## A. Proof Detailed Proofs in Section 3

## A.1. Proof of Proposition 3.4

Proof. Before we proceed, we first introduce the following lemma.
Lemma A.1. For $|x| \leq \frac{5}{9}$, we have

$$
\left|(1+x)^{\frac{1}{2}}-1+\frac{x}{2}\right| \leq 3 x^{2} .
$$

Proof of Lemma A.1. By the Taylor Expansion with Lagrange remainder, we have

$$
\left(1+x_{0}\right)^{-\frac{1}{2}}=1-\frac{1}{2} x_{0}+\left.\frac{1}{2} \frac{\partial^{2}\left(1+x_{0}\right)^{-\frac{1}{2}}}{\partial x^{2}}\right|_{x=\theta x_{0}} x_{0}^{2}
$$

for some $\theta \in(0,1)$. Then for $|x| \leq \frac{5}{9}$, we have

$$
\left|(1+x)^{-\frac{1}{2}}-1+\frac{1}{2} x\right|=\frac{3}{8} \frac{1}{(1+\theta x)^{\frac{5}{2}}} x^{2} \leq \frac{3}{8} \frac{1}{\left(1-\frac{5}{9}\right)^{\frac{5}{2}}} x^{2}=\frac{3^{6}}{2^{8}} x^{2} \leq 3 x^{2} .
$$

We then proceed with the main proof. Since the optimization problem is symmetric about $u$ and $v$, we only prove the claim for $u$. Specifically, we first compute $u_{k+1}-u_{k}$. By (2.2) and (2.3), we have

$$
u_{k+1}=\frac{u_{k}+\eta X_{k} Y_{k}^{\top} v_{k}}{\left\|u_{k}+\eta X_{k} Y_{k}^{\top} v_{k}\right\|_{2}} .
$$

Since $\eta B d \leq \frac{1}{4}$, by Cauchy-Schwarz inequality, we have

$$
\begin{aligned}
|x| & =\left|2 \eta u_{k}^{\top} X_{k} Y_{k}^{\top} v_{k}+\eta^{2} v_{k}^{\top} Y_{k} X_{k}^{\top} X_{k} Y_{k}^{\top} v_{k}\right| \\
& \leq 2 \eta\left\|u_{k}\right\|_{2}\left\|X_{k}\right\|_{2}\left\|Y_{k}\right\|_{2}\left\|v_{k}\right\|_{2}+\eta^{2}\left\|v_{k}\right\|_{2}\left\|Y_{k}\right\|_{2}\left\|X_{k}\right\|_{2}^{2}\left\|Y_{k}\right\|_{2}\left\|v_{k}\right\|_{2} \\
& =2 \eta B d+\eta^{2} B^{2} d^{2}<\frac{5}{9},
\end{aligned}
$$

which satisfies the condition of Lemma A.1. We denote

$$
\begin{aligned}
T_{1}:= & \left(1+2 \eta u_{k}^{\top} X_{k} Y_{k}^{\top} v_{k}+\eta^{2} v_{k}^{\top} Y_{k} X_{k}^{\top} X_{k} Y_{k}^{\top} v_{k}\right)^{-\frac{1}{2}}-1+\eta u_{k}^{\top} X_{k} Y_{k}^{\top} v_{k} \\
& +\frac{1}{2} \eta^{2} v_{k}^{\top} Y_{k} X_{k}^{\top} X_{k} Y_{k}^{\top} v_{k}-\frac{1}{2} \eta^{2} v_{k}^{\top} Y_{k} X_{k}^{\top} X_{k} Y_{k}^{\top} v_{k} .
\end{aligned}
$$

