Supplementary Material

A Proof of Lemmas

Proof of Lemma 4 Let $t=\min \left\{\left|t_{1}+\cdots+t_{l}\right|, \tau\right\} \in[0, \tau]$, then it suffices to show that $p\left(\left|t_{1}\right|\right)+\cdots+p\left(\left|t_{l}\right|\right) \geq p(t)$. Note that we have $\left|t_{1}\right|+\cdots+\left|t_{l}\right| \geq \mid t_{1}+\cdots+$ $t_{l} \mid \geq t$. Moreover, since $p(0)=0$ and $p(\cdot)$ is concave on $[0, \tau]$, we must have $p(\cdot)$ being subadditive, i.e., for any $s_{1}, \ldots, s_{l} \geq 0$ such that $s_{1}+\cdots+s_{l} \leq \tau$, we have $p\left(s_{1}\right)+\cdots+p\left(s_{l}\right) \geq p\left(s_{1}+\cdots+s_{l}\right)$. Combining both facts, we have
$\sum_{i=1}^{l} p\left(\left|t_{i}\right|\right) \geq \sum_{i=1}^{l} p\left(\frac{t}{\left|t_{1}\right|+\cdots+\left|t_{l}\right|} \cdot\left|t_{i}\right|\right) \geq p\left(\sum_{i=1}^{l} \frac{t}{\left|t_{1}\right|+\cdots+\left|t_{l}\right|} \cdot\left|t_{i}\right|\right)=p(t)$,
where the first inequality is due to monotonicity and the second is due to subadditivity of $p(\cdot)$.

Proof of Lemma 5 According to the conditions for $p(\cdot)$, there exists $\tau_{2}<\tau$ such that $p(\cdot)$ is twice continuously differentiable on $\left[\tau_{2}, \tau\right]$. We first show that there exists $\tau_{0} \in\left(\tau_{2}, \tau\right)$ such that $p(\cdot)$ is concave but not linear on $\left[0, \tau_{0}\right]$. If otherwise, $p(\cdot)$ must be a linear function on $[0, \tau)$, then since $p(\cdot)$ is continuous at $t=\tau$ where continuity follows from concavity, we must have $p(\cdot)$ is a linear function on $[0, \tau]$, which contradicts with that $p(\cdot)$ is not linear on $[0, \tau]$. In the following, we show that this τ_{0} satisfies the conditions in the lemma.

We first show that $C_{1}>0$. If otherwise, we have $\frac{p\left(\tau_{0} / 3\right)-p(0)}{\tau_{0} / 3} \leq \frac{p\left(\tau_{0}\right)-p\left(2 \tau_{0} / 3\right)}{\tau_{0} / 3}$. Since $p(t)$ is concave, this must imply that $p(t)$ is linear on $\left[0, \tau_{0}\right]$, which contradicts with that $p(\cdot)$ is not linear on $\left[0, \tau_{0}\right]$.

Before proving the result, we first introduce two auxiliary functions. For any $s \in\left[0, \tau_{0}\right]$, define $\widetilde{\epsilon}(s):=p(\widetilde{t}-s)+p(s)-p(\widetilde{t})$ and $\epsilon(s):=p\left(\tau_{0}-s\right)+p(s)-p\left(\tau_{0}\right)$. Note that they have the following properties:
(i) $C_{1}=\frac{\epsilon\left(\tau_{0} / 3\right)}{\tau_{0} / 3}$;
(ii) $\epsilon(s) \leq \widetilde{\epsilon}(s)$: this is due to $\widetilde{\epsilon}(s)-\epsilon(s)=\left(p\left(\tau_{0}\right)-p\left(\tau_{0}-s\right)\right)-(p(\widetilde{t})-p(\widetilde{t}-s)) \geq 0$;
(iii) $\epsilon(s) / s$ is non-increasing in s : this is due to

$$
\frac{\epsilon(s)}{s}=\frac{p(s)-p(0)}{s}-\frac{p\left(\tau_{0}\right)-p\left(\tau_{0}-s\right)}{s}
$$

where $\frac{p(s)-p(0)}{s}$ is non-increasing while $\frac{p\left(\tau_{0}\right)-p\left(\tau_{0}-s\right)}{s}$ is non-decreasing;
(iv) Combining (i) - (iii) above, for any $s \in\left(0, \tau_{0} / 3\right]$, we have

$$
p(s) \geq p(s)+p(\widetilde{t}-s)-p(\widetilde{t})=\widetilde{\epsilon}(s) \geq \epsilon(s) \geq C_{1} s
$$

When $s=\tau_{0} / 3$, this implies that $p\left(\tau_{0} / 3\right)+p\left(\widetilde{t}-\tau_{0} / 3\right)-p(\widetilde{t}) \geq C_{1} \cdot \tau_{0} / 3>C_{1} \delta$.
Now we prove the last statement of Lemma 5 Suppose $t_{1}+\cdots+t_{l}=\widetilde{t}$, and $p\left(\left|t_{1}\right|\right)+\cdots+p\left(\left|t_{l}\right|\right)-p(\widetilde{t})<C_{1} \delta$. Without loss of generality, we assume $t_{1} \geq t_{2} \geq$ $\cdots \geq t_{l}$. Now it suffices to show that $\left|\widetilde{t}-t_{1}\right|<\delta, t_{2}<\delta$, and $t_{l}>-\delta$.

Denote $T=\left\{t_{1}, \ldots, t_{l}\right\}$. For any $S \subseteq T$, we use $\sigma(S)$ to denote the sum of all the elements of S. Now we show that $\sigma(S)>-\delta$ for any S. If otherwise, then $\sum_{S^{c}} t_{i} \geq \widetilde{t}+\delta \geq \widetilde{t}$, and we have

$$
C_{1} \delta>\sum_{S} p\left(\left|t_{i}\right|\right)+\sum_{S^{c}} p\left(\left|t_{i}\right|\right)-p(\widetilde{t}) \geq p(\delta)+p(\widetilde{t})-p(\widetilde{t}) \geq C_{1} \delta
$$

where the second inequality is due to Lemma 4 and the monotonicity of $p(\cdot)$, and the third one is due to (iv) above. This is a contradiction. Note that by having $S=\left\{t_{l}\right\}$, this result implies that $t_{l}>-\delta$. Also, by considering the complement of a subset, we have $\sigma(S)=\sigma(T)-\sigma\left(S^{c}\right)<\tilde{t}+\delta<\tau$ for any $S \subseteq T$. This has two implications. First, according to Lemma 4 we have $\sum_{S} p\left(\left|t_{i}\right|\right) \geq p\left(\left|\sum_{S} t_{i}\right|\right)$; second, by letting $S=\left\{t_{1}\right\}$, we have $t_{1}<\tilde{t}+\delta$.

Now we show that $t_{1}>\tilde{t}-\delta$, by sequentially showing that $t_{1}>\tau_{0} / 3, t_{1}>\tilde{t}-\tau_{0} / 3$, and then $t_{1}>\tilde{t}-\delta$. If $t_{1} \leq \tau_{0} / 3$, then we have $\left|t_{i}\right| \leq \tau_{0} / 3$ for any i. Then we can divide T into two sets T_{1} and T_{2} such that $\left|\sigma\left(T_{1}\right)-\sigma\left(T_{2}\right)\right| \leq \tau_{0} / 3$, thus $\sigma\left(T_{1}\right), \sigma\left(T_{2}\right) \in\left(\widetilde{t} / 2-\tau_{0} / 6, \widetilde{t} / 2+\tau_{0} / 6\right) \subseteq\left(\tau_{0} / 3, \widetilde{t}-\tau_{0} / 3\right)$. Now we have
$C_{1} \delta>p\left(\left|\sum_{t_{i} \in T_{1}} t_{i}\right|\right)+p\left(\left|\sum_{t_{i} \in T_{2}} t_{i}\right|\right)-p(\widetilde{t}) \geq p\left(\tau_{0} / 3\right)+p\left(\widetilde{t}-\tau_{0} / 3\right)-p(\widetilde{t})>C_{1} \delta$,
which is a contradiction. Note that here the first inequality is due to Lemma 4 , and the second one is due to the concavity of $p(\cdot)$.

Now we show that $t_{1}>\tilde{t}-\tau_{0} / 3$. If otherwise, since we have proved that $t_{1} \geq \tau_{0} / 3$, we have $t_{1} \in\left[\tau_{0} / 3, \widetilde{t}-\tau_{0} / 3\right]$. Now by letting $T_{1}=\left\{t_{1}\right\}$ and $T_{2}=T-T_{1}$, we have $\sigma\left(T_{1}\right), \sigma\left(T_{2}\right) \in\left(\tau_{0} / 3, \tilde{t}-\tau_{0} / 3\right)$, and contradiction arises in the same way as in the previous case.

