Appendix for ‘Toward Efficient and Accurate Covariance Matrix
Estimation on Compressed Data’

This appendix is organized as follows. In Section 1, we state all theoretical results, including our proposed Lemma 1 and
Lemma 2 whose details are not presented in the main text of the paper. In Section 2, we provide detailed proofs for all of
the results. In Section 3, we reformulate and discuss the current theoretical results of the counterparts: Gauss-Inverse and
UniSample-HD. In Section 4, we give a detailed analysis of the computational complexity. Finally, in Section 5, we study
the impact of different v on the estimation accuracy.

Before proceeding, we first show the notations used in this appendix.

Notation. Let [k] denote a set of integers {1,2, ..., k}. Given a matrix X € R?*", for j € [d], i € [ ], we let x; € RY
denote the i-th column of X, and z;; denote the ( j,i ) th element of X or j-th element of x;. Let {X;}*_, denote the set of
matrices {X1, X, ..., Xy}, and z;; ; denote the (3, %)-th element of X;. Let X7 denote the transpose of X, and Tr(X)
denote its trace. Let |33| denote the absolute value of z. Let || X||2 and ||X|| 7 denote the spectral norm and Frobenius norm
of X, respectively. Let ||x|, = (Z}i:l |2;]9)1/4 for ¢ > 1 be the £,-norm of x € R?. Let D(x) or D({z;}) be a square
diagonal matrix with the elements of vector x on the main diagonal, and ID(X) also be a square diagonal matrix whose
main diagonal has only the main diagonal elements of X. Finally, X <Y means that Y — X is positive semidefinite.

1. Provable Results

For convenience, we first restate the theorems and their corollaries in the following.

Theorem 1. Assume X € R and the sampling size 2 < m < d. Sample m entries from each x; € R® with replacement
by running Algorithm 1. Let {pki}gzl and S; € R4*™ denote the sampling probabilities and sampling matrix, respectively.
Then, the unbiased estimator for the target covariance matrix C = % S x;x} = %XXT can be recovered as

C.=C, - Cs, 1
where Cy = - 57| 8,8TxixTS;8T, Cp = 0 S0 IS8T x;xT'S;8T)D(by) with by = iy and
E[C.] =C.

Theorem 2. Given X € R4*™ and the sampling size 2 < m < d, let C and C, be defined as in Theorem 1. If the sampling

probabilities satisfy py; = « H‘ Hl +(1—a) ”x’“ﬁg with0 < a < 1forall k € [d] and i € [n], then with probability at least
1—n-4,

2d 2R
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202 log(20), @

where we deﬁne that R = max-e[ ] [7HX7H2 +10g ( )14HX1H1] and 0.2 — E?:l |: 8”"1’”3 -+ 4HX1H HX7H2

nma? n2m2(l—a) n2m3a?(l—a)
91l 2\|x1\| \|x7\|1 ll: | %
+n2m(1—a) + n?m2a(l—a) + || ZZ 1 n2ma ||2

Corollary 1. Given X € R¥™ and sampling size 2 < m < d, let C and C, be constructed by Algorithm 1. Define
il < @ with 1 < ¢ < Vd, and ||x;||2 < 7 for all i € [n). Then, with probability at least 1 — 1 — § we have

B[P
1€~ Cla < minf0 (£ + 222 2 [ L) Gy 22 UGl [AIOL: ), ®
n nm

where f = i Tj:fj IClz " g O( ) hides the logarithmic factors onn, 6, m, n, d, and a.
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Corollary 2. Given X € R™" (2 < d) and an unknown population covariance matrix C, € R with each column
vector x; € R i.i.d. generated from the Gaussian distribution N'(0, C,). Let C. be constructed by Algorithm 1 with
sampling size 2 < m < d. Then, with probability at least 1 —n — § — (,

IC.~Cpllz _ ~7d®  d [d
P PR <O(—+—/ =)
I1Coll2 ( >

Additionally, assuming rank(Cp)< r, with probability at least 1 —n — 6 — { we have

II[CE]T—Cp||2<6(rd+r\/E+ /ﬁ) )
1Cpll2 nm  m\Vn nm

where [C.|, is the solution to min, . a)<, |[A — Ce

“4)

nm m n

o, and 6() hides the logarithmic factors onn, 6, ¢, m, n, d, and o

Corollary 3. Given X, d, m, C, and C, as in Corollary 2. Let [ [, = Zle wul and ﬁk = Zle aal with {u;}r_;
and {ﬁi}le being the leading k eigenvectors of C,, and C,, respectively. Denote by )\, the k-th largest eigenvalue of C,,
Then, with probability at least 1 —n — § — (,

T _ g2
”Hk Hk ||2 < 1 O(i_~_i ﬂ)’
[Cpll2 M — Ak

(6)

nm  m\n
where the eigengap A\, — A\,+1 > 0 and 6() hides the logarithmic factors onn, 6, ¢, m, n, d, and a.

Next, we present two lemmas: Lemma 1 and Lemma 2, which are used to prove the foregoing theorems. The detailed
statements of the two lemmas are omitted in the main text of the paper owing to limited space, and now they are
described below.

Lemma 1. Given any vector x € R, and m < d, sample m entries from x with replacement by running Algorithm 1 with
the inputs x and m. Let {pk}gzl denote the corresponding sampling probabilities, S € R¥™ denote the corresponding
rescaled sampling matrix, and {ek}zzl denote the standard basis vectors for R, Then, we have

d x? m—1
E [SSTXXTSST] = Z —kekeg + xxT; (7
1 WPk m
d 1 m
E [D(SSTxx"88T)] = 3 (- Juierer; ®)

ST 1 Tm—1)  6(m?—3m+2)
_|_
m3p m3py

m2 —6m2—+11m—6
+ } zierer ; 9)

mB
E [SS"xx"SS"D(SS"xx"SS™)] = (E [D(SS"xx"SS")SSTxx"SS” )"

d
1 6(m—1 3(m2 -3 2 -1 2
:Z[ 3t (m )"' (m mE )}xekeg—km XXTD({%})
k

g

m3py m3 P

—XXT ﬁ 7m _ 3 552 N
n [D({pk D+ " 3p(a )] : (10)

m3 m3
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", [Wﬂ)({ﬁ}) ()

m m — {E2
+{(3+2) ({ }>+ mng({p’g})} xx’, (11)

where the expectation is w.r.t. S, and D({x2}) denotes a square diagonal matrix with {x2}¢_, on its diagonal that can be
extended to other similar notations.

Lemma 2. Given the definitions in Lemma 1. Then, with probability at least 1 — Zzzl Nk, we have
ISS"xxSS” ]2 < Y 2 (k. ik, m), (12)
kel
where T is a set containing at most m different elements of [d] with its cardinality |U'| < m, and f(xg,n, m) = |zk| +
|| 1 1
log(2) | gt + [« 2|\ gz + e G — ol
Remark 1. For the expressions in Lemma 1 and Lemma 2, the sampling probability p;, appears in the denominator, which

indicates that the derived bound may be sensitive to a highly small p;, # 0. However, in terms of any p;, = 0, we can define
lz’“' = 0 for a, b > 0, because we follow the rule that p;, = 0 only when z;, = 0 and x}, = 0 can never be sampled. Thus,

the aforementioned two lemmas and other derived results are applicable to the case where there exists pi = 0.

2. Analysis
2.1. Technical Theorems

Below, we first show the Matrix Bernstein inequality employed for characterizing the sums of independent random vari-
ables/matrices, and then present a matrix perturbation result for eigenvalues.

Theorem 3 (Tropp 2015, p. 76). Let {A M € R pe zndependent random matrices with E [A ]=0and|Ail2 < R.
Define the variance 0® = max{|| Zi:l E [AAT] ||, || Zi:l E[ATA;]|2}. Then, P(]| Zz’:l A2 > ¢) < (d+

n) exp(%j{f/:i)for alle > 0.
Theorem 4 (Golub & Van Loan 1996, p. 396). If A € R*? and A + E € R4*¢ are symmetric matrices, then

Me(A) + A(E) < A (A+E) < Ap(A) + M\ (E) (13)
for k € [d], where \i,(A + E) and \;,(A) designate the k-th largest eigenvalues.