Then by Lemma A.1, we have $\left|T_{1}\right| \leq 3\left(\left|2 \eta u_{k}^{\top} X_{k} Y_{k}^{\top} v_{k}+\eta^{2} v_{k}^{\top} Y_{k} X_{k}^{\top} X_{k} Y_{k}^{\top} v_{k}\right|\right)^{2}+\frac{1}{2} \eta^{2} B^{2} d^{2}$. Therefore, we have

$$
\begin{aligned}
u_{k+1}-u_{k} & =\left\|u_{k}+\eta X_{k} Y_{k}^{\top} v_{k}\right\|_{2}^{-1}\left(u_{k}+\eta X_{k} Y_{k}^{\top} v_{k}\right)-u_{k} \\
& =\left(1-\eta u_{k}^{\top} X_{k} Y_{k}^{\top} v_{k}\right)\left(u_{k}+\eta X_{k} Y_{k}^{\top} v_{k}\right)-u_{k}+T_{1}\left(u_{k}+\eta X_{k} Y_{k}^{\top} v_{k}\right) \\
& =\left(1-\eta u_{k}^{\top} X_{k} Y_{k}^{\top} v_{k}\right)\left(u_{k}+\eta X_{k} Y_{k}^{\top} v_{k}\right)-u_{k}+R_{k}=\eta\left(X_{k} Y_{k}^{\top} v_{k}-u_{k}^{\top} X_{k} Y_{k}^{\top} v_{k} u_{k}\right)+R_{k},
\end{aligned}
$$

where $R_{k}=\left(R_{k}^{(1)}, R_{k}^{(2)}, \ldots, R_{k}^{(d)}\right)^{\top}$ with

$$
\begin{aligned}
\left|R_{k}^{(i)}\right| & \leq\left|\left(3\left(2 \eta u_{k}^{\top} X_{k} Y_{k}^{\top} v_{k}+\eta^{2} v_{k}^{\top} Y_{k} X_{k}^{\top} X_{k} Y_{k}^{\top} v_{k}\right)^{2}+\frac{1}{2} \eta^{2} B^{2} d^{2}\right)\left(u_{k}^{(i)}+\eta X_{k} Y_{k}^{\top} v_{k}\right)\right| \\
& \leq\left(3 \eta^{2}(d B)^{2}(2+\eta(d B))^{2}+\frac{1}{2} \eta^{2}(d B)^{2}\right)(1+\eta d B) \\
& \leq\left(3 \eta^{2}(d B)^{2} \frac{9^{2}}{4}+\frac{1}{2} \eta^{2}(d B)^{2}\right) \frac{4}{5} \leq 20 \eta^{2}(d B)^{2} .
\end{aligned}
$$

## A.2. Proof of Theorem 3.5

Proof. We first bound the infinitesimal conditional variance. Since the optimization problem is symmetric about $u$ and $v$, we only prove the claim for $u$.

$$
\begin{aligned}
& \left.\frac{d}{d t} \mathbb{E}\left(U_{\eta}^{(j)}(t)-U_{\eta}^{(j)}(0)\right)^{2}\right|_{t=0} \\
\leq & \eta^{-1} \operatorname{tr}\left(\mathbb{E}\left[\left(U_{\eta}(\eta)-U_{\eta}(0)\right)\left(U_{\eta}(\eta)-U_{\eta}(0)\right)^{\top}\right) \mid U_{\eta}(0)=u_{k}, V_{\eta}(0)=v_{k}\right] \\
= & \eta^{-1} \mathbb{E}\left[\left(\eta\left(X_{k} Y_{k}^{\top} u_{k}-u_{k}^{\top} X_{k} Y_{k}^{\top} v_{k} u_{k}\right)+f_{k}\left(u_{k}, v_{k}\right)\right)^{\top}\left(\eta\left(X_{k} Y_{k}^{\top} u_{k}-u_{k}^{\top} X_{k} Y_{k}^{\top} v_{k} u_{k}\right)+f_{k}\left(u_{k}, v_{k}\right)\right)\right] \\
= & \eta \mathbb{E}\left(u_{k}^{\top} Y_{k} X_{k}^{\top} X_{k} Y_{k}^{\top} u_{k}-2 u_{k}^{\top} Y X_{k}^{\top} u_{k} u_{k}^{\top} X_{k} Y_{k}^{\top} v_{k}+u_{k}^{\top} u_{k}\left(u_{k}^{\top} X_{k} Y_{k}^{\top} v_{k}\right)^{2}\right)+O\left(\eta^{2}\right) .
\end{aligned}
$$