Now we show that $t_{1}>\tilde{t}-\delta$, which is equivalent to showing that $\widetilde{t_{2}}=t_{2}+\cdots+t_{l}=$ $\widetilde{t}-t_{1}<\delta$. If $\widetilde{t}_{2} \geq \delta$, then due to subadditivity, concavity, and (iv) above, we have

$$
C_{1} \delta>p\left(\left|t_{1}\right|\right)+p\left(\left|\widetilde{t}_{2}\right|\right)-p(\widetilde{t}) \geq p(\widetilde{t}-\delta)+p(\delta)-p(\widetilde{t}) \geq C_{1} \delta
$$

which is a contradiction.
Now to complete the proof, the only last thing we need to show is that $t_{2}<\delta$. If $t_{2} \geq \delta$, then due to subadditivity and concavity, we have

$$
C_{1} \delta>p\left(\left|t_{2}\right|\right)+p\left(\left|\widetilde{t}-t_{2}\right|\right)-p(\widetilde{t}) \geq p(\delta)+p(\widetilde{t}-\delta)-p(\widetilde{t}) \geq C_{1} \delta,
$$

which is a contradiction.

Proof of Lemma 6 According to Lemma 5, $p(\cdot)$ is twice continuously differentiable on $\left[\tau_{0}, \tau\right]$, thus there exists $K>0$ such that $p^{\prime \prime}(t) \geq-K$ for any $t \in\left[\tau_{0}, \tau\right]$. Now we take $\underline{\theta}=\frac{1+K}{q(q-1) \min \left\{\tau_{0}^{q-2}, \tau^{q-2}\right\}}$, and $\underline{\mu}=\frac{p(\widehat{\tau})+\underline{\theta} \widehat{\tau}^{q}+1}{\underline{\theta} \cdot\left|\tau_{0}-\widehat{\tau}\right|^{q}}$, and verify the results in the lemma.

For the first result, we have for any $t \in\left[\tau_{0}, \tau\right]$,
$g_{\theta, \mu}^{\prime \prime}(t)=p^{\prime \prime}(t)+\theta q(q-1) t^{q-2}+\mu q(q-1)|\widehat{\tau}-t|^{q-2} \geq-K+\underline{\theta} q(q-1) t^{q-2}+0 \geq 1$,
thus $g_{\theta, \mu}^{\prime \prime}(t) \geq 1$ for any $t \in\left[\tau_{0}, \tau\right]$.
Now we show the result of unique minimizer. Since $g_{\theta, \mu}(t)$ is strictly increasing on $[\widehat{\tau},+\infty)$, any global minimizer must lie in $(-\infty, \widehat{\tau}]$. Moreover, for any $t \in\left(-\infty, \tau_{0}\right]$, we have
$g_{\theta, \mu}(t)>0+0+\theta \underline{\mu} \cdot\left|\tau_{0}-\widehat{\tau}\right|^{q}=\theta / \underline{\theta} \cdot\left(p(\widehat{\tau})+\underline{\theta} \widehat{\tau}^{q}+1\right) \geq p(\widehat{\tau})+\theta \widehat{\tau}^{q}+1=g_{\theta, \mu}(\widehat{\tau})+1$,
thus any global minimizer must lie within $\left(\tau_{0}, \widehat{\tau}\right] \subseteq\left(\tau_{0}, \tau\right)$. Now since $g^{\prime \prime}(t) \geq 1$ for any $t \in\left(\tau_{0}, \tau\right)$, we know that $g(\cdot)$ is strictly convex thereon, thus the global minimizer of $g_{\theta, \mu}(t)$ on $\left[\tau_{0}, \tau\right]$ exists and is unique. Denote the minimizer on $\left[\tau_{0}, \tau\right]$ by $t^{*}(\theta, \mu)$, then according to the previous discussion, $t^{*}(\theta, \mu)$ must also be the global minimizer of $g_{\theta, \mu}(t)$ on .

Now we show the last statement. Suppose that $g_{\theta, \mu}(\bar{t})<h(\theta, \mu)+\delta^{2}$ for some $\delta \in(0, \bar{\delta})$. We first consider the case where $\bar{t} \in\left[\tau_{0}, \tau\right]$. According to the mean-value theorem, there exists \tilde{t} between \bar{t} and $t^{*}(\theta, \mu)$ such that

$$
g_{\theta, \mu}(\bar{t})=g_{\theta, \mu}\left(t^{*}(\theta, \mu)\right)+\frac{1}{2} g^{\prime \prime}(\widetilde{t})\left(\bar{t}-t^{*}(\theta, \mu)\right)^{2} \geq h(\theta, \mu)+\frac{1}{2}\left(\bar{t}-t^{*}(\theta, \mu)\right)^{2}
$$

Therefore, a necessary condition for $g_{\theta, \mu}(\bar{t})<h(\theta, \mu)+\delta^{2}$ is that $\left|\bar{t}-t^{*}(\theta, \mu)\right|<\delta$. Note that this implies $g_{\theta, \mu}(\tau) \geq h(\theta, \mu)+\delta^{2}$. Now to complete the proof, we only need to show that $g_{\theta, \mu}(t) \geq h(\theta, \mu)+\delta^{2}$ for any $t \in\left(-\infty, \tau_{0}\right] \cup[\tau,+\infty)$. The inequality with $t \in\left(-\infty, \tau_{0}\right]$ has been proved in A.1. And for any $t \in[\tau,+\infty)$, we have $g_{\theta, \mu}(t) \geq g_{\theta, \mu}(\tau) \geq h(\theta, \mu)+\delta^{2}$. Therefore, the proof is complete.

Proof of Lemma 7 We take $\underline{\hat{\mu}}=\max \left\{1+p^{\prime}\left(\tau_{0}\right), \frac{p(\widehat{\tau})+1}{\widehat{\tau}-\tau_{0}}\right\}$ and verify the results in the lemma. Note that we have $p(\cdot)$ being twice continuously differentiable on $\left[\tau_{0}, \tau\right]$ thus $p^{\prime}\left(\tau_{0}\right)$ is well-defined.

For any $t \in\left[\tau_{0}, \widehat{\tau}\right)$, we have $g_{0, \mu}^{\prime}(t)=p^{\prime}(t)-\mu \leq p^{\prime}\left(\tau_{0}\right)-\widehat{\widehat{\mu}} \leq-1$; and for any $t \in(\widehat{\tau}, \tau]$, we have $g_{0, \mu}^{\prime}(t)=p^{\prime}(t)+\mu \geq 0+\underline{\widehat{\mu}} \geq 1$. Therefore, the first property in Lemma 7 holds.

Now we show the result of unique minimizer. Since $g_{0, \mu}(t)$ is strictly increasing on $[\widehat{\tau},+\infty)$, any global minimizer must lie in $(-\infty, \widehat{\tau}]$. Moreover, for any $t \in\left(-\infty, \tau_{0}\right]$, we have

$$
\begin{equation*}
g_{0, \mu}(t) \geq 0+\underline{\widehat{\mu}} \cdot\left|\tau_{0}-\widehat{\tau}\right| \geq p(\widehat{\tau})+1=g_{0, \mu}(\widehat{\tau})+1 \tag{A.2}
\end{equation*}
$$

thus any global minimizer must lie within $\left(\tau_{0}, \widehat{\tau}\right]$. Now since $g_{0, \mu}^{\prime}(t)<-1$ for any $t \in\left[\tau_{0}, \widehat{\tau}\right)$, the global minimizer of $g_{0, \mu}(\cdot)$ is $\widehat{t}^{*}(0, \mu)=\widehat{\tau}$ and is unique.

Now we show the last statement. Suppose that $g_{0, \mu}(\bar{t})<h(0, \mu)+\delta^{2}$ for some $\delta \in(0, \bar{\delta})$. Again we first consider the case where $\bar{t} \in\left[\tau_{0}, \tau\right]$. When $\bar{t} \in[\widehat{\tau}, \tau]$, since $g_{0, \mu}^{\prime}(t)>1$, we have $g_{0, \mu}(\bar{t})-g_{0, \mu}(\widehat{\tau}) \geq \bar{t}-\widehat{\tau}$; when $\bar{t} \in\left[\tau_{0}, \widehat{\tau}\right]$, since $g_{0, \mu}^{\prime}(t)<-1$, we have $g_{0, \mu}(\bar{t})-g_{0, \mu}(\widehat{\tau}) \geq \widehat{\tau}-\bar{t}$. Therefore, a necessary condition for $g_{0, \mu}(\bar{t})<$ $h(0, \mu)+\delta^{2}$ is that $|\bar{t}-\widehat{\tau}|<\delta^{2}<\delta$. Note that this implies $g_{0, \mu}(\tau) \geq h(0, \mu)+\delta^{2}$. Now to complete the proof, we only need to show that $g_{0, \mu}(t)>h(0, \mu)+\delta^{2}$ for any $t \in\left(-\infty, \tau_{0}\right] \cup[\tau,+\infty)$. The inequality with $t \in\left(-\infty, \tau_{0}\right]$ has been proved in A.2]. And for any $t \in[\tau,+\infty)$, we have $g_{0, \mu}(t) \geq g_{0, \mu}(\tau) \geq h(0, \mu)+\delta^{2}$. Therefore, the proof is complete.