2.2. Proof of Lemma 1

Proof. According to Algorithm 1 in the main text of the paper each column vector in the rescaled sampling matrix S €
RX™ is sampled with replacement from {r = \/Wek} d_, with corresponding probabilities {py, }¢_,, where {e;}{_,

are the standard basis vectors for R<.

Firstly, we prove Eq. (7). By the definition, we expand

m m

SSTxxTss” = g stjstzj E sztjsz; (14)
j=1 j=1
m
T o To T TooTo T
= E St; S, XX 8¢S, + E St,Sy, XX S¢S, (15)
Jj=1 i#j€[m]

where the random variable ¢; is in [d].
Passing the expectation over S through the sum in Eq. (15) we have

Eg St, st xx! St; st E E P(t ]7krkrkxx rprl

j=1 j=1k=1
d 2

m d
1 T o T . T Ly T
= E E Pr—5—5€rej, XX erpe; = E —eey,, (16)
m2p2 "k k mpr =~ F

j=1k=1 k k=1
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and similarly

d d
E Z St,8¢. XX sy, st = Z ZZP(Q = k)P(t; = q)riry xx" Torl (17)

z;éje[ ] i#j€[m] k=1 g=1
-1
= ZZwkxq ekeT = xxT. (18)
k=1gq=1

Now, combing Eq. (16) with Eq. (18) immediately proves Eq. (7).
Then, Eq. (8) can be proved based on Eq. (7) by

d
1

E [D(SS"xx"SS™)] = D(E [88"xx"SS"]) = (— )xiekef : (19)

mpk

k=1
Alternatively, D(SSTxx?'SST') can be explicitly expanded by

m d m
D(SSTxx"'SST) = Z St stTj Z riepe; Z St; stj; . (20)

— =

Thus, the whole target expectations in Eq. (9), Eq. (10) and Eq. (11) can be explicitly expanded, and we can use similar
ways of proving Eq. (7) to prove the remainder of the lemma.

To prove Eq. (9), we expand

d m
E [(D(SS"xx"SS™))? stj stTj Z riepe} Z St sg; )2 (21)
k=1 j=1
m m d
=E Z St,St, Z xkekeg Z St; stTJ Z St; SZ; Z xiekek Z St; st (22)

k=1 j=1 =

2, To T
—EE St, st E xkekekst E St,S jE xkekekstjstj (23)
T
—&—IEg stjst E xkekekstjst E stist E xkekekstjst_ (24)

i#j€[m]
+E Z stzsta:kekekst S, Zstjst Zxkekekst]sg (25)
i#j€lm]
+E Z St,S¢, Zxkekekst st Z St;St, Zxkekekst st , (26)
i#j€[m] i#jE[m]

where the four terms in the last equations are calculated as:
m d m d
T 2, To T T 2. T. T
3)=E g St,St, E Tieke) St; Sy E St, S, E Tyere) St Sy,
j=1 k=1 j=1 k=1
m d d
T 2. . T. To T 2. T. T
=E E St,St, E Tyeke St; Sy St; S, E Tiekey, St; Sy,
j=1 k=1 k=1
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+E E St, st g riepel s, st St,S
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m d
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eklekl Tperer
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d

ekl E zkekek eklekleq
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ekek

d

T 20 oTa T
E St;St, E Tieke St; Sy,

i#j€[

m) k=1
d

St, st g xkekekst stht S, E xkekekst sg;

k=1
d

T T
St,St E xkekekstgst stqst E xkekekstjst

k=1

St st E :ckekeksf sf St, st E riepe; St; st

d d

k=1
d
T T § 2 T T
eklekleklekl Tperer ek3ek3
k=1
d
T E T T
ekleklek2ek2 zkekek eklekl
k=1

mm—1) 4 T +Z
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2
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d d
T 20 oTa To T 20 oTa, T
=E E St;S¢, E Tyere) St; Sy St Sy, E T)€xey St, Sy,
i#j#g#hE[m] k=1 k=1
d d
T 2, T T T 2, T T
+E g St;St, E Tieke) St; Sy St, Sy, E Tj,€rej S, S,
i#j,i=g,j7#h,g#h€[m] k=1 k=1
d d
T 20 oTo Teo T 2, T T
+E E St;St, E There St;S; S, Sy, E T exey S, St
i#,i=hj79,97h€[m] k=1 k=1
d d
T 20 oTo Te. T 2, T T
+E E St, S, E Ti€re} St; Sy St, Sy, E Tpexey Sy, Sy,
i#],i#9,j=h,g#h€[m] k=1 k=1
d d
T 20 oTa T &T 2, T T
+E E St;St, E Tieke) St; Sy St, S, E T exey St, Sy,
i#£j,i#£h,j=g,972h€[m] k=1 k=1
d d
T 2, To Teo T 2, T T
+E E St;St, E Ti€ke) St; Sy St, Sy, E Tj€rey Sy, Sy,
i#],i=g,j=h,g#h€[m] k=1 k=1
d d
T 20 oTo Teo T 2, T T
+E g St;St, E Tieke) St; Sy St,Sq, E T exey, S, St
i#j.i=h.j=g.g7#he[m] k=1 k=1

d
:Z [m(m—l)(m—Z)(m—I&)xi_'_4m(m—1)(m—2)x4+2m(m—1) 4 T 30)

k
m4 m4pk m4pk

€1V
Combing the above terms with simplification and reformulation completes the proof of Eq. (9).
Now, we continue to prove Eq. (10).
E [SSTxx"SSTD(SS"xx"SS™)]

m

m m d m
=E Zstjsz;xeTstsz; Zst].sg; Zmiekeg Z St; st
j=1 j=1 j=1 k=1 j=1
d
= EZst st xx7 St,St, Zst ZszekezstjstTj (32)
k=1

m
TooTe T
—HEE St; S, XX S¢;S; E St, st g xkekekst st (33)

J=1 i#j€[m]

+ E Z St, st xx! St; 8¢, Zstjst Zxkekekstjst (34)

i#j€[m]
+E Z S, st xxT St; sf Z St,St, Zxkekek St, stT7 (35)
i#j€[m] i#jE€[m]

where we calculate the four terms in the last equation as shown in below:

d
T 20 ol T
=E E St; st xx! St,S E St,St, E Tiekey St; Sy,
k=1
d d

T T T
=E E stht XX stjst stjst E riepel stjs75 +E g St, s75 XX St, st stjst E riepel St,St,
Jj=1 = i#j€[m] =
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d m d
2 : 2 : T T T 2 : T T
= pk'l 4 ekleklxx eklekleklekl l'kek;ek, eklekl
ki=1j=1 k=1
d
el
+E E E E PriPa 153 ekleklxx eklekle e g riepe} €€,
i£j€[m] k1=1g=1 k=1
d 4 d 2
_ L T (m* —m)zy,
= ege, + eie;
33 mip?
k=1 k k=1 k
d
1 m—1
=> (=5 5 )Thexer; (36)
=1 "V Pk M"Pk
=E E St; st xxT St,s E S, st g riepel St, stT
l;ﬁ]E[nL]
d
T T T T 2. T T
=E E St,S;, XX S¢Sy St,S;, E Tyere; Sy Sy,
g#i£j€[m] k=1
d
T T T T 2 T T
+E E St, Sy, XX 8,8y St,Sy, E Tyerey Sy Sy,
g=i#j€(m] k=1
d
T T T T 2 T T
+E E stgstgxx St,St,St:S¢, E Tyerey Sy Sy,
g=j#i€lm k=1
d d
Z m(m—l)(m—Q) T T T TZ 2 . T T
= m4pk ekleklxx ekleklekzeh xkekekekseks
k17k21k3:1 1 k=1
d
1) T T T T 2 T T
+ eklekIXX eklekleklekl xkekek ek;gekS
kl,k??,— k=1
d
—-1) T T T T 2 T T
+ — 1 5 ©k €, XX e, e e, e, Tperey ek, ey,
k1, ko=1 pkl k=1
d d
m(m—1)(m — 2 m(m —1
= ( 4)( ) eklek + E )xi ekleg + E 7( ) )xﬁ eklef
mipy 1 k 1 1 m4pk 1 1
ki=1 ‘1 1 ki=1 1
d
m(m —1)(m — 2) 4 2m(m —1) 4 T
=> 1 + =i | exel; (37
P m>pg m=pi

i#£j€[m]

