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Hal Daumé III * 1 Nikos Karampatziakis * 2 John Langford * 2 Paul Mineiro * 2

Abstract

We create a new online reduction of multiclass
classification to binary classification for which
training and prediction time scale logarithmically
with the number of classes. We show that sev-
eral simple techniques give rise to an algorithm
which is superior to previous logarithmic time
classification approaches while competing with
one-against-all in space. The core construction
is based on using a tree to select a small subset
of labels with high recall, which are then scored
using a one-against-some structure with high pre-
cision.

1. Introduction
Can we efficiently predict which face is in the picture
amongst multiple billions of people? In a translation,
can we effectively predict which word should come next
amongst 105 possibilities? More generally can we predict
one of K classes in polylogarithmic time in K? This ques-
tion gives rise to the area of extreme multiclass classifica-
tion (Bengio et al., 2010; Beygelzimer et al., 2009; Bha-
tia et al., 2015; Choromanska & Langford, 2015; Morin &
Bengio, 2005; Prabhu & Varma, 2014; Weston et al., 2013),
in which K is very large. If efficiency is not a concern,
the most common and generally effective representation for
multiclass prediction is a one-against-all (OAA) structure.
Here, inference consists of computing a score for each class
and returning the class with the maximum score. If effi-
ciency is a concern, an attractive strategy for picking one
of K items is to use a tree; unfortunately, this often comes
at the cost of increased error.

A general replacement for the one-against-all approach
must satisfy a difficult set of desiderata.

• High accuracy: The approach should provide accu-
racy competitive with OAA, a remarkably strong base-
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Figure 1. An example is routed through the tree to a leaf node
associated with a set of eligible classes {1, 15, 20, . . . }, which
will then be subsequently scored to pick a final label. The root
classifier choses child L and classifier f00 chooses child R, etc.

line (Rifkin & Klautau, 2004) which is the standard
“output layer” of many learning systems such as win-
ners of the ImageNet contest (He et al., 2015; Si-
monyan & Zisserman, 2014).

• High speed at training time and test time: A multiclass
classifier must spend at least Ω(logK) time (Choro-
manska & Langford, 2015)) so this is a natural bench-
mark to optimize against.

• Online operation: Many learning algorithms use ei-
ther online updates or mini-batch updates. Ap-
proaches satisfying this constraint can be easily com-
posed into an end-to-end learning system for solving
complex problems like image recognition. For algo-
rithms which operate in batch fashion, online compo-
nents can be easily used.

• Linear space: In order to have a drop-in replacement
for OAA, an approach must not take much more space
than OAA. Memory is at a premium when K is very
large, especially for models trained on GPUs, or de-
ployed to small devices.

We use an OAA-like structure to make a final prediction,
but instead of scoring every class, we only score a small
subset of O(logK) classes. We call this “one-against-
some” (OAS). How can you efficiently determine what
classes should be scored? We use a dynamically built tree
to efficiently whittle down the set of candidate classes. The
goal of the tree is to maximize the recall of the candidate
set so we call this approach “The Recall Tree.” In a tradi-
tional tree-based classifier, a traversal of the tree leads to
a leaf, and a leaf corresponds to a single label, In the Re-
call Tree, we loosen the latter requirement and allow a leaf
to corresponds to a set of labels of size O(logK). At test
time, when a leaf is reached, scores are computed for this
small subset (see Figure 1).
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structure RecallTree
scorey : X → R regressors for y ∈ [K]
tree : BinaryTree tree structure

structure BinaryTree
id : N unique node identifier
leaf : bool is this a leaf?
f : X → {±1} router, as binary classifier
left : BinaryTree left child (for non-leaves)
right : BinaryTree right child (for non-leaves)
hist : NK count of labels at this node
total : N sum of items in hist
candidates ⊂ [K] top F freq items in hist

Figure 2. The Recall Tree data structure.

The Recall Tree achieves good accuracy, improving on pre-
vious online approaches (Choromanska & Langford, 2015)
and sometimes surpassing the OAA baseline. The algo-
rithm requires only poly(logK) time during training and
testing. In practice, the computational benefits are substan-
tial when K ≥ 1000.1 The Recall Tree constructs a tree
and learns parameters in a fully online manner as a reduc-
tion, allowing composition with systems trained via online
updates. All of this requires only twice as much space as
OAA approaches.