Furthermore, by Cauchy-Schwarz inequality, we have

$$
\left.\frac{d}{d t} \mathbb{E}\left(U_{\eta}^{(j)}(t)-U_{\eta}^{(j)}(0)\right)^{2}\right|_{t=0} \leq \eta \mathbb{E}\left((d B)^{2}+2(d B)^{2}+(d B)^{2}\right)+O\left(\eta^{2}\right) \leq \eta 4(d B)^{2}+O\left(\eta^{2}\right)=O(\eta)
$$

By Section 4 of Chapter 7 in (Ethier and Kurtz, 2009), we know that, as $\eta \rightarrow 0^{+}, U_{\eta}(t)$ and $V_{\eta}(t)$ weakly converge to the solution of (3.1) and (3.2) with the same initial. By definition of $U_{\eta}(t)$ and $V_{\eta}(t)$, we complete the proof.

## A.3. Proof of Theorem 3.6

Proof. Since $P$ is an orthonormal matrix, $\left\|H_{j}\right\|_{2}=\left\|W_{j}\right\|_{2}=1$ for all $j=1, \ldots, d$. Thus, we have

$$
\begin{aligned}
\frac{d}{d t} H^{(i)} & =\lambda_{i} H^{(i)}-\sum_{j=1}^{2 d} \lambda_{j}\left(H^{(j)}\right)^{2} H^{(i)} \\
& =\lambda_{i} \sum_{j=1}^{2 d}\left(H^{(j)}\right)^{2} H^{(i)}-\sum_{j=1}^{2 d} \lambda_{j}\left(H^{(j)}\right)^{2} H^{(i)} \\
& =H^{(i)} \sum_{j=1}^{2 d}\left(\lambda_{i}-\lambda_{j}\right)\left(H^{(j)}\right)^{2}
\end{aligned}
$$

We then verify (3.8) satisfies (3.7). By (Evans, 1988), we know that since $H_{j}(t)$ is continuously differentiable in $t$, the solution to the ODE is unique. For notational simplicity, we denote

$$
S^{(j)}(t)=H^{(j)}(0) \exp \left(\lambda_{j} t\right)
$$

Then we have

$$
H^{(i)}(t)=\frac{S^{(i)}(t)}{\sqrt{\sum_{j=1}^{2 d}\left(S^{(j)}(t)\right)^{2}}}
$$

Now we only need to verify

$$
\begin{aligned}
\frac{d}{d t} H^{(i)}(t) & =\frac{\left(\lambda_{i} S^{(i)}(t)\right) \sqrt{\sum_{j=1}^{2 d}\left(S^{(j)}(t)\right)^{2}}-\frac{\left(2 \sum_{j=1}^{2 d} \lambda_{j}\left(S^{(j)}(t)\right)^{2}\right) S^{(i)}(t)}{2 \sqrt{\sum_{j=1}^{2 d}\left(S^{(j)}(t)\right)^{2}}}}{\sum_{j=1}^{2 d}\left(S^{(j)}(t)\right)^{2}} \\
& =\lambda_{i} \frac{S^{(i)}(t)}{\sqrt{\sum_{j=1}^{2 d}\left(S^{(j)}(t)\right)^{2}}}-\sum_{j=1}^{2 d} \lambda_{j} \frac{\left(S^{(j)}(t)\right)^{2}}{\sum_{j=1}^{2 d}\left(S^{(j)}(t)\right)^{2}} \frac{S^{(i)}(t)}{\sqrt{\sum_{j=1}^{2 d}\left(S^{(j)}(t)\right)^{2}}} \\
& =\lambda_{i} H^{(i)}(t)-\sum_{j=1}^{2 d} \lambda_{j}\left(H^{(j)}(t)\right)^{2} H^{(i)}(t)
\end{aligned}
$$

which completes the proof.