:EZ

i#jF#gE[m]

+E )

i#j=g€[m]

+E >

i=g#j€[m]

T
=E E St, St xx ! St; st E St; st E xkekekst St,

d

T T T T§ : 2 T T
StiStiXX Sthththtg Tperey stgstg

k=1
d

T T T T E 2 T T
St; StiXX Stj Stj Stg Stg Trerer Stg Stg

k=1
d

TooTo To T 240 oTa. T
St 8y, XX S¢;8; St,S; E Tipexey S, Sy,

k=1
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d
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d
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d
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d d
m(m—1)(m — 2
+ Z ( m4z))( )xklxk2ekle£2ek2e£2 ineke;‘gehe%;
k1,k2,ka=1 k2 k=1
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d d
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d
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d
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d
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d
m(m—1)(m—2) o 2} )
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Combing the above terms with simplification and reformulation completes the proof of Eq. (10).

Finally, we have to prove Eq. (11).
E [(SSTxx"SST)?] = Zst St, XZX S, st

m
_ T T T T Te TH2
= E(E St; Sy, XX St;8; + g St;S¢, XX S¢Sy )
j=1 i#jE€[m]

m
_ T Te T\2
—JE(E St; Sy, XX St;8;)
=1
T T TH2
+ E( E St; Sy, XX St;S;)
i#jelm]

m
T ool T TooTo T
+E E St; S, XX S¢;S; E St Sy, XX S¢Sy
J=1 i7#j€[m]

m

T oTo T T, T T

+E E St,Sy, XX S¢;8; E St; S, XX S¢S,
i#j€[m] j=1

where we calculate the four terms in the last equation as shown in below:

m
_ T o oTe. T T wgla, T TooTo To Toula T
(40) =E E St; Sy, XX St;8; St;8; XX sy;8; +E E St;S¢, XX St,S;,St;S; XX S¢Sy
i=1 i#jelml

(39)

(40)

(41)

(42)

(43)
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d m

1
= E E T 4eke;‘gxxTeke;{eke£xx
"m Dy

k=1j=1
d d

1
+E Z Zzpkpq 4p2p2ekekxx Tepey egeg xx" egey
k

i#jelm] k=1q=1
d

Z ekez +

k= k=1

1 m—1

—~

3,2
mepg

E St, st xx !

iF#j€[m]

>

i#jFgF~hE[m]

>

i#ji=h,j#g,97#h€[m]

>

i#j,i#h,j=g,97#h€[m]

+E

+E

d (m? —
>

TooTe To oTogla oF
St,Sy, XX 8¢;8; St,S; XX 84,8,

TooTo To oFwgla oF
St,Sy, XX 8¢;8; St,S; XX 84,8,

Tekef

4
m)xT
) kekez

4 T.
)xkekek )

E St;S¢, xszt s;‘F

Z#J €[m]

St;S

TooTe To oyl T
St,Sy, XX S¢;8; St,8; XX sy,8;, + K

>

T T T T T T
St; Sti XX Stj Stj Stg Stg XX St Sth

i#5,i=g,j7h,g#h€[m]

+E

>

i#5,i#9,j=h,g#h€[m]

+E

>

i#j,i=g,j=h,g7#h€[m]

T T T T

+E Z stis;":xx St,St,St, St XX sthstTh
i#j,i=h,j=g,97h€[m]
d
mm—1)(m—-2)(m—3
= Z ( )(m4 )( )$k1$k2$k3$k4ekle£2ek36{4
k1,k2,k3,ka=1
d
m(m—1)(m —2 m(m—1)(m —2
+ Z ( m4)( )xilx/@xlmekleﬁeklea + Z ( m4)( )xilxhxksekleﬁekaea
k1 ka ka=1 Pk k1 ,ka ks=1 Pk
d
m(m—1)(m —2 m(m—1)(m —2
+ Z ( 4)( )l'klx%2xk3eklez;ek‘ae£2 + Z ( 4)( )xklxizxmekleéekzea
k1,k2,k3=1 Pk k1,k2,ka=1 Pk
d
m(m—1) , m(m—1) 5 , T T
—&-Zixkxkekekekek + Z 7a:kxkekekekek
P mApg,pr, TP R by e mApg, pr, 2
d d
m(m — 1)(m — 2)(m — 3)
= Z xi2 Z mA xklxk4ekle£4
kzzl kl,k)4:1
d
m(m—1)(m —2) 5 —Dim=2) , T
+ Z 4 xklxkﬁleklek}z; + Z ]{)2 Z 4 kleklekl
k1 ka=1 M Pl Pt - m*pg,
Lomm—1)(m—-2) 2~ m(m—1)(m—2) .
+ Z 1 Tk, T}, ek, O, + Z Z 1 Ty Ty €k €,
ky ha=1 Pk a1 pk? by k=1 m
d
1 22 —1
i BRI o ) SR TS I
k1=1 mip;, ko= Ph2 g =y VPR
x||2m(m — 1)(m — 2)(m — 3 m(m—1)(m —2
_ [xllzm( )( )( )XXT+ ( )4( ) ({ })

m4

(44)

Towlo «To o el T
St,Sy, XX S¢;8; St,S; XX S¢,8;,

TooTlo To ool T
St,Sy, XX S¢;8; St,S; XX S¢,8;,
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d
[x[[3m(m —1)(m —2) ~af o mm—1)(m—2) o 2}
+ —erer + xx  D({-—=L
méa kg::l Dk ECE ma ({pk })
d d d d
m(m —1 m—2) 3 m(m — 1) i o m(m-—1) z3 z7
B I3t M D S gy T S o, @)
k=1 m =1 Pk m k=1 Pk =1 Pk
EZst st xx? St; st Z St, st xx? St, s?
i£jE€[m)]
=E Z St sthXTst sthf St xx7 St, sf +E Z SthZ;XXTSf,gSg;StngXXTStjSz;
gAIF#FEIM] g=i#j€[m]
+ E Z stgsz;xsztgsg;stisgxsztjsg
g=j#i€[m]
d
-1 2
= Z ( 4)( )ekleglxxTeklezlek2efzxxTek3ef3
k1 ko ks=1 M Ph
1,Rk2,R3
-1
+ Z ekleklxxTekleklekleklxxTekgek3 + Z %ekleflxxjjekleflekzefzxxTeklefl
k1,ks=1 k1 k1 ko=1 k1
d
m(m —1)(m —2) 4 m(m—1) 4 m—1) 4 7
= Z y Ty, zkdeklekd + Z 7:% xkseklekj + Z 7331«13161‘%1
k1 kg =1 M"Phy ka1l Pk, [ m*pz,
d
m(m —1)(m — 2) 3 v, m(m—1) j Ty é T
= D{—=})xx" + ———D({ = })xx —exe;. ; 46)
ma ({pk }) ma ({p% }) kg % k
d
m(m—1)(m—2) aci m(m—1) 1 xi 2
43) = xx'D({—=}) 4+ ———xx" D({ =% “kepel “n
(43) — (25 + 2 (D +™ ;;j e

Combing the above terms with simplification and reformulation completes the proof of Eq. (11). To this end, we complete
the whole proof. O

2.3. Proof of Lemma 2

Proof. According to the setting, we have that

ISSTxxSS” [l @ ISSTx[3 = 1> s, sExlZ = 1Y ——ai e, I3
j=1 j=1 "t
d 5t ETE 2 (b) 5t7kxk 2
-—HEEZEZ §Z<§Z > ( EZ*;——*>7 (48)
11 TV i—1 j—1 TPk kel j—1 WPk
J J ]

where we let I = {*yt}‘trz‘l be a set containing at most m different elements of [d] with its cardinality |T'| < m.