Our contributions are the following:

• We propose a new online tree construction algorithm
which jointly optimizes the construction of the tree,
the routers and the underlying OAS regressors (see
section 3.1).

• We analyze elements of the algorithm, including a
new boosting bound (see section 3.3) on multiclass
classification performance and a representational trick
which allows the algorithm to perform well if either
a tree representation does well or an OAA representa-
tion does well as discussed in section 3.2.

• We experiment with the new algorithm, both to ana-
lyze its performance relative to baselines and under-
stand the impact of design decisions via ablation ex-
periments.

The net effect is a theoretically motivated algorithm which
empirically performs well providing a plausible replace-
ment for the standard one-against-all approach for largeK.

2. The Recall Tree Algorithm
Here we present a concrete description of the Recall Tree
and defer all theoretical results that motivate our design de-

1Our implementation of baseline approaches, including OAA,
involve vectorized computations that increase throughput by a
factor of 10 to 20, making them much more difficult to outpace
than naı̈ve implementations.

Algorithm 1 Predict. n.f(x) evaluates the node’s route,
scorey(x) evaluates a per-class regressor, r̂ecall(◦) is an
empirical bound on the recall of a node (◦) (see Eq (1)),
and x+ {(n.id : 1)} indicates the addition of a sparse fea-
ture with index n.id and value 1.

1: Input: Example x, Root Node n
2: Output: Predicted class ŷ
3: while n.leaf is false do
4: c← n.f(x) > 0 ? n.left : n.right
5: if r̂ecall(n) > r̂ecall(c) then
6: break
7: end if
8: n← c
9: x← x+ {(n.id : 1)}

10: end while
11: ŷ ← argmax

y∈n.candidates
scorey(x)

cisions to section 3.

2.1. Recall Tree at Test Time

The Recall Tree data structure (see Figure 2) consists of
two components: (1) a binary tree, described below; and (2)
a scoring function scorey(x) that will evaluate the quality
of a small set of candidates y to make a final prediction.
Each node n in the binary tree maintains:

• a router, denoted f , that maps an example to either a
left or right child; routers are implemented as binary
classifiers;

• a histogram of the labels of all training examples that
have been routed to, or through, n.

The primary purpose of the histogram is to generate a can-
didate set of labels to be scored, taken to be the most fre-
quent labels in that histogram. Intuitively, the goal of the
candidate set is to maintain good recall, while the goal of
the score function is to achieve good precision. Crucially,
the leaves of the tree do not partition the set of classes:
classes can (and do) have support at multiple leaves.

At test time, an input x is provided and a recursive compu-
tation begins at the root of the tree. The tree is descended
according to the binary classification decision made at each
internal node. When the recursion ends (for instance, when
a leaf is reached), the top F most frequent labels accord-
ing to the node’s label counter are used as a candidate set.
When F = O(logK) this does not compromise the goal
of achieving logarithmic time classification. Once this can-
didate set is chosen, each y in that set is scored using the
score function, and the largest scoring y is returned.

It turns out that it is advantageous to allow the recursion to
end before hitting a leaf, which is a consequence of how
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training happens on tree-structured classifiers. In particu-
lar, the number of labeled examples that the root classifier
“sees” is much larger than the number of labeled examples
that any leaf sees. This potentially leads to: (1) high vari-
ance toward the leaves; and (2) insufficient representation
complexity toward the root. Instead of halting at a leaf, we
can halt at an internal node for which the top F most fre-
quent labels contain the true answer with a sufficiently high
probability.

Algorithm 1 formalizes the test-time behavior of the Re-
call Tree. The primary routing occurs in the first line of
the main loop, where c is the child selected by the cur-
rent node’s router. On the next line, the recursion consid-
ers the possibility of terminating on an internal node if the
bounded recall, r̂ecall, of the current node n is greater than
the estimated recall of the chosen child c. If the recursion
does not end, a new “path feature” is added to x at the end
of the main loop, which records the path taken in the re-
call tree: the benefit of adding these features is that it in-
creases the representational capacity of the recall tree to
ensure competitiveness with OAA (§3.2). Whichever way
the recursion ends, the final node n has a (small) set of can-
didate labels n.candidates ⊂ Y . Each is scored according
to a one-against-some rule and the label with the largest
score is returned.