## B. Proof Detailed Proofs in Section 4

## B.1. Proof of Theorem 4.1

Proof. We calculate the infinitesimal conditional expectation and variance for $Z_{\eta}^{(i)}, i \neq j$.

$$
\begin{align*}
\left.\frac{d}{d t} \mathbb{E} Z_{\eta}^{(i)}(t)\right|_{t=0} & =\eta^{-1} \mathbb{E}\left[Z_{\eta}^{(i)}(\eta)-Z_{\eta}^{(i)}(0) \mid H_{\eta}(0)=h\right] \\
& =\eta^{-1} \mathbb{E}\left[\eta^{-1 / 2}\left(H_{\eta}^{(i)}(\eta)-H_{\eta}^{(i)}(0)\right) \mid H_{\eta}(0)=h\right] \\
& =\eta^{-1 / 2} h^{(i)} \sum_{l=1}^{2 d}\left(\lambda_{i}-\lambda_{l}\right)\left(h^{(l)}\right)^{2}+O(\eta)=Z_{\eta}^{(i)}\left(\lambda_{i}-\lambda_{j}\right)+o(1) \tag{B.1}
\end{align*}
$$

where the last equality comes from the assumption that the algorithm starts near $j^{t h}$ column of $P, j \neq 1$, i.e., $h \approx e_{j}$. To compute variance, we first compute $\widehat{\Lambda}$,

$$
\widehat{\Lambda}=P^{\top} Q P=\frac{1}{2}\left(\begin{array}{cc}
\bar{Y} \bar{X}^{\top}+\bar{X} \bar{Y}^{\top} & \bar{Y} \bar{X}^{\top}-\bar{X} \bar{Y}^{\top} \\
-\bar{Y} \bar{X}^{\top}+\bar{X} \bar{Y}^{\top} & -\bar{Y} \bar{X}^{\top}-\bar{X} \bar{Y}^{\top}
\end{array}\right)
$$

where $Q$ is defined in (3.3). Then we analyze $e_{i}^{\top} \widehat{\Lambda} e_{j}$ by cases:

$$
e_{i}^{\top} \widehat{\Lambda} e_{j}= \begin{cases}\frac{1}{2}\left(\bar{X}^{(i)} \bar{Y}^{(j)}+\bar{X}^{(j)} \bar{Y}^{(i)}\right) & \text { if } \max (i, j) \leq d \\ \frac{1}{2}\left(-\bar{X}^{(j)} \bar{Y}^{(i-d)}+\bar{X}^{(i-d)} \bar{Y}^{(j)}\right) & \text { if } j \leq d<i \\ \frac{1}{2}\left(\bar{X}^{(j-d)} \bar{Y}^{(i)}-\bar{X}^{(i)} \bar{Y}^{(j-d)}\right) & \text { if } i \leq d<j \\ \frac{1}{2}\left(-\bar{X}^{(i-d)} \bar{Y}^{(j-d)}-\bar{X}^{(j-d)} \bar{Y}^{(i-d)}\right) & \text { if } \min (i, j)>d\end{cases}
$$

which further implies

$$
\begin{align*}
\left.\frac{d}{d t} \mathbb{E}\left(Z_{\eta}^{(i)}(t)-Z_{\eta}^{(i)}(0)\right)^{2}\right|_{t=0} & =\eta^{-1} \mathbb{E}\left[\left(Z_{\eta}^{(i)}(\eta)-Z_{\eta}^{(i)}(0)\right)^{2} \mid H_{\eta}(0)=h\right] \\
& =\eta^{-2} \mathbb{E}\left[\eta^{2}\left(\widehat{\Lambda} h-h^{\top} \widehat{\Lambda} h h\right)\left(\widehat{\Lambda} h-h^{\top} \widehat{\Lambda} h h\right)^{\top}\right]_{i, i}+O(\eta) \\
& =\mathbb{E}\left(e_{i}^{\top} \widehat{\Lambda} e_{j} e_{j}^{\top} \widehat{\Lambda}^{\top} e_{i}\right)+o(1) \\
& =\frac{1}{4}\left(\gamma_{i} \omega_{j}+\gamma_{j} \omega_{i}+2 \operatorname{sign}(i-d-1 / 2) \cdot \operatorname{sign}(j-1 / 2-d) \cdot \alpha_{i j}\right) \tag{B.2}
\end{align*}
$$