In Eq. (48), (a) follows because SSTxx”'SS7 is a positive semidefinite matrix of rank 1, Otk returns 1 only when t; = k
and 0 otherwise, and P(d;,, = 1) = P(t; = k) = pg. (b) holds due to that we perform random sampling with replacement
m times on the d entries of x € RY, and consequently at most m certain different entries from x are sampled.

. s . 5e.
Let k = v with 1 € T, and we first bound | >°72, tjn#%\ Define a random variable a; = %ﬁ” — 21 for all
J € [m]. We can easily check that {a;}7", are independent with IE [a;] = 0, so that we can leverage Theorem 3 to

continue our following analysis. We see that

|x’h| "x’)’l‘ |x’71|
max Jaj] = max{ == (- — 1), Euly < Bl (49)
efm] ' 7 m. Py m MP~,



Appendix for ‘Toward Efficient and Accurate Covariance Matrix Estimation on Compressed Data’

and
i x? x?
doE[a] = - (50)
= mp-, m
2 12
Thus, applying Theorem 3 with R = l= ;1‘ and 02 = # — —L obtains that
Y1 Y
—€2/2

|Zaj\>e)<Zexp(x2 ( ), (51)

j=1 mp'Yl)_x’QY1/m+ ‘.1‘71‘6/(377’1])71)

m 5fj'v11’n |

whose RHS is denoted by 7,,. Then, with probability at least 1 — 7,, we have | Z;":l a;| <eie,

Jj=1 mp1
|z, | + €. We then replace € by other variables to obtain that
oy | 2 1 1]
o, |+ €=z, | + log ) L+ —) 1, (52)
o - <77’v1 Bpn, 7! 9m2pw * loa2/my) oy, !

which is denoted by f(z+,,7,, m).

s
In a similar way, we can bound | 77", :ﬂk " | for any other k € [d]. The lemma then follows by using the union bound

over cases for all k € [d]. O

2.4. Proof of Theorem 1

Proof. We have to prove that the unbiased estimator for 0r1g1na1 covariance matrix C is Eq. (1), i.e., C, = 01 — Cg,
where C; = —m S S;STx;x]'S;ST, and C, = S D(S;STxx!'S;ST)D(b;) with b;ﬂ = L

mn—n I+(m—1)py; *
Note that each S; is created by running Algorithm 1, and {S;}?_, are independent matrices. Thus, taking all summands

E [S;STx;x]'S;ST] together and leveraging Eq. (7) in Lemma 1 achieves the expectation of C.,

n d 2
) -1
E E S; STX XTS ST n E E ki ekez + n XixiT
m

nm—n MPi
i=1 im1 L= TWPki

E[C,] =

nm-—n

n

d
_nmfnz;z_: eek—l— XXT (53)

Eq. (53) indicates that C; is a biased estimator for the original covariance matrix C = IXXT = L35 xixT. We still
need to apply a debiasing procedure to C; to get an unbiased estimator. By Eq. (8) in Lemma 1, it can be shown that

n

~ m z?
E[Cs] = E [D(S;S] xix; S;S])| D(b;) = “kieef . 54
Cal = = 2 B PBSTxox/S:S) Db nm_n;; (54)
Combing Eq. (53) with Eq. (54), we immediately see that C, = 61 — 62 is unbiased for C. O
2.5. Proof of Theorem 2
Proof. Here, we have to bound the error ||C.—C ||2 To make the representation compact, we define A; = A;, —A;, —A,,
T T T T T T
with A;, = TSSIxxSS] A mDSSIxSSIb) A, XXL Then Y A; = C, — C holds. It

is stra1ghtf0rward to see that {A;}?_, are independent zero-mean random matrices, which are exactly the setting of the
Matrix Bernstein inequality, as shown in Theorem 3. To bound ||C. — C||2 via Theorem 3, we need to calculate the relevant
parameters R and o2 that characterize the range and variance of A; respectively.

We first derive R by bounding || A;||2 so that ||A;||2 < R for all ¢ € [n]. Expanding ||A;||> gets that

[Aill2 = |Ai; — Aiy — Agylla < [|Ai, — A ll2 + [|Asl2
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<[|As, ll2 + [ A, [l2- (55)
The last inequality in Eq. (55) results from

||A21 - Ai2||2 = gé?ﬁp\k(Au - Azz)l

@ max{Ma(As ) — A1 (An)l, M (As ) — Aa(A)[} (56)
© max{ (As,), M (As) — Aa(As)[} (57)
9 max{\ (A ), M (As) — Aa(Az)} (58)
%ANAM (59)
<Al ©0

where A (+) is the k-th largest eigenvalue.

(a) follows from that A (A, ) — A1 (As,) < Ae(Ay — Ayy) < A(Ay) — Ag(A,,) for any k € [d], which can be proved
by combining Theorem 4 with the fact that A\g(—A;,) = —A1(A;,) and A (—A;,) = —Ag(Ay,) for A;, € RI*,

(b) holds because of that Ap>2(A;, ) = 0 since A, is a positive semidefinite matrix of rank 1, and A,cjq(As,) > 0 since
A, is positive semidefinite.

(c) follows owing to that A1 (A;,) = Tr(A;,) > Tr(A;,) = Zk 1 Ak(A4,) > Aa(Ay,) > 0, where the first equality
holds because A\;>2(A;,) = 0, the first inequality results from the fact that the diagonal matrix A;, is constructed by the
diagonal elements of A;, multiplied by positive scalars not bigger than 1, and the second inequality is the consequence of
)\ke[d} (A;,) > 0.

(d) results from that Ae[q)(A4,) > 0.
(e) follows owing to that A;, is positive semidefinite.

Now, we only need to bound ||A;, ||2 and || A4, ||2. We have that

xi o Ixall3
Al = [ FEE > = _— (61)

Then, Lemma 2 reveals that with probability at least 1 — 22:1 Mhi»

A ll2 <

s Mhei» M), (62)
ker,

where T'; = {’ytl}LF:lll is a set occupying at most m different elements of [d] with its cardinality ;| < m, and
f(xkiankiym) = |xk1| +10g(%) [3&:;;;9' + |$k1|\/9m2p2 + log(2/nk,)(m;}7m B T}L):|

We derive the similar results for all {x;}? ;. Then, by union bound, with probability at least 1 — >, Z k1 Nki, we have

R = max m Z fz(:vki M, M) + w . (63)
; nm—n P n

1€[n] Py

Applying the well known inequality (3", a;)? < n > | a?, we have

2 2 2 2

2 2 2 i, T4,
2 k1 ki
Thiy Mheiy M <322, +3lo +3lo +61lo —kr TR
2 (@i, s, m) ki g (Ukz)9 m2pZ. g (77 1)9 22, g(nk )(mpkz m)
2 2x 2 6z
< 807, 1 log? () 2ki_ y jog( 2y O%is (64)

Nk 3m?p3, Mi” MPri
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Before continuing characterizing R in Eq. (63), we set the sampling probabilities as pyx; = « Hlik‘lll +(1- a)ﬁ Itis
; i3

easy to check that 22:1 pr; = 1. For 0 < a < 1, we also have py; > « Hlilj\ll‘l , then plugging it in the second and third
term of Eq. (64) respectively getting that

2 2lxi? 2 6xi [|xil1
P2 (ki mri, m) < 3af, + IOgQ(%)Smgaé + log(%) e (65)

Equipped with Eq. (63) and setting nz; = ;5 for all i € [n] and k& € [d], we bound R with probability at least 1 —
n d
D1 2oke1 ki =1 —nby

2nd  2||x;|? 2nd., 6]xy|[|x; ill3
R<mos | Y (302, + 1og?(Z2 2l |y 2nd Sl bl y | I H

i€ln] [ nm —n o n ' 3m2a? n mao n

[2 2nd . 2||x;]|? 2nd . 6||x;]|? x;|2
Smax *(3||Xi||§+10g2(7> H ||21 +1Og(7) || ||1) + ” |2:|
i€[n] | N N~ 3ma n mao

n
[71%:113 2nd 14|/,
< e | Tl o2 200, X/!l] , (66)
icn] | N n -’ nma
where the second inequality follows from that "+ < 2 for m > 2 and |I';| < m, and the last inequality results from that

aglandlog(zzd) > 1 forn > 1,d22,andn§ 1.