A natural way to estimate recall at a node n is to con-
sider it’s empirical recall r̂n. This is simply the fraction
of the mass consumed by the F most frequent labels in n’s
counter. For example, if the counter saw label 1 two times,
label 4 fifty times and label 3 ten times, and if F = 2, then
the empirical recall would be 60/62. However, because,
in general, a parent node will see more data than a child
node, the quality of this estimate is likely to be much better
for the parent than the child due to a missing mass prob-
lem (Good, 1953). To accomodate this, we instead use an
empirical Bernstein lower bound (Maurer & Pontil, 2009),
which is summarized by the following proposition.
Proposition 1. For all multiclass classification problems
defined by a distribution D over X × [K], and all nodes n
in a fixed tree, there exists a constant λ > 0 such that with
probability 1− δ:

r̂ecall(n) = r̂n −
√
λr̂n(1− r̂n)

mn
− λ

mn
≤ rn (1)

where r̂n is the empirical recall of node n computed over
mn = n.total items; and rn is the expected value of this
recall in the population limit.

Here, λ is a hyperparameter of the recall tree (in fact, it
is the only additional hyperparameter), which controls how
aggressively the tree branches. We show in our experiments
that these various design decisions (path features, Bernstein
lower bounds, and early termination) are useful in practice.

Algorithm 2 Train. An input labeled example descends
the tree as in Algorithm 1. update candidates updates the
set of candidate labels at each node and update regressors

updates the one-against-some regressors; and r̂ecall(◦) is
a an empirical bound on the recall of a node (◦) (see sec-
tion 3.1).

Input: Example (x, y), Root node n
Output: Update tree with root at n
while n.leaf is false do
update router(x, y, n)
c← n.f(x) > 0 ? n.left : n.right
update candidates(x, y, c)

if r̂ecall(n) > r̂ecall(c) then
break

end if
n← c
x← x+ {(n.id : 1)}

end while
update regressors(x, y, n.candidates)

2.2. Recall Tree at Training Time

The Recall Tree maintains one regressor for each class and
a tree whose purpose is to eliminate regressor from consid-
eration. We refer to the per-class regressor as one-against-
some (OAS) regressors. The tree creates a high recall set of
candidate classes and then leverages the OAS regressors to
achieve precision. Algorithm 2 outlines the learning proce-
dures, which we now describe in more detail.

Learning the regressors for each class In Algorithm 2,
update regressors updates the candidate set regressors us-
ing the standard OAA strategy restricted to the set of eligi-
ble classes. If the true label is not in the F most frequent
classes at this node then no update occurs.

Learning the set of candidates in each node In Algo-
rithm 2, update candidates updates the count of the true
label at this node. At each node, the most frequent F labels
are the candidate set.

Learning the routers at each node In Algorithm 2,
update router updates the router at a node by optimizing
the reduction in the entropy of the label distribution (the
label entropy) due to routing, as detailed in Algorithm 3.
This is in accordance with our theory (Section 3.3). The
label entropy for a node is estimated using the empirical
counts of each class label entering the node. These counts
are reliable as update router is only called for the root or
nodes whose true recall bound is better than their children.
The expected label entropy after routing is estimated by
averaging the estimated label entropy of each child node,
weighted by the fraction of examples routing left or right.
Finally, we compute the advantage of routing left vs. right
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Algorithm 3 update router. entropy computes two values:
the empirical entropy of labels incident on a node without
and with (respectively) an extra label y. Ĥ|left is an esti-
mate of the average entropy if the example is routed left.
Learnn(x,w, y) is an importance-weighted update to the
binary classifier f(x) for node n with features x, label y,
and weight w.