By (B.1) and (B.2), we get the limit stochastic differential equation,

$$
d Z^{(i)}(t)=-\left(\lambda_{j}-\lambda_{i}\right) Z^{(i)}(t) d t+\beta_{i j} d B(t)
$$

## B.2. Proof of Proposition 4.2

Proof. Our analysis is based on approximating $z_{\eta, k}^{(1)}$ by its continuous approximation $Z_{\eta}^{(1)}(t)$, which is normal distributed at time $t$. By simple manipulation, we have

$$
\mathbb{P}\left(\left(h_{\eta, N_{1}}^{(2)}\right)^{2} \leq 1-\delta^{2}\right)=\mathbb{P}\left(\left(z_{\eta, N_{1}}^{(2)}\right)^{2} \leq \eta^{-1}\left(1-\delta^{2}\right)\right) \geq \mathbb{P}\left(\left|z_{\eta, N_{1}}^{(1)}\right| \geq \eta^{-\frac{1}{2}} \delta\right)
$$

We then prove $P\left(\left|z_{\eta, N_{1}}^{(1)}\right| \geq \eta^{-\frac{1}{2}} \delta\right) \geq 1-\nu$. At time $\mathrm{t}, z_{\eta, k}^{(1)}$ approximates to a normal distribution with mean 0 and variance $\frac{\beta_{12}^{2}}{2\left(\lambda_{1}-\lambda_{2}\right)}\left[\exp \left(2\left(\lambda_{1}-\lambda_{2}\right) \eta N_{1}\right)-1\right]$. Therefore, let $\Phi(x)$ be the CDF of $N(0,1)$, we have

$$
\mathbb{P}\left(\frac{\left|z_{\eta, N_{1}}^{(1)}\right|}{\sqrt{\frac{\beta_{12}^{2}}{2\left(\lambda_{1}-\lambda_{2}\right)} \cdot\left[\exp \left(2\left(\lambda_{1}-\lambda_{2}\right) \eta N_{1}\right)-1\right]}} \geq \Phi^{-1}\left(\frac{1+\nu}{2}\right)\right) \approx 1-\nu
$$

which requires

$$
\eta^{-\frac{1}{2}} \delta \leq \Phi^{-1}\left(\frac{1+\nu}{2}\right) \cdot \sqrt{\frac{\beta_{12}^{2}}{2\left(\lambda_{1}-\lambda_{2}\right)} \cdot\left[\exp \left(2\left(\lambda_{1}-\lambda_{2}\right) \eta N_{1}\right)-1\right]}
$$

Solving the above inequality, we get

$$
N_{1}=\frac{\eta^{-1}}{2\left(\lambda_{1}-\lambda_{2}\right)} \log \left(\frac{2 \eta^{-1} \delta^{2}\left(\lambda_{1}-\lambda_{2}\right)}{\Phi^{-1}\left(\frac{1+\nu}{2}\right)^{2} \beta_{12}^{2}}+1\right)
$$

## B.3. Proof of Proposition 4.3

Proof. After Phase I, we restart our counter, i.e., $h_{\eta, 0}^{(1)}=\delta$. By (3.8) and $h_{\eta, N_{2}}^{(1)}$ approximating to the process $H^{(1)}\left(\eta N_{2}\right)$, we obtain

$$
\begin{aligned}
\left(h_{\eta, N_{2}}^{(1)}(t)\right)^{2} & =\left(H^{(1)}\left(\eta N_{2}\right)\right)^{2}=\left(\sum_{j=1}^{2 d}\left(\left(H^{(j)}(0)\right)^{2} \exp \left(2 \lambda_{j} \eta N_{2}\right)\right)^{-1}\left(H^{(1)}(0)\right)^{2} \exp \left(2 \lambda_{1} \eta N_{2}\right)\right. \\
& \geq\left(\delta^{2} \exp \left(2 \lambda_{1} \eta N_{2}\right)+\left(1-\delta^{2}\right) \exp \left(2 \lambda_{2} \eta N_{2}\right)\right)^{-1} \delta^{2} \exp \left(2 \lambda_{1} \eta N_{2}\right)
\end{aligned}
$$