At this stage, we have to derive o2 by only bounding for || Y7 | E[A;A;] |2 since A; is symmetric. Expanding E [A;A;]
obtains that

0 <E[AA] =E[A;, A, + A As, + Ay Ay, — A Ay, — Ay A,
*AhAia - AiaAil + AiQAi:s + AiaAi2] s

in RHS of which, we bound the expectation of each term. Specifically, invoking Lemma 1, we have that

d

4 1
AL ; [m(m - 1)p; " (m — 1)2mpii] Thickek
®
d d d
HXzH 2) 1 aii | 2k | Ixil3(m® =5m+6)  m -2 a3
* ; + m(m — 1) ; Pki] pri FOk - m(m — 1) m(m — 1) ; Pki]
©) ®
2(m B 2) X XT Iiz X; XT zz 2(m 2) kz X X 1 Ik:z T
R D) e D) + DU o 4 DR
©) ® ©, @
d 1 7 6(m—2)  (m—2)(m—3)
DO | g T = | hese]
d 1 d 1
X; 2X1'XT S — 1‘24 T i XZ‘XT XiXT T — 1‘24 . T i
+ || LHZ@ ) +;((m _ 1)Pki + 1) ki€kCL D(b ) i + 7 ;((m _ 1)pki + 1) ki€k€k D(b )
@
- 6 8m=2) 1 4 1 8m—=2) o 2
- ; { ) sz " m(m — 1)Pii " m(m — 1)101“} Thiekey D(bi) = m(m — 1)Xixi D({pki HD(b:)

O ®)
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_ _ _ 2 _ _
_ WXiX?D({xzi})D(bi) - Tmm(bi)m({i:})xz‘x? - WD(bi)D({xii})xix?
@) @ ©
d 3, T, T o 7 d 3, s o 7 1 -
- ; (m = 1)pps FeR XX ~ Ixillxixi — ; = 1) <% ke~ [Ixill5xix; — 1) D({p%i )D(b;)
@® @
© )
_ #D(b_)m({-fzi })X-XT (67)
mm — 1) I
@

2
T,

Because of the limited space, ({5 }) is to denote a square diagonal matrix in R¥*4 with {

which is also extended to other similar notations.

2
Trid : :
i }¢_, on its diagonal,

In Eq. (67), it can be checked that for m > 2, we have

-0 =0;
@—-©=0;
©-0+0-8-@ = o
©-0+0-6-@=pn e , (n-Bm 1 pu)eky, mffnx_T .
O+O-B-@= [(G%@"l‘;% st kzdjl ﬁ] -~

®@
84_ 44_
0= Y [k Kool

2.2 3,3
MmPy; M Py

MpPk; m2pp;

d 2,.2 2 d 2
XilloX i 2z i X i
@ / E [” ||2 k k E k‘| Ek,eqk- (68)

m2pki m3pki Mpg; m2pp;

8zt 4zt x;||222, 222, d 2.

ki ki + || ||2 ki + ki Z ki T
k k=1
x; %7 D ((m — 1)/pk,)xiz (m—-2)(m+1-— l/pki)zii})

n?m(m — 1) 1+ (m—1)pr; 1+ (m—1)pr;
14+ (m — 1)pri 14+ (m—1)prs n2m(m — 1)
1 d x?
ki T
X7 69
+n2m;pkixxz (69)

With Eq. (69) in hand, we can formulate o2 as

n n d
1 Szt dxt. x; 222, 2x2, 2,
o= E E[AA ]2 < g max — 2’“; + 3k§ + Ii1l2 _kz + 2’”_ kal
P ~ keld) n® | mPpp,  mOp; MPli MZPhi £ Pki
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n

+Y max LT 203 (((m — 1) /pri)i, n (m—=2)(m+1+ l/pki)xkz I Z Z i <73
< kefd) n? [m(m —1)" 1+ (m—1)pg 14 (m—1)px n m i ip
n d
< max 1 Sxii + 45‘%1 + HXzHﬂm + 255%@ Z liz
ke[d] n? m2pii mgpii MPii m2pki sz'
- 1 8||Xi\|§$i' Tk
_ 1 1 70
+mH[ ol ), u;; x| a0

2
Again, we have to consider the sampling distributions py; = o ”‘m’”‘ +(1 - a)”i%ﬁ% with 0 < a < 1. Plugging py; >

xi|l1
|k

i and pr; > (1-— )kaﬁ? in Eq. (70), we have

2 Simaxll Shxalls |, A3y, xld 2l menxznl}

m2(1—a)?2 m3a?(l—-a) m(l-a) m2 1—a)

L[ 83 Imelszl T
+zl,33;;n2[mua Ly bl oy,

i=1 k=1

-3 [t o Al _Shlh Al

m2(1—a)?2  n2m3a?2(l—a) n?m(l—a) n2m?a(l-—a)

x| Fxax
I Sna )
i=1
. J|4/3 4. . .
Note that employing pg; = Q(%) for the term Jfﬁgl in Eq. (70) can produce a result tighter than that in

Eq. (71), which is because of the fact that (Zzzl lzrs]*2)2 < ||xi]12||x;]|3 always holds owing to the Holder’s in-

. I . 14/3
equality. However, it is not necessary to apply pi; = Q(%) to the term

) ey
nﬂl;‘élg”{f“; = O( |x17‘l| 7|7|1X1”2) in Eq. (71) obtained by applying pr; = o Hlx H‘l +(1- a)‘

|x Hz
T}

to the term 7331)"31' in Eq. (70) has already been small enough, which can be smaller than other terms in Eq. (71) like
ki

xkl

in Eq (70), because the term
_ Q( METRN + Hrh )

[EIR XLH2

20 I3 ]xa 2 _ O(HX‘H JLlez) Similarly, applying other sampling probabilities py; = Q(Mqlq) with ¢ # 1,4 3,2

n?m2a(l—a) S |k

to Eq (70) will produce a result larger than Eq. (71), which may not be bounded. This is also why we only use

Hlik\lll (1— )ty A 7= = O ||fck|1|| ) to tighten R in Eq. (66). This derivation justifies our selection of ¢ = 1,2 in
(Zk\xﬁ kl‘q) used for constructing the sampling probability py; = « H‘ikl\ll +(1- a)%
‘We then invoke Theorem 3 to obtain that for € > 0,
—€2/2
P(|Cc —Cll2 > ¢) < 2deXp(m)~ (72)

Denote the RHS of Eq. (72) by § = 2d exp(%;/f/g) and consider the failure probability n in Eq. (66), then by union

bound we have ||C. — C||2 < ¢ holds with probability at least 1 — 7 — 0. Furthermore, § = 2d exp(%;/e%) yields the

following quadratic equation in €

& Re
2log(2d/6) 3

R R, 202
3G eeeae

— 02 =0. (73)

Solving Eq. (73) gets only one positive root

2d
¢ = log(~)
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<tog(2H 2 1\ Ja02105(2 (74)

Thus, immediately we have ||C. — Cll2 < log( % )2E 1 /202 log( Td ) holds with probability at least 1 — 1 — §, which
completes the whole proof. O

2.6. Proof of Corollary 1

Proof. According to the setting, substituting that ||x;||2 < 7 for all ¢ € [n], ”x’”l < pwith1 < ¢ < +V/d, and m < d into
Theorem 2 establishes that

2 1 1 4 4 C
IC. —Cla < 0(% + T2 +\/72+“0 ¢ o T [Ty
n nm nm nm

PR )

where the first inequality invokes -

r il <nrtand C =30, nl is the original covariance matrix.

