-\mathbb{E} U\right)\right)\right] \\
& \leq e^{-t \delta} \cdot \mathbb{E}\left[\frac{1}{n!} \sum_{\pi} \exp \left(t\left(W_{\pi}-\mathbb{E} U\right)\right)\right] \\
& =e^{-t \delta} \cdot \mathbb{E}\left[\exp \left(t\left(W_{\pi}-\mathbb{E} W_{\pi}\right)\right)\right] \\
& \leq \exp \left(-t \delta+c t^{2} \cdot \frac{\kappa^{2}}{\left\lfloor\frac{n}{m}\right\rfloor}\right), \tag{S.20}
\end{align*}
$$

where the second inequality is obtained via Jensen's inequality and the last one follows the moment generating function bound for centered sub-Gaussian random variable. Choosing $t=\left\lfloor\frac{n}{m}\right\rfloor \delta / 2 c \kappa^{2}$ to minimize right-hand side of (S.20), we obtain

$$
\mathbb{P}(U-\mathbb{E} U>\delta) \leq \exp \left(-C\left\lfloor\frac{n}{m}\right\rfloor \cdot \frac{\delta^{2}}{\kappa^{2}}\right)
$$

where $C=1 / 2 c$. To complete the proof, we just need to repeat the argument above for $\mathbb{P}(U-\mathbb{E} U<-\delta)$.

References

Banerjee, A., Chen, S., Fazayeli, F., and Sivakumar, V. Estimation with norm regularization. In Advances in Neural Information Processing Systems (NIPS), 2014.

Chen, S. and Banerjee, A. Structured estimation with atomic norms: General bounds and applications. In Proceedings of the 28th International Conference on Neural Information Processing Systems, 2015.
Maurer, A., Pontil, M., and Romera-Paredes, B. An Inequality with Applications to Structured Sparsity and Multitask Dictionary Learning. In Conference on Learning Theory (COLT), 2014.

Negahban, S., Ravikumar, P., Wainwright, M. J., and Yu, B. A unified framework for the analysis of regularized M-estimators. Statistical Science, 27(4):538-557, 2012.

Vershynin, R. Introduction to the non-asymptotic analysis of random matrices. In Eldar, Y. and Kutyniok, G. (eds.), Compressed Sensing, chapter 5, pp. 210-268. Cambridge University Press, 2012.

[^0]: ${ }^{1}$ Department of Computer Science \& Engineering, University of Minnesota-Twin Cities, Minnesota, USA. Correspondence to: Sheng Chen $<$ shengc@cs.umn.edu $>$, Arindam Banerjee banerjee@cs.umn.edu.

 Proceedings of the $34^{\text {th }}$ International Conference on Machine Learning, Sydney, Australia, 2017. JMLR: W\&CP. Copyright 2017 by the author(s).