Proof of Lemma 8 If $q>1$, then we can find θ and μ such that the properties in Lemma 6 is satisfied; if $q=1$, then we can set $\theta=0$ and find μ such that the properties in Lemma 7 is satisfied.

Now we first prove the desired inequality in two cases. In the first case, we suppose that $\left|\sum_{j=1}^{l} t_{j}\right|>\tau$. Then due to Lemma 4. We have $\sum_{j=1}^{l} p\left(\left|t_{j}\right|\right) \geq p(\tau)$, thus

$$
\begin{equation*}
\sum_{j=1}^{l} p\left(\left|t_{j}\right|\right)+\theta \cdot\left|\sum_{j=1}^{l} t_{j}\right|^{q}+\mu \cdot\left|\sum_{j=1}^{l} t_{j}-\widehat{\tau}\right|^{q}>p(\tau)+\theta \tau^{q}+\mu|\tau-\widehat{\tau}|^{q}=g_{\theta, \mu}(\tau)>h(\theta, \mu)+\delta^{2} \tag{A.3}
\end{equation*}
$$

where the last inequality is proved in Lemmas 6 and 7 , In the second case, we suppose that $\left|\sum_{j=1}^{l} t_{j}\right| \leq \tau$. Then according to Lemma 4, we have $\sum_{j=1}^{l} p\left(\left|t_{j}\right|\right) \geq$ $p\left(\left|\sum_{k=1}^{l} t_{k}\right|\right)$, thus

$$
\begin{equation*}
\sum_{j=1}^{l} p\left(\left|t_{j}\right|\right)+\theta \cdot\left|\sum_{j=1}^{l} t_{j}\right|^{q}+\mu \cdot\left|\sum_{j=1}^{l} t_{j}-\widehat{\tau}\right|^{q} \geq g_{\theta, \mu}\left(\sum_{j=1}^{l} t_{j}\right) \geq h(\theta, \mu) \tag{A.4}
\end{equation*}
$$

where the second inequality is due to Lemmas 6 and 7 .
Now we prove the "only if" statement. Suppose we have $t_{1}, \ldots, t_{l} \in$ such that (3) holds. Now according to A.3), we must have $\left|\sum_{j=1}^{l} t_{j}\right| \leq \tau$, and combining A.4, we have $g_{\theta, \mu}\left(\sum_{j=1}^{l} t_{j}\right)<h(\theta, \mu)+\delta^{2}$. Then we have $\left|\sum_{j=1}^{l} t_{j}-t^{*}(\theta, \mu)\right|<\delta$ according to Lemmas 6 and 7 , thus $\tilde{t}:=\sum_{j=1}^{l} t_{j} \in\left[\tau_{0}, \tau\right]$. Moreover, in order for (3) to hold, we must also have $\sum_{j=1}^{l} p\left(\left|t_{j}\right|\right)-p(\widetilde{t}) \leq \delta^{2} \leq C_{1} \delta$. Then according to Lemma5, we must have $\left|t_{i}-\widetilde{t}\right|<\delta$ for some i while $\left|t_{j}\right|<\delta$ for all $j \neq i$. Now since $\left|\widetilde{t}-t^{*}(\theta, \mu)\right|<\delta$, we have $\left|t_{i}-t^{*}(\theta, \mu)\right|<2 \delta$, which completes the proof.

B Proof of Theorem 2

In this section, we prove the hardness of approximation of Problem 1 for general loss function ℓ. We develop the reduction proof through a series of preliminary lemmas. In particular, our Lemmas B.1|B.2|B.3 establish important properties about the
sparse penalty function p, and are analogs to Lemmas 4, 5 and 8, respectively. We have to reprove these lemmas with additional technicalities in order to address the ϵ-approximibility instead of exact solution. Our first lemma gives us a key fact about the nonconvex penalty function p. We use $B(\theta, \delta)$ to denote the interval $(\theta-\delta, \theta+\delta)$.

Lemma B.1. For any penalty function p that satisfies Assumption 2, we have
(i) $p(t)$ is continuous on $(0, \tau]$.
(ii) For any $t_{1}, \ldots, t_{l} \geq 0$, if $\sum_{i=1}^{n} t_{i} \leq \tau$, then $\sum_{i=1}^{l} p\left(t_{i}\right) \geq p\left(\sum_{i=1}^{l} t_{i}\right)$.
(iii) There exists $a \in[1 / 2,1)$ such that when $\sum_{i=1}^{l} t_{i} \in[a \tau, \tau]$, the above inequality holds as equality if and only if $t_{i}=t^{*}$ for some i while $t_{j}=0$ for $j \neq i$.
(iv) Denote $\kappa=\min _{t \in[a \tau, \tau]}\left\{\frac{2 p(t / 2)-p(t)}{t}\right\}$. For the constant a given in (iii), we have that $\forall \delta>0, t_{1}, \cdots, t_{l} \in \mathbb{R}, \forall \epsilon \leq \kappa \delta:$ if $\sum_{i=1}^{l} t_{i}=t^{*} \in[a \tau, \tau]$ and $p\left(\sum_{i=1}^{l} t_{i}\right)+\epsilon \geq \sum_{i=1}^{l} p\left(t_{i}\right)$, then there is at most one i such that $t_{i} \notin B(0, \delta)$.
Proof. As (i), (ii) and (iii) are proved in Ge et al. (2015), we prove (iv) here. We first prove the lemma when $t_{1}, \cdots, t_{l} \geq 0$. We start by proving the case when $l=2$. For the simplicity of notation, we use t^{*} to denote $t_{1}+t_{2}$ in the rest of the proof. By (iii), there exists a such that when $t^{*} \in[a \tau, \tau]$ and $p\left(t^{*}\right) \geq p\left(t_{1}\right)+p\left(t_{2}\right)$, we have $t_{1}=0$ or $t_{2}=0$. It follow that when $t_{1} \neq 0, t_{2} \neq 0$ and $t^{*} \in[a \tau, \tau]$, we have $p\left(t_{1}+t_{2}\right)<p\left(t_{1}\right)+p\left(t_{2}\right)$. Without loss of genearlity, we assume that $t_{1} \leq t_{2}$. Then, we have

$$
\frac{p\left(t^{*}\right)-p\left(t^{*}-t_{1}\right)}{t_{1}}<\frac{p\left(t_{1}\right)}{t_{1}}
$$

Notice that the right term is non-increasing with the increment of t_{1} as p is a concave function and the left term is non-decreasing with the increment of t_{1} when t^{*} is fixed. As $t_{1} \leq t^{*} / 2$, we have $\frac{p\left(t_{1}\right)}{t_{1}} \geq k_{1}\left(t^{*}\right):=\frac{p\left(t^{*} / 2\right)}{t^{*} / 2}$ and $\frac{p\left(t^{*}\right)-p\left(t^{*}-t_{1}\right)}{t_{1}} \leq k_{2}\left(t^{*}\right):=$ $\frac{p\left(t^{*}\right)-p\left(t^{*} / 2\right)}{t^{*} / 2}$. As p is not linear on $\left[0, t^{*}\right]$, we have $k_{1}\left(t^{*}\right)>k_{2}\left(t^{*}\right)$.