Input: Example (x, y); Node n
Output: Update node n
(Ĥleft, Ĥ

′
left)

.
= entropy(n.left, y)

(Ĥright, Ĥ
′
right)

.
= entropy(n.right, y)

Ĥ|left
.
= n.left.total

n.total Ĥ ′left + n.right.total
n.total Ĥright

Ĥ|right
.
= n.left.total

n.total Ĥleft + n.right.total
n.total Ĥ ′right

∆̂Hpost ← Ĥ|left − Ĥ|right
Learnn(x, |∆̂Hpost|, sign(∆̂Hpost))

Algorithm 4 update regressors updates the OAS scoring
functions for a single example.

Input: Example (x, y); Candidate set candidates
Output: Update scoring functions score
if y ∈ candidates then

online update to scorey(x) with label +1
for ŷ ∈ candidates− {y} do

online update to scoreŷ(x) with label −1
end for

end if

by taking the difference of the expected label entropies for
routing left vs. right. The sign of this difference determines
the binary label for updating the router.

Tree depth control We calculate a lower bound r̂ecall(n)
on the true recall of node n (Section 3.1), halting descent as
in Algorithm 2. As we descend the tree, the bound first in-
creases (empirical recall increases) then declines (variance
increases). We also limit the maximum depth d of the tree.
This parameter is typically not operative but adds an ad-
ditional safety check and sees some use on datasets where
multipasses are employed.

3. Theoretical Motivation
Online construction of an optimal logarithmic time regres-
sors for multiclass classification given an arbitrary fixed
representation at each node appears deeply intractable. A
primary difficulty is that decisions have to be hard since we
cannot afford to maintain a distribution over all class labels.
Choosing a classifier so as to minimize error rate has been
considered for cryptographic primitives (Blum et al., 1993)
so it is plausibly hard on average rather than merely hard
in the worst case. Furthermore, the joint optimization of

all regressors does not nicely decompose into independent
problems. Solving the above problems requires an implau-
sible break-through in complexity theory which we do not
achieve here. Instead, we use learning theory to assist the
design by analyzing various simplifications of the problem.

3.1. One-Against-Some Recall

For binary classification, a simple trick can (in theory) col-
lapse the number of leaves while preserving prediction per-
formance. In particular, branching programs (Mansour &
McAllester, 2002) result in exponentially more succinct
representations than decision trees (Kearns & Mansour,
1996) by joining nodes to create directed acyclic graphs.
The key observation is that nodes in the same level with a
similar distribution over class labels can be joined into one
node, implying that the number of nodes at one level is only
θ(1/γ) where γ is the weak learning parameter rather than
exponential in the depth. This approach generally fails in
the multiclass setting because covering the simplex of mul-
ticlass label distributions requires (K − 1)θ(1/γ) nodes.

One easy special case exists. When the distribution over
class labels is skewed so one label is the majority class,
learning an entropy minimizing binary classifier predicts
whether the class is the majority or not. There are only K
possible OAS regressors of this sort so maintaining one for
each class label is computationally tractable.

Using OAS classifiers creates a limited branching program
structure over predictions. Aside from the space savings
generated, this also implies that nodes deep in the tree use
many more labeled examples than are otherwise available.
In finite sample regimes, which are not covered by these
boosting analyses, more labeled samples induce a better
predictor as per standard sample complexity analysis.

As a result, we use the empirical Bernstein lower bound on
recall described in §2.1. Reducing the depth of the tree by
using this lower bound and joining labeled examples from
many leaves in a one-against-some approach both relieves
data sparsity problems and allows greater error tolerance
by the root node.

3.2. Path Features

Different multiclass classification schemes give rise to dif-
ferent multiclass hypothesis classes. For example, the set
of multiclass decision boundaries realizable under an OAA
structure over linear regressors is fundamentally different
from that realizable under a tree structure over linear re-
gressors. Are OAA types of representations inherently
more or less powerful than a tree based representation?
Figure 3 shows two learning problems illustrating two ex-
tremes assuming a linear representation.
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Figure 3. Two different distributions over class labels in the plane
with each color/pattern representing support for a single class la-
bel. The left distribution is easily solved with an OAA classifier
while the right distribution is easily solved with a decision tree.

Linear OAA: If all the class parameter vectors happen to
have the same `2 norm, then OAA classification is equiva-
lent to finding the nearest neighbor amongst a set of vectors
(one per class) which partition the space into a Voronoi di-
agram as in 3 on the left. The general case, with unequal
vectors corresponds to a weighted Voronoi diagram where
the magnitude of two vectors sharing a border determines
the edge of the partition. No weighted Voronoi diagram can
account for the partition on the right.