which requires

$$
\left(\delta^{2} \exp \left(2 \lambda_{1} \eta N_{2}\right)+\left(1-\delta^{2}\right) \exp \left(2 \lambda_{2} \eta N_{2}\right)\right)^{-1} \delta^{2} \exp \left(2 \lambda_{1} \eta N_{2}\right) \geq \eta^{-1}\left(1-\delta^{2}\right)
$$

Solving the above inequality, we get

$$
N_{2}=\frac{\eta^{-1}}{2\left(\lambda_{1}-\lambda_{2}\right)} \log \frac{1-\delta^{2}}{\delta^{2}}
$$

## B.4. Proof of Theorem 4.4

Proof. For $i=2, \ldots, 2 d$, we compute the infinitesimal conditional expectation and variance,

$$
\begin{aligned}
\left.\frac{d}{d t} \mathbb{E} Z_{\eta}^{(i)}(t)\right|_{t=t_{0}} & =\eta^{-1} \mathbb{E}\left[Z_{\eta}^{(i)}\left(t_{0}+\eta\right)-Z_{\eta}^{(i)}\left(t_{0}\right) \mid H^{\eta}\left(t_{0}\right)=h\right] \\
& =\eta^{-1 / 2} h_{i} \sum_{j=1}^{2 d}\left(\lambda_{i}-\lambda_{j}\right) h_{j}^{2}+O(\eta)=Z^{(i)}\left(\lambda_{i}-\lambda_{1}\right)+o(1) \\
\left.\frac{d}{d t} \mathbb{E}\left(Z_{\eta}^{(i)}(t)-Z_{\eta}^{(i)}\left(t_{0}\right)\right)^{2}\right|_{t=t_{0}} & =\eta^{-1} \mathbb{E}\left[\left(Z_{\eta}^{(i)}\left(t_{0}+\eta\right)-Z_{\eta}^{(i)}\left(t_{0}\right)\right)^{2} \mid H^{\eta}\left(t_{0}\right)=h\right] \\
& =\eta^{-2} \mathbb{E}\left[\eta^{2}\left(\widehat{\Lambda} h-h^{\top} \widehat{\Lambda} h h\right)\left(\widehat{\Lambda} h-h^{\top} \widehat{\Lambda} h h\right)^{\top}\right]_{i, i}+O(\eta) \\
& =\mathbb{E}\left(e_{i}^{\top} \widehat{\Lambda} e_{1} e_{1}^{\top} \widehat{\Lambda}^{\top} e_{i}\right)+o(1)=\frac{1}{4}\left(\gamma_{i} \omega_{1}+\gamma_{1} \omega_{i}-2 \operatorname{sign}(i-d-1 / 2) \alpha_{i 1}\right)+o(1)
\end{aligned}
$$

Following similar lines to the proof of Theorem 4.1, by Section 4 of Chapter 7 in (Ethier and Kurtz, 2009), we have for each $k=2, \ldots, 2 d$, if $Z^{(i)}(0)=\eta^{-1 / 2} h_{\eta, 0}^{(i)}$ as $\eta \rightarrow 0^{+}$, then the stochastic process $\eta^{-1 / 2} h_{\eta,\left\lfloor t \eta^{-1}\right\rfloor}^{(k)}$ weakly converges to the solution of the stochastic differential equation (4.3).