On the other hand, we can see that when $p\left(t_{1}+t_{2}\right)+\epsilon \geq p\left(t_{1}\right)+p\left(t_{2}\right)$,

$$
\frac{p\left(t_{1}+t_{2}\right)-p\left(t_{2}\right)}{t_{1}}+\frac{\epsilon}{t_{1}} \geq \frac{p\left(t_{1}\right)}{t_{1}} .
$$

Assume $t_{1}<t_{2}$, we have $k_{2}\left(t^{*}\right)+\epsilon / t_{1} \geq k_{1}\left(t^{*}\right){ }^{1}$. As a result $t_{1} \leq \frac{\epsilon}{k_{1}\left(t^{*}\right)-k_{2}\left(t^{*}\right)}$. Note that k_{1} and k_{2} are defined on a closed interval $[a \tau, \tau]$ by (iii), giving us that $\min _{t \in[a \tau, \tau]}\left(k_{1}(t)-k_{2}(t)\right)>0$. Therefore, $\exists a \in(0,1), \forall \delta>0, \exists \epsilon_{0}=\min _{t \in[a \tau, \tau]}\left(k_{1}(t)-\right.$ $\left.k_{2}(t)\right) \cdot \delta, \forall \epsilon<\epsilon_{0}$, if $t_{1}+t_{2}=t^{*} \in[a \tau, \tau]$ and $p\left(t_{1}+t_{2}\right)+\epsilon \geq p\left(t_{1}\right)+p\left(t_{2}\right)$, then $t_{1} \leq \frac{\epsilon}{k_{1}\left(t^{*}\right)-k_{2}\left(t^{*}\right)} \leq \delta$. Therefore, there is at most one i such that $t_{i} \notin B(0, \delta)$.

Now consider the case when $l>2$ and $t_{1}, \ldots, t_{l} \geq 0$. If there are more than one i such that $t_{i} \notin B(0, \delta)$, assume t_{1} and t_{2} are two of them. By (ii), we have

$$
\sum_{i=1}^{l} p\left(t_{i}\right) \geq p\left(t_{1}\right)+p\left(\sum_{i=2}^{l} t_{i}\right)
$$

[^0]If $t_{1}+\sum_{i=2}^{n} t_{i} \in[a \tau, \tau]$ and $p\left(t_{1}+\sum_{i=2}^{l} t_{i}\right)+\epsilon \geq \sum_{i=1}^{l} p\left(t_{i}\right) \geq p\left(t_{1}\right)+p\left(\sum_{i=2}^{l} t_{i}\right)$, either t_{1} or $\sum_{i=2}^{n} t_{i}$ should be inside $B(0, \delta)$. This is contradictory to our assumption that both t_{1} and t_{2} are outside $B(0, \delta)$. To this point, we prove (iv) when $t_{1}, \cdots, t_{l} \geq 0$.

Next, we prove the lemma when t_{1}, \cdots, t_{l} could be smaller than 0 . Suppose $t^{*}=\sum_{i=1}^{l} t_{i} \in[a \tau, \tau]$ and $p\left(t^{*}\right)+\epsilon \geq \sum_{i=1}^{l} p\left(t_{i}\right)$. We consider two cases separately. In the first case, assume that there is one $t_{i} \leq-\delta$ and one $t_{j} \geq \delta$. Without loss of generality, we assume that $t^{*}>0$. Then we can choose $\alpha=\delta, \beta=t^{*}-\alpha$ and get

$$
p(\alpha+\beta)+\epsilon=p\left(t^{*}\right)+\epsilon \geq \sum_{i \in\left\{j: t_{j}<0\right\}} p\left(t_{i}\right)+\sum_{i \in\left\{j: t_{j}>0\right\}} p\left(t_{i}\right) \geq p(\alpha)+p(\beta)
$$

which is a contradiction to the previous proof that only one of α, β could be outside of $B(0, \delta)$ as δ is smaller than $t^{*} / 2$ by our choice. We then proceed to the case when there is one $t_{i} \geq \delta$ and one $t_{j} \geq \delta$. Suppose that $\alpha=t_{i} \geq t_{j}=\beta$. If $\alpha+\beta>t^{*}$, we set $\alpha^{\prime}=\delta+\frac{t^{*}-2 \delta}{\alpha+\beta-2 \delta} \cdot(\alpha-\delta)$ and $\beta^{\prime}=\delta+\frac{t^{*}-2 \delta}{\alpha+\beta-2 \delta} \cdot(\beta-\delta)$. It is easy to verify that

$$
p\left(\alpha^{\prime}+\beta^{\prime}\right)+\epsilon=p\left(t^{*}\right)+\epsilon \geq \sum_{i=1}^{l} p\left(t_{i}\right) \geq p(\alpha)+p(\beta) \geq p\left(\alpha^{\prime}\right)+p\left(\beta^{\prime}\right)
$$

which is a contradiction. If $\alpha+\beta<t^{*}$, we can verify that
$p\left(\alpha+\beta+t^{*}-\alpha-\beta\right)+\epsilon=p\left(t^{*}\right)+\epsilon \geq \sum_{i=1}^{l} p\left(t_{i}\right) \geq p(\alpha)+p(\beta)+p\left(t^{*}-\alpha-\beta\right)$,
which is also a contradiction. To this point, we prove the case that t_{1}, \cdots, t_{l} could be smaller than 0 , which completes the proof of the lemma.

Remark. In the proof of (iv), our choice of ϵ is linear to δ given δ. However, in the case of L_{0}, ϵ could be any constant smaller than 1 no matter what δ is. This property of L_{0} has wide applications in statistical problems. Actually, suppose that penalty function is indexed by δ and p_{δ} satisfies

$$
\begin{equation*}
p_{\delta}(\delta)-p_{\delta}(a \tau)+p_{\delta}(a \tau-\delta) \geq C \tag{B.1}
\end{equation*}
$$

for some constant C, then $\forall \delta>0$ and $\epsilon \leq C$, the proposition stated in (iv) holds. To prove this, just note that if $p\left(t_{1}+t_{2}\right)-p\left(t_{2}\right)+\epsilon>p\left(t_{1}\right)$ and $t_{1}>\delta$, then $p\left(t_{1}\right)-p\left(t_{1}+t_{2}\right)+p\left(t_{2}\right)>p(\delta)-p(a \tau)+p(a \tau-\delta) \geq C$ which is a contradiction to that ϵ should be smaller than C.

Lemma B.1 states the key properties of the penalty function p. Property (iv) is of special interest. It indicates that if we can manipulate the sum of non-negative variables to let it lie within $[a \tau, \tau]$ while minimizing the penalty function, we can be sure that only one variable has positive value.

Our second lemma explores the relationship between the penalty function p and the loss function ℓ.

Lemma B.2. Let Assumption 2 hold. Let $f(\cdot)$ be a convex function with a unique minimizer $\widehat{\tau} \in(a \tau, \tau)$ and $\frac{f(\tau \bar{\tau} \pm)-f(\widehat{\tau})}{x^{N}} \geq C(0<x<\bar{\delta})$ for some $N \in \mathbb{Z}^{+}, \bar{\delta} \in$ $\mathbb{R}^{+}, C \in \mathbb{R}^{+}$. Define

$$
g_{\mu}(t)=p(|t|)+\mu \cdot f(t)
$$

where $\mu>0$. Let $h(\mu)$ be the minimum value of $g_{\mu}(\cdot)$. We have $\forall \delta<\bar{\delta}, \mu_{\delta}>$ $\frac{p(|\widehat{\tau}|) 2^{N}}{C \delta^{N}}, \exists \epsilon_{0}=\mu_{\delta} \cdot C \cdot\left(\frac{\delta}{2}\right)^{N}-p(|\widehat{\tau}|):$ if t satisfies $h\left(\mu_{\delta}\right)+\epsilon_{0} \geq g_{\mu_{\delta}}(t) \geq h\left(\mu_{\delta}\right)$, then $t \in[\widehat{\tau}-\delta / 2, \widehat{\tau}+\delta / 2]$.

Proof. First, we can see that when $t>\widehat{\tau}+\delta / 2$, we have

$$
\begin{aligned}
g_{\mu_{\delta}}(t) & \geq p(|\widehat{\tau}|)+\mu_{\delta} \cdot f(t)>p(|\widehat{\tau}|)+\mu_{\delta} \cdot f(\widehat{\tau}+\delta / 2) \geq p(|\widehat{\tau}|)+\mu_{\delta} \cdot f(\widehat{\tau})+\mu_{\delta} \cdot C \cdot\left(\frac{\delta}{2}\right)^{N} \\
& =g_{\mu_{\delta}}(\widehat{\tau})+\mu_{\delta} \cdot C \cdot\left(\frac{\delta}{2}\right)^{N} \geq h\left(\mu_{\delta}\right)+\mu_{\delta} \cdot C \cdot\left(\frac{\delta}{2}\right)^{N} \geq h\left(\mu_{\delta}\right)+\epsilon_{0}
\end{aligned}
$$

by the definition of $f(\cdot)$. When $t<\widehat{\tau}-\delta / 2$, we have

$$
\begin{aligned}
g_{\mu_{\delta}}(t) & \geq \mu_{\delta} \cdot f(t)>\mu_{\delta} \cdot f(\widehat{\tau}-\delta / 2) \geq \mu_{\delta} \cdot f(\widehat{\tau})+\mu_{\delta} \cdot C \cdot\left(\frac{\delta}{2}\right)^{N} \\
& =\mu_{\delta} \cdot f(\widehat{\tau})+\frac{p(|\widehat{\tau}|) 2^{N}}{C \delta^{N}} \cdot C \cdot\left(\frac{\delta}{2}\right)^{N}+\left(\mu_{\delta}-\frac{p(|\widehat{\tau}|) 2^{N}}{C \delta^{N}}\right) \cdot C \cdot\left(\frac{\delta}{2}\right)^{N} \\
& \geq h\left(\mu_{\delta}\right)+\mu_{\delta} \cdot C \cdot\left(\frac{\delta}{2}\right)^{N}-p(|\widehat{\tau}|)
\end{aligned}
$$

Therefore, when we choose $\epsilon_{0}=\mu_{\delta} \cdot C \cdot\left(\frac{\delta}{2}\right)^{N}-p(|\widehat{\tau}|)$, point t satisfying $h\left(\mu_{\delta}\right)+\epsilon_{0} \geq$ $g_{\mu_{\delta}}(t) \geq h\left(\mu_{\delta}\right)$ must lie in $[\widehat{\tau}-\delta / 2, \widehat{\tau}+\delta / 2]$.