Also, we can adopt >, ||x;]|3 < nd7?||C||2, which holds because Y7, [|x;[|3 < 72>, [|x:]|3 and Y7, %13 =

nTr(C) < nd||C|2. O

Hence, we have

2 2
|C. —Cll: < O ++T\/||cz\/ ol Sy

nm3 nm nm?2  nm

~ 72 d||C d||C C
<o(Z 47 7o [ACl: Ol [1Cll) 6
n nm

n nm m nm

Finally, assigning ||C. — C|| by the smaller one of Eq. (75) and Eq. (76) completes the proof.

2.7. Proof of Corollaries 2 and 3

Proof. The proof follows (Azizyan et al., 201 5, Corollaries 4-6), where the key component ||C. — C,||2 is upper bounded
by [|Ce — 230 xixT ||z 4 |2 301, xixI — C,||2. Then, the derivation results from Theorem 2 in our paper and the
Gaussian tall bounds in (A21zyan et al. 2015 Proposition 14).

(Azizyan et al., 2015, Proposition 14) shows that with probability at least 1 — { for d > 2,

max Ix:i]|2 < \/QTr )log(nd/();
1 n
1= > _xix] = Cyll2 < O(I[C,[l2v/10g(2/¢) /). (77)
i=1
Then, applying them and Corollary 1 along with the fact that ||x;||; < v/d||x;||2 and Tr(C,) < d||C,||2 establishes

1Ce = Cpll2 < [[Ce —*sz T||2+|I*ZXX =Gyl

5T T T%\/T 2 [ 1 e iy xix] 2y | = \/T
SO(Z-F*-F* ST T —)+O<||Cp||2 ﬁ)
<O(-+= \f Ly (190 46 IIsz\[) (78)
~d?||C d|C 1 1
go( |7|~“~5H2 | plz\[w”c ||2\/>+d||C 27/ — +||cp2\/>)
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2
< o(Z1CH: d||cp|2\/ﬁ) (19)
nm m n

with probability at least 1 — n — 6 — ¢, where Eq. (78) results from that we invoke Eq. (77) to get || Y% | x;x7 || <
I 2oy xix] = Gyl + ||C Il < O(IC,l2)-

The proof for the low-rank case where rank(C,,)< r additionally adopts

[[Celr — Cpll2 < [[[Ce)r — Cell2 + [Ce — Cpll2
< [[[Cplr — Cell2 +[|Ce — Cyll2
< [Cplr = Cpllz + [ICp = Cell2 + |Ce = Cpl2
=2|C. _CPHQ7 (30)

where the last equality holds because rank(C,) < r. Then, armed with Tr(C,) < rank(C,)||C,l|2 < 7||C,||2, we have

1 — 1 —
lCelr = Cpll2 = O(ICe = Cyll2) = O([|Ce —~ > xix] |2 + I~ > xix] = Cylla)

i=1 i=1
5(7dICslz | TIIC, ||2\[ i rd \F
<
<o(= = rICsll2y) — + Gyl —— + ICyll2y/ = )
rd||C r||Cp rd
< o(" Gz 7| ||2\[+“C /7 -
nm nm

with probability at least 1 —n — 6 — (.

The given definitions also implicitly indicate that C,, and C, are symmetric. Then, following (Azizyan et al., 2015), the
desired bound in Corollary 3 immediately results from Corollary 2 combined with the Davis-Kahan Theorem (Davis &

Kahan, 1970) that shows [|[T, — [T, l2 < 5—4—[/Cc — C,|l2- O
3. Discussion for Counterparts

3.1. Theorems for Gauss-Inverse and UniSample-HD

We first use our notations to rephrase current theoretical results provided in (Azizyan et al., 2015, Theorem 3) and (Anaraki
& Becker, 2017, Theorem 6), which correspond to Gauss-Inverse and UniSample-HD, respectively.

Theorem 5 (Azizyan et al. 2015, Theorem 3). Let d > 2 and define,

RS 2, T RS 4
Su=11= Y Ixillixax! ll2, 82 = = > Ixills.
= i

There exists universal constants K1, ko > 0 such that for any 0 < § < 1, with probability at least 1 — 6,

d 1€[n ) 2
IC. —Clls < \/ Sl+\/ \/log 4/0) ., dmaxietm 6illa )5y (82)

nm

Theorem 6 (Anaraki & Becker 2017, Theorem 6). Let each column of S; € R¥™ be chosen uniformly at random from
the set of all canonical basis vectors without replacement. Let p > 0 be a bound such that ||S;STx;||3 < p||x;||3 for all
i € [n]. Then, with probability at least 1 — §

[Ce—Cll2 <e, (83)

_¢? _ —m
where = desp (72L). R = 1 [(90 01 i P+ 2 g ] and o =

d(d— m
=15 [0 — B maxicqu IxlBIICll + 4 o maic [l 1RO

2(d—m)|| X3 (d—m)® maxgeja) o7 T,
) MAXpe[d) i€ [n] ag; + n(d—lk)z[n]—l) = }
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3.2. Discussion

In this subsection, we will simplify the foregoing two theorems by making Eq. (82) and Eq. (83) explicitly dependent on
n, m and d. Our derivations are natural and straightforward, and we will not deliberately loose Eq. (82) and Eq. (83) in
order to demonstrate the superiority of the theoretical results gained by our weighted sampling method. We define that
maXien ||xz||2 <T

In terms of Eq. (82) in Theorem 5, 51 < max;e|y [|x;[|3]/C|l2 and Sz < max;e(,) [|x;]3. Note that -1 || X% < [|C||z <
max; e ||X;[|3. Then, Eq. (82) can be simplified and reformulated as

nm nm?2 nm

_ 2 2
So(n/d||c|2+7\/g+7d). (84)
nm m n nm

If applying Sy < dmax;epy,) [|x;]/3[C||2 in the original paper (Azizyan et al., 2015), we will get that

~/ [d||Cll2 max;epn ||x:|3 dmax;cry ||%: |5 dmax;er ||x:|3
ICe—CHzSO(\/ Cllz maicp | ||2+\/ co bl dmavic bl

.l < 5(\/dncn2maxie[n] il \/c@ mosicy [EIClls |, dmosicy

nm nm?2 nm

_7d [|C 24
m n nm
_, [d|C 2 [d 724\ ~/7d [|C 24
||CefC||2§min{O(ﬂ/ | ”2+T\/7+7),0(T\/” H2+T—)}. (86)
nm m n nm m n nm

For Eq. (83) in Theorem 6, we first simplify its R and o2. According to (Anaraki & Becker, 2017), to obtain a more accurate
estimation, each x; is required to be multiplied by HD to flatten its large entries before being sampled uniformly without
replacement, where H is a Hadamard matrix with its dimension being 2! (I is a certain positive integer), and D is a diagonal
matrix with its diagonal elements being i.i.d. Rademacher random variables. Note that HDD”H” = DTH”THD is an
identity matrix.

In summary,

Suppose that we do not have to pad X with zeros until its dimension d = 2! holds. Hence, assuming that d = 2! for
X € R¥*" without loss of generality, we define Y = HDX € R*" below.

Corollary 2 of (Anaraki & Becker, 2017) indicates that with probability at least 1 — /3, we have
1 2nd

ma: il <4/ =4 /2log(—=) max ||x; o7

el 1] < ﬁ 8(=5) max il 87)

2nd
max [|y;|l2 < y/2log(——) max ||x;]|2. (88)
i€[n] 6 i1€[n]

and

Corollary 3 of (Anaraki & Becker, 2017) indicates that with probability at least 1 — 3, we have

m 2nd
1S:S] yill2 < \/ 3\12108;(7)”&”2- (89)

To make a compact representation, we define § = /2 log(%). Obviously, 6 > 1.