## B.5. Proof of Proposition 4.5

Proof. Since we restart our counter, we have $\sum_{i=2}^{2 d}\left(z_{\eta, 0}^{(i)}\right)^{2}=\eta^{-1} \delta^{2}$. Since $z_{\eta, k}^{(i)}$ approximates to $Z^{(i)}(\eta k)$ and its second moment:

$$
\mathbb{E}\left(Z^{(i)}(t)\right)^{2}=\frac{\beta_{i 1}^{2}}{2\left(\lambda_{1}-\lambda_{i}\right)}+\left(\left(Z^{(i)}(0)\right)^{2}-\frac{\beta_{i 1}^{2}}{2\left(\lambda_{1}-\lambda_{i}\right)}\right) \exp \left[-2\left(\lambda_{1}-\lambda_{i}\right) t\right], \quad \text { for } i \neq 1
$$

we use the Markov inequality:

$$
\begin{aligned}
\mathbb{P}\left(\sum_{i=2}^{2 d}\left(h_{\eta, N_{3}}^{(i)}\right)^{2}>\epsilon\right) \leq & \frac{\mathbb{E}\left(\sum_{i=2}^{2 d}\left(h_{\eta, N_{3}}^{(i)}\right)^{2}\right)}{\epsilon}=\frac{\mathbb{E}\left(\sum_{i=2}^{2 d}\left(z_{\eta, N_{3}}^{(i)}\right)^{2}\right)}{\eta^{-1} \epsilon} \\
= & \frac{1}{\eta^{-1} \epsilon} \sum_{i=2}^{2 d} \frac{\beta_{i 1}^{2}}{2\left(\lambda_{1}-\lambda_{i}\right)}\left(1-\exp \left(-2\left(\lambda_{1}-\lambda_{i}\right) \eta N_{3}\right)\right)+\left(z_{\eta, 0}^{(i)}\right)^{2} \exp \left[-2\left(\lambda_{1}-\lambda_{i}\right) \eta N_{3}\right] \\
\leq & \frac{1}{\eta^{-1} \epsilon}\left(\frac{d \max _{2 \leq i \leq d}\left(\beta_{i 1}^{2}\right)}{2\left(\lambda_{1}-\lambda_{2}\right)}\left(1-\exp \left(-2\left(\lambda_{1}-\lambda_{d}\right) \eta N_{3}\right)\right)\right. \\
& \left.+\frac{d \max _{d+1 \leq i \leq 2 d}\left(\beta_{i 1}^{2}\right)}{2\left(\lambda_{1}+\lambda_{d}\right)}\left(1-\exp \left(-4 \lambda_{1} \eta N_{3}\right)\right)+\delta^{2} \exp \left[-2\left(\lambda_{1}-\lambda_{2}\right) \eta N_{3}\right]\right) \\
\leq & \frac{1}{\eta^{-1} \epsilon}\left(\frac{d \max _{1 \leq i \leq d}\left(\beta_{i 1}^{2}\right)}{\left(\lambda_{1}-\lambda_{2}\right)}+\delta^{2} \exp \left[-2\left(\lambda_{1}-\lambda_{2}\right) \eta N_{3}\right]\right)
\end{aligned}
$$

To guarantee $\frac{1}{\eta^{-1} \epsilon}\left(\frac{d \max _{1 \leq i \leq d}\left(\beta_{i 1}^{2}\right)}{\left(\lambda_{1}-\lambda_{2}\right)}+\delta^{2} \exp \left[-2\left(\lambda_{1}-\lambda_{2}\right) \eta N_{3}\right]\right) \leq \frac{1}{4}$, we get:

$$
N_{3} \geq \frac{\eta^{-1}}{2\left(\lambda_{1}-\lambda_{2}\right)} \log \left(\frac{4\left(\lambda_{1}-\lambda_{2}\right) \delta^{2}}{\left(\lambda_{1}-\lambda_{2}\right) \epsilon \eta^{-1}-4 d \max _{1 \leq i \leq d} \beta_{i 1}^{2}}\right)
$$