Lemma B.3. Let Assumption 2 hold and let $f(\cdot)$ be a convex function with a unique minimizer $\widehat{\tau} \in(a \tau, \tau)$ and $\frac{f((\bar{\tau} \pm x)-f(\widehat{\tau})}{x^{N}} \geq C_{1}(0<x<\bar{\delta})$ for some $N \in \mathbb{Z}^{+}, \bar{\delta} \in$ $\mathbb{R}^{+}, C_{1} \in \mathbb{R}^{+}$. Let $h(\mu)$ be the minimum value of $g_{\mu}(x)=p(|x|)+\mu \cdot f(x)$, then we have
(i) $\forall \mu \in \mathbb{Z}^{+}, t_{1}, \ldots, t_{n} \in \mathbb{R}: \sum_{j=1}^{n} p\left(\left|t_{j}\right|\right)+\mu \cdot f\left(\sum_{j=1}^{n} t_{j}\right) \geq h(\mu)$.
(ii) $\exists \kappa=\min _{t \in[a \tau, \tau]}\left\{\frac{2 p(t / 2)-p(t)}{t}\right\}, \forall \delta \leq \min \{\bar{\delta}, 4 \tau-4 \widehat{\tau}, 4 \widehat{\tau}-4 a \tau, p(\widehat{\tau}) / \kappa\}, \exists \mu=$ $\frac{p(|\widehat{\mid}|) 4^{N+1}}{C_{1} \delta^{N}}, \epsilon_{0}=\kappa \cdot \frac{\delta}{n}, \forall \theta \in[\widehat{\tau}-\delta / 4, \widehat{\tau}+\delta / 4]:$ if $t_{1}, \ldots, t_{n} \in \mathbb{R}$ satisfy

$$
\begin{equation*}
h(\mu)+\epsilon_{0} \geq \sum_{j=1}^{n} p\left(\left|t_{j}\right|\right)+\mu \cdot f\left(\sum_{j=1}^{n} t_{j}\right) \geq h(\mu) \tag{B.2}
\end{equation*}
$$

then $t_{i} \in B(\theta, \delta)$ for one i and $t_{j} \in B(0, \delta)$ for all $j \neq i$.

Proof. We first prove (i). We consider two cases separately. In the first case, we suppose that $\left|\sum_{j=1}^{n} t_{j}\right|>\tau$. Then we have

$$
\sum_{j=1}^{n} p\left(\left|t_{j}\right|\right) \geq \sum_{j=1}^{n} p\left(\frac{\tau}{\sum_{k=1}^{n}\left|t_{k}\right|} \cdot\left|t_{j}\right|\right) \geq p\left(\sum_{j=1}^{n} \frac{\tau}{\sum_{k=1}^{n}\left|t_{k}\right|} \cdot\left|t_{j}\right|\right) \geq p(\tau)
$$

where the first inequality is inferred by the monotonicity of p and the second inequality is due to (ii) of Lemma B. 1 . Thus, we have

$$
\sum_{j=1}^{n} p\left(\left|t_{j}\right|\right)+\mu \cdot f\left(\sum_{j=1}^{n} t_{j}\right)>\min \{p(\tau)+\mu \cdot f(\tau), p(\tau)+\mu \cdot f(-\tau)\} \geq h(\mu)
$$

As a result, we can see that (i) holds when $\left|\sum_{j=1}^{n} t_{j}\right|>\tau$. In the second case, we suppose $\left|\sum_{j=1}^{n} t_{j}\right| \leq \tau$ and obtain

$$
\sum_{j=1}^{n} p\left(\left|t_{j}\right|\right) \geq \sum_{j=1}^{n} p\left(\frac{\left|\sum_{k=1}^{n} t_{k}\right|}{\sum_{k=1}^{n}\left|t_{k}\right|}\left|t_{j}\right|\right) \geq p\left(\sum_{j=1}^{n} \frac{\left|\sum_{k=1}^{n} t_{k}\right|}{\sum_{k=1}^{n}\left|t_{k}\right|}\left|t_{j}\right|\right) \geq p\left(\left|\sum_{j=1}^{n} t_{j}\right|\right)
$$

where the second inequality is due to (ii) of LemmaB. 1 It follows that

$$
\begin{equation*}
\sum_{j=1}^{n} p\left(\left|t_{j}\right|\right)+\mu \cdot f\left(\sum_{j=1}^{n} t_{j}\right) \geq p\left(\left|\sum_{j=1}^{n} t_{j}\right|\right)+\mu \cdot f\left(\sum_{j=1}^{n} t_{j}\right)=g_{\mu}\left(\sum_{j=1}^{n} t_{j}\right) \geq h(\mu) \tag{B.3}
\end{equation*}
$$

which completes our proof of (i).
We then prove (ii). Assume equation (B.2) holds. If $\sum_{j=1}^{n} t_{j}>\tau$, we can see that by choosing $\epsilon_{0} \leq g_{\mu}(\tau)-g_{\mu}(\widehat{\tau})$, we have

$$
\sum_{j=1}^{n} p\left(\left|t_{j}\right|\right)+\mu \cdot f\left(\sum_{j=1}^{n} t_{j}\right)>g_{\mu}(\tau)=g_{\mu}(\widehat{\tau})+g_{\mu}(\tau)-g_{\mu}(\widehat{\tau}) \geq h(\mu)+\epsilon_{0}
$$

We will show later that our choice of ϵ_{0} is indeed smaller than $g_{\mu}(\tau)-g_{\mu}(\widehat{\tau})$. We will also show later that equation (B.2) cannot hold when $\sum_{j=1}^{n} t_{j}<-\tau$ under our choice of parameters. Thus, if equation B. 2 holds, then $\left|\sum_{j=1}^{n} t_{j}\right| \leq \tau$, which implies that

$$
\begin{equation*}
p\left(\left|\sum_{j=1}^{n} t_{j}\right|\right)+\mu \cdot f\left(\sum_{j=1}^{n} t_{j}\right) \leq h(\mu)+\epsilon_{0} \tag{B.4}
\end{equation*}
$$

by equation $(\bar{B} .2$) and the first inequality of $\bar{B} .3$, and

$$
\begin{equation*}
\sum_{j=1}^{n} p\left(\left|t_{j}\right|\right) \leq p\left(\left|\sum_{j=1}^{n} t_{j}\right|\right)+\epsilon_{0} \tag{B.5}
\end{equation*}
$$

due to equation $\bar{B} .2$ and equation $\bar{B} .3$. Note that we just need to prove the case when δ is sufficiently small. Thus, we assume in the following paper that δ is smaller than $\bar{\delta}, 4 \tau-4 \widehat{\tau}, 4 \widehat{\tau}-4 a \tau$.

Consider the case when equation B.4 holds. By Lemma B.3, if we choose $\mu=$ $\frac{p(|\widehat{\tau}|) 4^{N+1}}{C \delta^{N}}$ and $\epsilon_{1}=3 p(|\widehat{\tau}|)$, then all of the points t such that $h(\mu)+\epsilon_{1} \geq g_{\mu}(t) \geq h(\mu)$ lie in $[\widehat{\tau}-\delta / 4, \widehat{\tau}+\delta / 4]$. Thus, we have $\sum_{j=1}^{n} t_{j} \in[a \tau, \tau]$ and $\sum_{j=1}^{n} t_{j} \in B\left(\theta, \frac{\delta}{2}\right)$ for all $\theta \in[\widehat{\tau}-\delta / 4, \widehat{\tau}+\delta / 4]$. Note that $g_{\mu}(t)$ is non-increasing when $t<0$, meaning that equation (B.2) cannot hold under our choice of ϵ_{1} when $\sum_{j=1}^{n} t_{j} \leq-\tau$.