Then, in Theorem 6, we can replace the input data X by Y. Combing Eq. (89) with the fact that ||y;||2 = |HDx;|2 =
[[x:]|2 getting p = ((/50)?) = mTez for the setting of Theorem 6. Along with § > 1 and m < d, we have
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1 d2 5 d(d—m) 1 .9 2
R = 0(( " + e ?g%“xl‘“ﬁmwﬁ” max )
do?
= O((,)9 maxxi3)

|
o}

(% mas )

=0(7) o
and
] (i ”;Ej‘g)wz e e 3 T DT on
+ Lm0 g o XX P,
n
O e DX + 0 )
= o I + T 3 M N el
i sy s e+ 0 s 1)
= O ma [l Cl + 2 e
+ T 4+ L2 o )
= (2 max 81T + X o+ L )

~ 2ch 4d(d —m 74(d —m)?
=o( I ||2+ (3)+ ( 3)) ©92)
nm nm nm3d
Note that Eq. (92) for simplifying o2 in Eq. (83) is tighter than the simplification result in the original paper (Anaraki &
Becker, 2017) that scales with Recalling Eq. (83), and replacing its e by R and o2 to get that with probability at least

1— 96 — 3, we have

an

~ d||C 2 d(d— 2(d — 1 24
||Ce—CH2§O<n/m+T—\/ (d=m) Td=m), + 0. 93)
nm m nm m nmd  nm
If m = d, then
~ d||C 72d
[Ce—Cll2 < O(T 7” l2 + 7) (94)
nm nm

Although pure sampling without replacement makes no estimation error when m = d, processing the data by a Hadamard
matrix before sampling can result in the error as shown in Eq. (94).

If m < d with m being close to d, then d — m = O(1), and thus we have

Cl. > [d r%d
ICe — Clls <0 ,/ ” ‘2 \/%Jr;—m). 95)

If m < d or there exists a certain constant k£ < 1 with m < kd, then O(d — m) = O(d). In addition to considering that
LIX[1Z < |Cll2 < max;ep ||x;]|3 = 72, then we have

~ d||C 2d 1 2d
||Ce—c||2SO(T\/m-i-T—\/——i—T—)- (96)
nm m nm nm
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4. Computational Complexity

Recall that we have n data samples in the d-dimensional space, and let m be the target compressed dimension. The
computational comparisons between our proposed method and the other approaches are presented in Table 1, in which
Standard method means computing C directly without data compression. We should explain some terms in the table
before proceeding.

Storage: storing data and random projection matrices (if any) in the remote sites and the fusion center, and storing the
covariance matrix in the fusion center.

Communication: shipping the data and random projection matrices (if any) from remote sites to the fusion center (high
communication cost requires tremendous bandwidth and power consumption).

Time (FLOPS): compressing the data in the remote sites, and calculating the covariance matrix in the fusion center (a low
time complexity means a low power cost and high efficiency for the data processing).

Note that, instead of only using the fusion center, data have to be first collected from many remote sites like a network of
g < n sensors. Then, they are transmitted to the fusion center to estimate the covariance matrix. This procedure shows
why communication cost is required. In the table, except for the communication, the two other compared terms have
contained the total costs in both the remote sites and fusion center.

For a covariance matrix defined as C = %XXT — xxT', we can exactly calculate X = % >, x; in the fusion center by

X = % Z?Zl u;, where {x;}"_; are distributed in g < n remote sites, and u; € R? is the summation of all data vectors in
the j-th remote site before being compressed. Hence, about O(gd) storage, O(gd) communication cost, and O(nd) time
have to be added to the last four methods in Table 1, with g < n.

Table 1. Computational costs in terms of storage, communication, and time.

Method Storage Communication Time
Standard O(nd + d?) O(nd) O(nd?)
Gauss-Inverse || O(nm + d?) O(nm) O(nmd + nm?d + nd?) +Tg
Sparse O(nm + d?) O(nm) O(d+nm?) +Ts
UniSample-HD || O(nm + d?) O(nm) O(ndlogd 4+ nm?)
Our method O(nm + d?) O(nm) O(nd + nmlog d + nm?)

From now on, we can focus on the covariance matrix defined as C = %XXT.

First, we derive the computational costs in our propose algorithm. Computing {py; }re(q),ic[n] takes O(nd) time. Then,
sampling nm entries from all data vectors to get Y € R™*"™ takes time that is scaled on nm log d up to a certain small
constant. In Eq. (1), each S;, SZTXZ', SiSlTxi, and SiSlT (squared diagonal), has at most m non-zero entries. Hence,
recovering {S;}?_, via the sampled nm entries in Y and the sampling indices in T € R™*" incurs O(nm) time. With
Y and T in hand, {S;S7x;}" , can be accurately computed in O(nm) time. Equipped with {S;S?x;}"_,, computing
C, = S S;STx;x!'S;ST additionally takes only O(nm?) time, this is due to that each S;S7x; € R¢ and
S:STx;xI'S;ST € R?*4 has at most m and m? non-zero entries respectively. Based on the obtained C., computing

the square diagonal matrix Cy = N D(SiSTxix!'S;ST)D(b;) takes O(nm) time since each S;STx;x]' S;ST

m
nm-—n

has at most m non-zero entries in its diagonal. Finally, obtaining C = 61 — 62 incurs O(d) extra time. The total
running time is about O(nd + nmlogd + nm + nm + nm + nm? + nm + d) = O(nd + nmlogd + nm?). In the
remote sites, data are compressed into m dimensional space. Computing by; only corresponding to the sampled entries
is enough to exactly calculate the C; = ——>""  I(S;STx;x!'S;ST)D(b;) in Eq. (1), so that at most nm entries
from {pri}re(d),ic[n] have to be retained to obtain {by;}, since by; = m Thus, in the remote sites, Y € R™*"
and T € R™*" dominate the storage cost, taking about O(nm) space in total. In the fusion center, O(d?) storage is
additionally used to store the estimated covariance C, € R4*?, Similarly, about O(nm) communication cost is required
because of transmitting Y € R™*" T € R™*" v € R”, w € R" and a.

Then, for Standard in Table 1 that means directly calculating covariance matrix through the observed data samples without
compression, it is straightforward to check its computational complexity. X € R%*™ and C € R%*? takes about O(nd-+d?)
storage in total, and X € R?X™ Jeads to about O(nd) communication burden. Calculating the covariance matrix C =
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LXXT costs O(nd?) time.

For Gauss-Inverse, >, Si(ST'S;)~'1STx;x}'S;(SI'S;)~'ST, which is the main part of its unbiased estimator, dominates
the computational cost. Generating n different Gaussian matrices {S; € R4*™}"_| by the pseudorandom number genera-
tor like Mersenne twister (Matsumoto & Nishimura, 1998), which is by far the most widely used, takes considerably large
amount of time in practice. The time cost can be denoted by 7. As S; is dense, computing {S¥x;}7_, takes O(nmd)
time. Calculating {(S'S;)~1}%; requires O(nm?2d + nm?), which involves matrix multiplications and inversions. Sub-
sequently, we repeat the matrix-vector multiplications in {S;(S7'S;)"'1STx; € R4}, from the left to right, based on
which we get the target covariance matrix. Finally, it takes at least O (nmd +nm?2d + nm3 +nm? +ndm +nd?) + Tg =
O(nmd+nm?d+nd?) +Tg time for Gauss-Inverse. In the remote sites, we compress data by S?x; € R™ before sending
them to the fusion center. Along with O(d?) storage for the derived covariance matrix, about O(nm + d?) storage space is
required in total. Also, sending {S¥x; € R™}"_, requires about a O(nm) computational burden.

Note that we have not listed the synchronization cost of Gauss-Inverse in Table 1. In practice, a pseudo-random number
generator is applied to the program in both the remote sites and the fusion center to generate/reconstruct n Gaussian random
matrices {S; € R*™}™ | and only n seeds are required to be transmitted from remote sites to the fusion center to recover
the Gaussian random matrices. Therefore, only about O(n) storage and communication cost have to be added in Table 1.
Also, calculating each (ST'S;) ™! has to load each ST'S; € R™*™ into memory, hence at least O(m?) memory is required.