## B.6. Proof of Corollary 4.6

Proof. First, we prove that $\left\|u_{\eta, k}-\widehat{u}\right\|_{2}^{2}+\left\|v_{\eta, k}-\widehat{v}\right\|_{2}^{2}$ can be bounded by $3 \sum_{i=2}^{2 d}\left(h_{\eta, k}^{(i)}\right)^{2}$, when it is near the optima. Recall that $h_{\eta, k}=\frac{1}{\sqrt{2}} P^{\top}\left(u_{\eta, k}^{\top} v_{\eta, k}^{\top}\right)^{\top}$ and $e_{1}=\widehat{h}=\frac{1}{\sqrt{2}} P\left(\widehat{u}^{\top} \widehat{v}^{\top}\right)^{\top}$. Our analysis has shown that when $k$ is large enough, the SGD iterates near the optima. Then we have

$$
\begin{align*}
\left\|u_{\eta, k}-\widehat{u}\right\|_{2}^{2}+ & \left\|v_{\eta, k}-\widehat{v}\right\|_{2}^{2}=4-2\left\langle u_{\eta, k}, \widehat{u}\right\rangle-2\left\langle v_{\eta, k}, \widehat{v}\right\rangle=4-4 h_{\eta, k}^{1} \\
& =4-4 \sqrt{1-\sum_{i=2}^{2 d}\left(h_{\eta, k}^{(i)}\right)^{2}}=\frac{16 \sum_{i=2}^{2 d}\left(h_{\eta, k}^{(i)}\right)^{2}}{4+4 \sqrt{1-\sum_{i=2}^{2 d}\left(h_{\eta, k}^{(i)}\right)^{2}}} \leq 3 \sum_{i=2}^{2 d}\left(h_{\eta, k}^{(i)}\right)^{2} \tag{B.3}
\end{align*}
$$

where the last inequality holds since $k$ is large enough such that $\sum_{i=2}^{2 d}\left(h_{\eta, k}^{(i)}\right)^{2}$ is sufficiently small. By Propositions 4.2, 4.3, and 4.5, the total iteration number is

$$
\begin{equation*}
N=N_{1}+N_{2}+N_{3} \tag{B.4}
\end{equation*}
$$

To explicitily bound $N$ in (B.4) in terms of sample size n , we consider

$$
\begin{align*}
& N_{1}=\frac{\eta^{-1}}{2\left(\lambda_{1}-\lambda_{2}\right)} \log \left(\frac{2 \eta^{-1} \delta^{2}\left(\lambda_{1}-\lambda_{2}\right)}{\Phi^{-1}\left(\frac{1+\nu}{2}\right)^{2} \beta_{12}^{2}}+1\right)  \tag{B.5}\\
& N_{2}=\frac{\eta^{-1}}{2\left(\lambda_{1}-\lambda_{2}\right)} \log \frac{1-\delta^{2}}{\delta^{2}},  \tag{B.6}\\
& N_{3}=\frac{\eta^{-1}}{2\left(\lambda_{1}-\lambda_{2}\right)} \log \left(\frac{4\left(\lambda_{1}-\lambda_{2}\right) \delta^{2}}{\left(\lambda_{1}-\lambda_{2}\right) \epsilon \eta^{-1}-4 d \max _{1 \leq i \leq d} \beta_{i 1}^{2}}\right) \tag{B.7}
\end{align*}
$$

Given a small enough $\epsilon$, we choose $\eta$ as follow:

$$
\begin{equation*}
\eta \asymp \frac{\epsilon\left(\lambda_{1}-\lambda_{2}\right)}{d \max _{1 \leq i \leq d} \beta_{i 1}^{2}} \tag{B.8}
\end{equation*}
$$

Combining the above sample complexities (B.5), (B.6), (B.7), and (B.8), we get

$$
\begin{equation*}
N=O\left[\frac{d}{\epsilon\left(\lambda_{1}-\lambda_{2}\right)^{2}} \log \left(\frac{d}{\epsilon}\right)\right] \tag{B.9}
\end{equation*}
$$

By Proposition 4.5 with (B.3), given $\nu<1 / 9$, after at most $N$ iterations, we have

$$
\left\|u_{\eta, n}-\widehat{u}\right\|_{2}^{2}+\left\|v_{\eta, n}-\widehat{v}\right\|_{2}^{2} \leq 3\left\|h_{\eta, n}-\widehat{h}\right\|_{2}^{2} \leq 3 \epsilon
$$

with probability at least $\frac{2}{3}$.