On the other hand, if equation (B.2) holds, equation (B.5) should also hold. By (iv) of Lemma B. 1 , for the same $\delta, \exists \epsilon_{2}=\min _{t \in[a \tau, \tau]}\left(k_{1}(t)-k_{2}(t)\right) \cdot \frac{\delta}{2 n-2}$, there is at most one i such that $t_{i} \notin B\left(0, \frac{\delta}{2 n-2}\right)$. As $\sum_{j=1}^{n} t_{j} \in B\left(\theta, \frac{\delta}{2}\right)$, we have $t_{i} \in B(\theta, \delta)$ for all $i=1, \cdots, n$. Observe that $g_{\mu}(\tau)-g_{\mu}(\widehat{\tau})$ is always larger than ϵ_{1}. Also, $\epsilon_{1}>\epsilon_{2}$ if δ is sufficiently small. Therefore, $\exists \kappa=\min _{t \in[a \tau, \tau]}\left(k_{1}(t)-k_{2}(t)\right) / 2, \forall \delta \leq$ $\min \{\bar{\delta}, 4 \tau-4 \widehat{\tau}, 4 \widehat{\tau}-4 a \tau p(\widehat{\tau}) / \kappa\}, \exists \mu=\frac{p\left(\mid \widehat{\widehat{\mid} \mid) 4^{N+1}}\right.}{C \delta^{N}}, \epsilon=\kappa \cdot \frac{\delta}{n}, \forall \theta \in[\widehat{\tau}-\delta / 4, \widehat{\tau}+\delta / 4]:$ if $h(\mu)+\epsilon \geq g_{\mu}\left(\sum_{j=1}^{n} t_{i}\right)$, then $t_{i} \in B(\theta, \delta)$ for some i while $t_{j} \in B(0, \delta)$ for all $j \neq i$.

Now we are ready to prove the main theorem.
Proof of Theorem 2 Suppose that we are given the input to the 3-partition problem, i.e., $3 m$ positive integers $s_{1}, \ldots, s_{3 m}$. Assume without loss of generality that all s_{i} 's are upper bounded by some polynomial function $M(m)$. This restriction on the input space does not weaken our result, because the 3-partition problem is strongly NP-hard.

In what follows, we construct a reduction from the 3-partition problem to Problem 1. We assume without loss of generality that $\frac{1}{4 m} \sum_{j=1}^{3 m} s_{j}<s_{i}<\frac{1}{2 m} \sum_{j=1}^{3 m} s_{j}$ for all $i=1, \ldots, n$. Such condition can always be satisfied by adding a sufficiently large integer to all s_{i} 's.

Step 1: The Reduction

The first reduction is developed through the following steps.

1. For the interval $[a \tau, \tau]$ determined by p, we choose $\left\{b_{1 i}\right\}_{i=1}^{k_{1}}$ such that $\ell_{1}(y)=$ $\frac{1}{\lambda} \sum_{i=1}^{k_{1}} \ell\left(y, b_{1 i}\right)$ satisfies Assumption 2 with constants $C, N, \bar{\delta}$ and has a unique minimizer $\widehat{\tau}$ inside the interval $(a \tau, \tau)$. Let $\kappa=\min _{t \in[a \tau, \tau]}\left\{\frac{2 p(t / 2)-p(t)}{t}\right\}$. Let $\delta \leq\left\{\frac{a \tau}{9 m \cdot M(m)}, \bar{\delta}, 4 \tau-4 \widehat{\tau}, 4 \widehat{\tau}-4 a \tau, p(\widehat{\tau}) / \kappa\right\}, \mu \geq \frac{p(|\hat{\tau}|) 4^{N+1}}{C_{1} \delta^{N}}$ and $\epsilon=\kappa \cdot \frac{\delta}{3 m}$ such that Lemma B.3 is satisfied. Note that $\epsilon \geq \frac{C_{3}}{m^{2} \cdot M(m)}$ for some constant C_{3} by our construction.
2. For the μ and ϵ chosen in the previous step, all the minimizers of $g_{\mu}(x)=$ $p(|x|)+\mu \cdot \ell_{1}(x)$ lie in $[\widehat{\tau}-\delta / 4, \widehat{\tau}+\delta / 4]$ by Lemma B. 3 . By the Lipschitz continuity of $p(|x|), f(x)$ and thus $g_{\mu}(x)$ on $[a \tau, \tau]$, there exists $\delta_{\epsilon}=\frac{\epsilon}{6 m K}(K$ is the Lipschitz constant) such that we can find in polynomial time an interval $\left[\theta_{1}, \theta_{2}\right]$ where $\theta_{2}-\theta_{1}=\delta_{\epsilon}$ and $g_{\mu}(x)-g_{\mu}\left(t^{*}\right)<\frac{\epsilon}{6 m}$ for $x \in\left[\theta_{1}, \theta_{2}\right]$. This interval can be find in polynomial time as $g_{\mu}(x)$ is Lipschitz continuous.
3. By Assumption 1, for the interval $\left[\theta_{1}, \theta_{2}\right]$, we choose $\left\{b_{2 i}\right\}_{i=1}^{k_{2}}$ to construct a loss function $\ell_{2}: \mathbb{R} \mapsto \mathbb{R}$ in polynomial time with regard to $1 / \delta_{\epsilon}$ such that $\ell_{2}(y)=\frac{1}{\lambda} \sum_{i=1}^{k_{2}} \ell\left(y, b_{2 i}\right)$ has a unique minimizer at $\tilde{t} \in\left[\theta_{1}, \theta_{2}\right]$. We choose

$$
\nu=\left\lceil\epsilon / \max \left(\ell_{2}(\widetilde{t}+2 \delta m)-\ell_{2}(\widetilde{t}), \ell_{2}(\widetilde{t}-2 \delta m)-\ell_{2}(\widetilde{t})\right)\right\rceil+1
$$

and construct function $f: \mathbb{R}^{3 m \times m} \mapsto \mathbb{R}$ where
$f(x)=\lambda \cdot \sum_{i=1}^{3 m} \sum_{j=1}^{m} p\left(\left|x_{i j}\right|\right)+\lambda \mu \cdot \sum_{i=1}^{3 m} \ell_{1}\left(\sum_{j=1}^{m} x_{i j}\right)+\lambda \nu \cdot \sum_{j=1}^{m} \ell_{2}\left(\sum_{i}^{3 m} \frac{s_{i}}{\sum_{i^{\prime}=1}^{3 m} s_{i^{\prime}} / m} x_{i j}\right)$.
(B.6)

Note that by (iii) of Assumption $1, \nu$ is polynomial in $\max \left(\left\lceil\frac{1}{\delta_{\epsilon}}\right\rceil,\left\lceil\theta_{2}\right\rceil\right)$. In the rest of the paper, we ignore the $\left\lceil\theta_{2}\right\rceil$ term in the bound as it can be upperbounded by τ, which can be taken as a constant in the reduction.
4. Let $\Phi_{1}=3 m \cdot p(|\widetilde{t}|)+\mu \cdot 3 m \cdot \ell_{1}(\widetilde{t})-\frac{\epsilon}{2}$ and $\Phi_{2}=\nu \cdot m \cdot \ell_{2}(\widetilde{t})$. We claim that
(i) If there exists z such that

$$
\Phi_{1}+\Phi_{2}+\epsilon \geq \frac{1}{\lambda} f(z) \geq \Phi_{1}+\Phi_{2}
$$

then we obtain a feasible assignment for the 3-partition problem as follows: If $z_{i j} \in B(\widetilde{t}, \delta)$, we assign number i to subset j.
(ii) If the 3-partition problem has a solution, we have $\frac{1}{\lambda} \min _{x} f(x) \leq \Phi_{1}+$ $\Phi_{2}+\frac{\epsilon}{2}$.
5. Choose $r=\left[\left(\frac{2\left(3 m \cdot \lambda \cdot \mu \cdot k_{1}+m \cdot \lambda \cdot \nu \cdot k_{2}\right)^{c_{1}}\left(3 m^{2}\right)^{c_{2}}}{\epsilon / \kappa}\right)^{1 /\left(1-c_{1}-c_{2}\right)}\right]$ where c_{1} and c_{2} are two arbitrary constants that $c_{1}+c_{2}<1$. Construct the following instance of Problem 1:

$$
\begin{gather*}
\min _{x^{(1)}, \ldots, x^{(r)} \in \mathbb{R}^{3 m \times m}} \sum_{q=1}^{r} f\left(x^{(q)}\right)=\min _{x^{(1)}, \ldots, x^{(r)} \in \mathbb{R}^{3 m \times m}} \lambda \cdot \sum_{q=1}^{r} \sum_{i=1}^{3 m} \sum_{j=1}^{m} p\left(\left|x_{i j}^{(q)}\right|\right)+ \\
\lambda \mu \sum_{q=1}^{r} \sum_{i=1}^{3 m} \sum_{t=1}^{k_{1}} \ell\left(\sum_{j=1}^{m} x_{i j}^{(q)}, b_{1 t}\right)+\lambda \nu \sum_{q=1}^{r} \sum_{j=1}^{m} \sum_{t=1}^{k_{2}} \ell\left(\sum_{i=1}^{3 m} \frac{s_{i}}{\sum_{i^{\prime}=1}^{3 m} s_{i^{\prime}} / m} x_{i j}^{(q)}, b_{2 t}\right), \tag{B.7}
\end{gather*}
$$

where the input data are coefficients of x and the values $b_{11}, \ldots, b_{1 t}, b_{21}, \ldots, b_{2 t}$. The variable dimension d is $r \cdot 3 m^{2}$ and the sample size n is $\lambda \cdot \mu \cdot r \cdot 3 m \cdot k_{1}+$ $\lambda \cdot \nu \cdot r \cdot m \cdot k_{2}$. The input size is polynomial with respect to m. Our choice of r is the solution to $\epsilon r=2 \kappa n^{c_{1}} d^{c_{2}}$ where $\kappa=\min _{t \in[a \tau, \tau]}\left\{\frac{2 p(t / 2)-p(t)}{t}\right\}$.
The parameters μ, ν, δ, r, d are bounded by polynomial functions of m. Computing their values also takes polynomial time. The parameter k_{1} and k_{2} is a constant determined by the loss function ℓ and is not related to m. As a result, the reduction is polynomial.
6. Let $z^{(1)}, \cdots z^{(r)} \in \mathbb{R}^{3 m \times m}$ be a $\lambda \cdot \kappa \cdot n^{c_{1}} d^{c_{2}}$-optimal solution to problem B.16 such that $\sum_{i=1}^{r} f\left(z^{(i)}\right) \leq \min _{x^{(1)}, \cdots, x^{(r)}} \sum_{i=1}^{r} f\left(x^{(i)}\right)+\lambda \cdot \kappa \cdot n^{c_{1}} d^{c_{2}}$. We claim that
(iii) If the approximate solution $z^{(1)}, \cdots z^{(r)}$ satisfies

$$
\begin{equation*}
\frac{1}{\lambda} \sum_{i=1}^{r} f\left(z^{(i)}\right) \leq r \Phi_{1}+r \Phi_{2}+2 \kappa n^{c_{1}} d^{c_{2}} \tag{B.8}
\end{equation*}
$$

we can choose one $z^{(i)}$ such that $\Phi_{1}+\Phi_{2}+\epsilon \geq \frac{1}{\lambda} f\left(z^{(i)}\right) \geq \Phi_{1}+\Phi_{2}$ and obtain a feasible assignment: If $z_{i j}^{(i)} \in B(\widetilde{t}, \delta)$, we assign number i to subset j. If the $\lambda \cdot \kappa \cdot n^{c_{1}} d^{c_{2}}$-optimal solution $z^{(1)}, \cdots z^{(r)}$ does not satisfy (B.8), the 3-partition problem has no feasible solution.

We have constructed a polynomial reduction from the 3-partition problem to finding an $\lambda \cdot \kappa \cdot n^{c_{1}} d^{c_{2}}$-optimal solution to problem B.16). In what follows, we prove that the reduction works.

Step 2: Proof of Claim (i)

We begin with the proof (i). By our choice of μ and LemmaB.3(i), we can see that for all $x \in \mathbb{R}^{3 m \times m}$,

$$
\sum_{i=1}^{3 m} \sum_{j=1}^{m} p\left(\left|x_{i j}\right|\right)+\mu \cdot \sum_{i=1}^{3 m} \ell_{1}\left(\sum_{j=1}^{m} x_{i j}\right) \geq 3 m \cdot p\left(\left|t^{*}\right|\right)+\mu \cdot 3 m \cdot \ell_{1}\left(t^{*}\right) \geq \Phi_{1}
$$

where the last inequality is due to that $g_{\mu}(\widetilde{t})-g_{\mu}\left(t^{*}\right)<\frac{\epsilon}{6 m}$. By the fact $\widetilde{t}=$ $\operatorname{argmin}_{t} \ell_{2}(t)$, we have for all $x \in \mathbb{R}^{3 m \times m}$ that

$$
\nu \cdot \sum_{j=1}^{m} h\left(\sum_{i=1}^{3 m} \frac{s_{i}}{\sum_{i^{\prime}=1}^{3 m} s_{i^{\prime}} / m} x_{i j}\right) \geq \nu \cdot m \cdot \ell_{2}(\widetilde{t})=\Phi_{2}
$$

Thus we always have $\min _{z} \frac{1}{\lambda} f(z) \geq \Phi_{1}+\Phi_{2}$. Now if there exists z such that $\Phi_{1}+$ $\Phi_{2}+\epsilon \geq \frac{1}{\lambda} f(z) \geq \Phi_{1}+\Phi_{2}$, we must have

$$
\begin{equation*}
\Phi_{1}+\epsilon \geq \sum_{i=1}^{3 m} \sum_{j=1}^{m} p\left(\left|z_{i j}\right|\right)+\mu \cdot \sum_{i=1}^{3 m} h\left(\sum_{j=1}^{m} z_{i j}\right) \geq \Phi_{1} \tag{B.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi_{2}+\epsilon \geq \nu \cdot \sum_{j=1}^{m} h\left(\sum_{i=1}^{3 m} \frac{s_{i}}{\sum_{i^{\prime}=1}^{3 m} s_{i^{\prime}} / m} z_{i j}\right) \geq \Phi_{2} \tag{B.10}
\end{equation*}
$$

In order for equation (B.9) to hold, we have that for all i,

$$
p(|\widetilde{t}|)+\mu \cdot \ell_{1}(\widetilde{t})+\frac{\epsilon}{2} \geq \sum_{j=1}^{m} p\left(\left|z_{i j}\right|\right)+\mu \cdot \ell_{1}\left(\sum_{j=1}^{m} z_{i j}\right) \geq p\left(\left|t^{*}\right|\right)+\mu \cdot \ell_{1}\left(t^{*}\right)
$$

Consider an arbitrary i. By Lemma B.3 (ii) and $g_{\mu}(\widetilde{t})-g_{\mu}\left(t^{*}\right)<\frac{\epsilon}{6 m}$, we have $z_{i j} \in$ $B(\widetilde{t}, \delta)$ for one j while $z_{i k}=0$ for all $k \neq j$. If $z_{i j} \in B(\widetilde{t}, \delta)$, we assign number i to subset j. As $\delta<a \tau / 2 \leq \widetilde{t} / 2, B(\widetilde{t}, \delta)$ and $B(0, \delta)$ are not overlapping. Thus each number index i is assigned to exactly one subset index j. Therefore the assignment is feasible.

We claim that every subset sum must equal to $\sum_{i=1}^{3 m} s_{i} / m$. Assume that the j th subset sum is greater than or equal to $\sum_{i=1}^{3 m} s_{i} / m+1$. Let $I_{j}=\left\{i \mid z_{i j} \in B(\widetilde{t}, \delta)\right\}$. Thus, $\sum_{i \in I_{j}} s_{i} \geq \sum_{i=1}^{3 m} s_{i} / m+1$. As a result, we have

$$
\begin{aligned}
\sum_{i=1}^{3 m} \frac{s_{i}}{\sum_{i^{\prime}=1}^{3 m} s_{i^{\prime}} / m} z_{i j} & \geq \sum_{i \in I_{1}} \frac{s_{i}}{\sum_{i^{\prime}=1}^{3 m} s_{i^{\prime}} / m}(\widetilde{t}-\delta)+\sum_{i \in I_{2}} \frac{s_{i}}{\sum_{i^{\prime}=1}^{3 m} s_{i^{\prime}} / m}(-\delta) \\
& \geq \frac{\sum_{i=1}^{3 m} s_{i} / m+1}{\sum_{i=1}^{3 m} s_{i} / m} \tilde{t}-\delta m=\widetilde{t}+\frac{\tilde{t}}{\sum_{i=1}^{3 m} s_{i} / m}-\delta m
\end{aligned}
$$

Because $s_{i} \leq M(m)$ for all i and $\delta=\frac{a \tau}{9 m \cdot M(m)}$, we have

$$
\frac{\tilde{t}}{\sum_{i=1}^{3 m} s_{i} / m}-\delta m \geq \frac{a \tau}{3 m \cdot M(n)} m-\delta m=2 \delta m>0
$$