For Sparse, calculating ;" | S;STx;x!'S;S! and subtracting its rescaled diagonal entries dominate the computational
cost (Anaraki, 2016). Generating sparse projection matrices {S; € R4*9}"_| is also expensive (Anaraki & Becker, 2017),
whose time cost is denoted by T's. The entries of each S; are distributed on {—1,0, 1} with probabilities {5-,1 — £, 5-}.
Then, each column of S; has % non-zero entries in expectation. Empirically, we can fix that ¢/d = 0.2 or 0.4 according
to (Anaraki & Hughes, 2014; Anaraki, 2016). The number of non-zero entries of S;S7x; € R?is at least d(1 — (1 — 1))

in expectation, which ranges from %(1 — ) to %. Define d(1 — (1 — 1)9) = m < d, thus we can solve s with

q/d = 0.2 or 0.4 fixed to obtain that s = O(d%). Then computing {S7x; € R?}™; takes O(”T‘?q) = O(nm) time
in expectation. Based on it, computing {S;S7x; € R?}"_, additionally costs O("?dq) = O(mm) time in expectation.
Since each S,;SiTxi € R? contains only m non-zeros entries in expectation, thus obtaining Z?:l SiSiTxixZTSiSZT and
subtracting its rescaled diagonal entries requires O(nm +nm+nm? +d) + Ts = O(nm? +d) + T time in total. Storing
{S:STx; € R4}7_, and the estimated covariance matrix requires O(nm +d?) storage in expectation, where a O(nm) cost
results from O(nm) non-zero entries in {S;S7x; € R?}"_, along with O(nm) corresponding indices. Similarly, sending
{S;STx; € R4}™_, from remote sites to the fusion center takes at most O(nm) communication cost in expectation.

For UniSample-HD, processing data by a Hadamard matrix by HDX € R*" requires O(nd log d) time, where H € R4*¢
can be a Hadamard matrix, D € R?*? is a diagonal matrix with diagonal elements being i.i.d. Rademacher random
variables, and we suppose that d = 2 holds (I is a certain positive integer). Then, sampling m entries uniformly without
replacement on each data vector by {STHDx; € R}, takes O(nm) time. Hence, it is straightforward to check that
Y HDS,SITDTH x,x! DTH”S;STHD € R**? requires O(nd log d+nm+nm?+d?log d) = O(ndlog d+nm?)
time in total. HD € R%*? can be generated on the fly when we process the data. About O(nm + d?) storage has to be
used for the compressed data and estimated covariance matrix. Obviously, about O(nm) communication cost is required.

5. Impact of the Parameter o

5.1. Discussion

To determine if the k-th entry of the data vector x; € R? should be retained or not, the sampling probability applied in our
method is

2
Lli

HXing'

|k
Pri = Q@ + (1 —«
C T il ( )

o7

Achieving our theoretical bound of Theorem 2 requires 0 < o < 1. However, The case & = 1 and a = 0 can also
obtain weaker error bounds, which can be straightforwardly derived from Eqgs. (64)(65) and Eqs. (70)(71). The following
illustration reveals the connection between « and error bounds on data owning different properties.
2
Ti

1. Only using o = 0, i.e., £5-norm based sampling pi; = W can yield a very weak bound if there exist some very
ill2
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small entries |x;| in x; € R?. E.g., substituting pj; = ki into the term MaXge(d ’“ - of Eq. (64) or Eq. (70) results

Hx H

in maxyeq lx ”2 in the final error bound, which becomes infinite if the positive entry |x;“| gets close to 0;
k

2. Only using @ = 1, i.e., £1-norm based sampling py; = 3 H‘ yields a slightly weak bound if there exist some very
4

large entries |zy;| in x; € R4, E.g., substituting py; = HI ﬁ‘ into the term maXpe[d] ,, Lri of Eq. (70) results in
P

maxge(q) Tr,[|%i[|7 in the final error bound, which is always greater than or equal to maxyeq) [|%:[|3 = [|x; /|3 derived

by employing py; = Hx H2 to bound maxke[d] . Specifically, assume ||x;||3 = 1 without loss of generality, then

it is possible that max, cga,|x, [4=1 MAXke|d] xkiniH? = M > 1if when z;; = \2[}1 and @y p; =

‘/2d+2\f for all k € [d] with k # j. Also, min, cga x,|1=1 MaXke[q) z3;||x:||3 = 1if we have zy; = \/>for all

k € [d] or we have x;; = 1 and xy; x2; = O for all k € [d] with k # j. Note x; C R? in the above optimizations
means that x; is a vector variable in the d-dimensional space, and j is an arbitrary integer in the set [d].

3. Therefore, « balances the performance by ¢;-norm based sampling and ¢5-norm based sampling. /5 sampling penal-
izes small entries more than ¢; sampling, hence /5 sampling is more likely to select larger entries to decrease error
(e.g., case 2). However, different from ¢; sampling, /5 sampling is unstable and sensitive to small entries, and it can
make estimation error incredibly high if extremely small entries are picked (e.g., case 1). Then 0 < o < 1 is applied

2
to achieve the desired tight bound with pg; > (1 — O‘)ﬁ to tackle the extreme situation in the case 2 that cannot
T2

be well handled purely by pi; > « Hlik‘l‘l . When « turns from 1 to 0, the estimation error is likely to first decrease and
then increase.

5.2. Experiments

Accordingly, we create four different synthetic datasets: {A;}}_, € R000x10000 e g = 1000 and n = 10000) All

entries in A; and A, are i.i.d. generated from the Gaussian distributions N ( m, 1000) and NV (,/ W’ 1(1)0),

respectively. For Ag, the entries of its one row are i.i.d. generated from N/ (,/ ‘gajgl , ﬁ), and the other entries follow

N(,/ 5 d+12 L 100) For A4, its generation follows the way of X in the main text of the paper.

Alpha-1
¢+ Alpha-0.9
~%-Alpha-0.8| A1, d=1000 n=10000 | A2, d=1000 n=10000 A3, d=1000 n=10000 4 A4, d=1000 n=10000

Alpha-0.7| 5 ° 6 '
~<- Alpha-0.6| |5 14
~#- Alpha-0.5| 2 1.2

Rescaled Error
n
v

Alpha-0.4| g 1 . A e
Alpha-0.3| 24 sccbereeieteblonke Rt fhelRtutioitieill
Alpha-0.2| 06 0
~# Alpha-0.1 005 0.1 015 02 005 0.1 015 02 005 01 015 0.2
<t Alpha-0 m/d m/d m/d m/d

Figure 1. Accuracy comparison by decreasing o from 1 to O with a step size of 0.1. The error at each « is normalized by that at « = 1
on y-axis, and m/d varies from 0.005 to 0.2 with a step size of 0.005 on z-axis. Roughly, & = 0.9 is a good choice, and the smaller
parameter like oo = 0 usually leads to a poorer accuracy and higher variance compared with the other « values.

In Figure 1, the y-axis reports the errors that are normalized by the error incurred at « = 1. For A, the magnitudes of
the data entries tend to be highly uniformly distributed. Thus, nearly the same results are returned over all a. For Ao,
its entries are slightly uniformly distributed with some entries having extremely small magnitudes. Hence, o = 0 has a
poorer performance compared with the others, which is consistent with the case 1 in Section 5.1. A3 contains some entries
larger than the others, and neither @ = 0 nor o = 1 achieves the best performance obtained roughly at o = 0.9. Also,
the estimation error first decreases and then increases when « turns from 1 to 0. All such simulation results conform to
the case 2 and case 3 in Section 5.1. Considering A4 that is not likely to contain the extreme situation as mentioned in the
case 2 of Section 5.1, we see that best performance is roughly achieved when « gets close to 1.
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