Since h is a convex function with minimizer y^{*}, we apply the preceding inequalities and further obtain

$$
\ell_{2}\left(\sum_{i=1}^{3 m} \frac{s_{i}}{\sum_{i^{\prime}=1}^{3 m} s_{i^{\prime}} / m} z_{i j}\right) \geq \ell_{2}(\tilde{t}+2 \delta m)
$$

By our construction of ν and Assumption 1(iii), we further have

$$
\begin{equation*}
\nu \cdot\left(\ell_{2}\left(\sum_{i=1}^{3 m} \frac{s_{i}}{\sum_{i^{\prime}=1}^{3 m} s_{i^{\prime}} / m} z_{i j}\right)-\ell_{2}(\widetilde{t})\right) \geq \nu \cdot\left(\ell_{2}(\widetilde{t}+2 \delta m)-\ell_{2}(\widetilde{t})\right)>\epsilon \tag{B.11}
\end{equation*}
$$

However, in order for equation $\mathrm{B.10}$ to hold, we have that for all j,

$$
\nu \cdot \ell_{2}(\widetilde{t})+\epsilon \geq \nu \cdot \ell_{2}\left(\sum_{i=1}^{3 m} \frac{s_{i}}{\sum_{i^{\prime}=1}^{3 m} s_{i^{\prime}} / m} z_{i j}\right) \geq \nu \cdot \ell_{2}(\widetilde{t})
$$

yielding a contradiction to $\bar{B} .11$. We could prove similarly that it is not possible for any subset sum to be strictly smaller than $\frac{1}{m} \sum_{i=1}^{3 m} s_{i}$. Therefore, the sum of every subset equals to $\sum_{i=1}^{3 m} s_{i} / m$. Finally, using the assumption that $\frac{1}{4 m} \sum_{i=1}^{3 m} s_{i}<s_{i}<$ $\frac{1}{2 m} \sum_{i=1}^{3 m} s_{i}$, each subset has exactly three components. Therefore the assignment is indeed a solution to the 3-partition problem.

Step 3: Proof of Claim (ii)

Suppose we have a solution to the 3-partition problem. Now we construct z to the optimization problem such that $f(z) \leq \Phi_{1}+\Phi_{2}+\frac{\epsilon}{2}$. For all $1 \leq i \leq 3 m$, if number i
is assigned to subset j, let $z_{i j}=\widetilde{t}$ and $z_{i k}=0$ for all $k \neq j$. We can easily verify that

$$
\sum_{i=1}^{3 m} \sum_{j=1}^{m} p\left(\left|z_{i j}\right|\right)+\mu \cdot \sum_{i=1}^{3 m} \ell_{1}\left(\sum_{j=1}^{m} z_{i j}\right)=3 m \cdot\left(p(\widetilde{t})+\mu \cdot \ell_{1}(\widetilde{t})\right)=\Phi_{1}+\frac{\epsilon}{2}
$$

Also, we have

$$
\nu \cdot \sum_{j=1}^{m} \ell_{2}\left(\sum_{i=1}^{3 m} \frac{s_{i}}{\sum_{i^{\prime}=1}^{3 m} s_{i^{\prime}} / m} z_{i j}\right)=\nu \cdot m \cdot \ell_{2}(\widetilde{t})=\Phi_{2}
$$

Therefore,

$$
\begin{equation*}
\frac{1}{\lambda} f(z) \leq \Phi_{1}+\Phi_{2}+\frac{\epsilon}{2} \tag{B.12}
\end{equation*}
$$

which completes the proof of (ii).

Step 4: Proof of Claim (iii)

Suppose that the $\lambda \cdot \kappa \cdot n^{c_{1}} d^{c_{2}}$-optimal solution satisfies B.8), i.e., $\frac{1}{\lambda} \sum_{i=1}^{r} f\left(z^{(i)}\right) \leq$ $r \Phi_{1}+r \Phi_{2}+2 \kappa n^{c_{1}} d^{c_{2}}$. It follows that there exists at least one term $z^{(i)}$ such that

$$
\begin{equation*}
\frac{1}{\lambda} f\left(z^{(i)}\right) \leq \Phi_{1}+\Phi_{2}+\frac{2 \kappa n^{c_{1}} d^{c_{2}}}{r} \leq \Phi_{1}+\Phi_{2}+\epsilon \tag{B.13}
\end{equation*}
$$

where the second inequality equality uses $\epsilon r=2 \kappa n^{c_{1}} d^{c_{2}}$. Therefore, by claim (ii), we can find a solution to the 3-partition problem.

Suppose that the 3-partition problem has a solution. By claim (ii), there exists z such that $\frac{1}{\lambda} f(z) \leq \Phi_{1}+\Phi_{2}+\frac{\epsilon}{2}$. Thus we have

$$
\begin{equation*}
\min _{x^{(1)}, \ldots, x^{(r)}} \frac{1}{\lambda} \sum_{i=1}^{r} f\left(x^{(i)}\right) \leq \frac{r}{\lambda} f(z) \leq r \Phi_{1}+r \Phi_{2}+\kappa n^{c_{1}} d^{c_{2}} . \tag{B.14}
\end{equation*}
$$

Thus if $z^{(1)}, \cdots z^{(r)}$ is a $\lambda \cdot \kappa \cdot n^{c_{1}} d^{c_{2}}$-optimal solution to B.16, we have

$$
\begin{equation*}
\frac{1}{\lambda} \sum_{i=1}^{r} f\left(z^{(i)}\right) \leq \min _{x^{(1)}, \cdots, x^{(r)}} \frac{1}{\lambda} \sum_{i=1}^{r} f\left(x^{(i)}\right)+\kappa n^{c_{1}} d^{c_{2}} \leq r \Phi_{1}+r \Phi_{2}+2 \kappa n^{c_{1}} d^{c_{2}} \tag{B.15}
\end{equation*}
$$

implying that the relation $\overline{B .8}$ must hold. If $(\bar{B} .8$ is not satisfied, the 3-partition problem has no solution.

Remark. When the loss function is L_{2} loss, we can move $\lambda \mu$ and $\lambda \nu$ of equation B.16 into the loss. Specifically, we have

$$
\begin{gather*}
\min _{x^{(1)}, \cdots, x^{(r)} \in \mathbb{R}^{3 m \times m}} \sum_{q=1}^{r} f\left(x^{(q)}\right)=\min _{x^{(1)}, \ldots, x^{(r)} \in \mathbb{R}^{3 m \times m}} \lambda \cdot \sum_{q=1}^{r} \sum_{i=1}^{3 m} \sum_{j=1}^{m} p\left(\left|x_{i j}^{(q)}\right|\right)+ \\
\sum_{q=1}^{r} \sum_{i=1}^{3 m}\left(\sum_{j=1}^{m} \sqrt{\lambda \mu} x_{i j}^{(q)}-\sqrt{\lambda \mu} b_{1}\right)^{2}+\sum_{q=1}^{r} \sum_{j=1}^{m}\left(\sum_{i=1}^{3 m} \frac{\sqrt{\lambda \nu} s_{i}}{\sum_{i^{\prime}=1}^{3 m} s_{i^{\prime}} / m} x_{i j}^{(q)}-\sqrt{\lambda \nu} b_{2}\right)^{2}, \tag{B.16}
\end{gather*}
$$

where μ, ν is chosen such that $\sqrt{\lambda \mu}, \sqrt{\lambda \nu}$ are rational numbers. In this case, the variable dimension is $r \cdot 3 m^{2}$ and the sample size n is $4 r \cdot m$. Our choice of r is the solution to $\epsilon r=2 \kappa n^{c_{1}} d^{c_{2}}$ which is $r=\left\lceil\left(\frac{2(4 m)^{c_{1}}\left(3 m^{2}\right)^{c_{2}}}{\epsilon / \kappa}\right)^{1 /\left(1-c_{1}-c_{2}\right)}\right]$. The value of r doesn't depend on λ and p, which means that we can plug in any λ, p and the reduction is still polynomial in m. It means that for any choice of λ and p, it is strongly NP hard to find a $\lambda \kappa n^{c_{1}} d^{c_{2}}$-optimal solution.

References

D. Ge, Z. Wang, Y. Ye, H. Yin, Strong NP-Hardness Result for Regularized $L _q$-Minimization Problems with Concave Penalty Functions, arXiv preprint arXiv:1501.00622 .
D. Ge, X. Jiang, Y. Ye, A note on the complexity of L p minimization, Mathematical programming 129 (2) (2011) 285-299.

[^0]: ${ }^{1}$ For the case when $t_{1}=0$, (iv) holds trivially.