Trees: If the partition of a space can be represented by
a sequence of conditional splits, then a tree can repre-
sent the solution accurately as in 3 on the right. On the
other hand, extra work is generally required to represent a
Voronoi diagram as on the left. In general, the number of
edges in a multidimensional Voronoi diagram may grow at
least quadratically in the number of points implying that the
number of nodes required for a tree to faithfully represent
a Voronoi diagram is at least Θ(n2).

Based on this, neither tree-based nor OAA style prediction
is inherently more powerful, with the best solution being
problem dependent.

Since we are interested in starting with a tree-based ap-
proach and ending with a OAS classifier, there is a sim-
ple representational trick which provides the best of both
worlds. We can add features which record the path through
the tree. To be precise, let T be a tree and pathT (x) be a
vector with one dimension per node in T which is set to
1 if x traverses the node and 0 otherwise. The following
proposition holds for linear representations, which are spe-
cial because they are tractably analyzed and because they
are the fundamental building blocks around which many
more complex representations are built.

Proposition. For any distribution D over X × [K] for
which a tree T achieves error rate ε, a OAA classifier over
linear regressors, whose input consists of x ∈ X and the
corresponding routing path of x in T (as indicator features)
can also achieve error rate ε.

Proof. A linear OAA classifier is defined by a matrix wiy
where i ranges over the input and y ranges over the labels.

Let wiy = 0 by default and 1 when i corresponds to a leaf
for which the tree predicts y. Under this representation, the
prediction of OAA(x, pathT (x)) is identical to T (x), and
hence achieves the same error rate.

3.3. Optimization Objective

The Shannon Entropy of class labels is optimized in the
router of Algorithm 3. Why?

Since the Recall Tree jointly optimizes over many base
learning algorithms, the systemic properties of the joint op-
timization are important to consider. A theory of decision
tree learning as boosting (Kearns & Mansour, 1996) pro-
vides a way to understand these joint properties in a popu-
lation limit (or equivalently on a training set iterated until
convergence). In essence, the analysis shows each level of
the tree boosts the accuracy of the resulting tree with this
conclusion holding for several common objectives.

In boosting for multiclass classification (Choromanska
et al., 2016; Choromanska & Langford, 2015; Takimoto
& Maruoka, 2003), it is important to achieve a weak de-
pendence on the number of class labels. Shannon Entropy
is particularly well-suited to this goal, because it has only
a logarithmic dependence on the number of class labels.
Let πi|n be the probability that the correct label is i, con-
ditioned on the corresponding example reaching node n.
Then Hn =

∑K
i=1 πi|n log2

1
πi|n

is the Shannon entropy of
class labels reaching node n.

For this section, we consider a simplified algorithm which
neglects concerns of finite sample analysis, how optimiza-
tion is done, and the leaf predictors. What’s left is the value
of optimizing the router objective. We consider an algo-
rithm which recursively splits the leaf with the largest pro-
portion p of all examples starting at the root and reaching
the leaf. The leaf is split into two new leaves to the left l
and right r. If pl and pr are the fraction of examples going
left and right (so pl +pr = 1), the split criterion minimizes
the expectation over the leaves of the average class entropy,
plHl + prHr. This might be achieved by update router in
Algorithm 2 or by any other means. With this criterion we
are in a position to directly optimize information boosting.
Definition 1. (γ-Weak Learning Assumption) For all dis-
tributions D(x, y) a learning algorithm using examples
(x, y)∗ IID from D finds a binary classifier c : X → {l, r}
satisfying

plHl + prHr ≤ Hn − γ .

This approach is similar to previous (Takimoto & Maruoka,
2003) except that we boost in an additive rather than a mul-
tiplicative sense. A multiplicative approach suppresses a
necessary dependence on K. In particular, for any nontriv-
ial γ there exists a K such that with a uniform distribution
U , HU (1 − γ) > 1). As a consequence, theorems proved



Logarithmic Time One-Against-Some

Table 1. Datasets used for experimentation.

Dataset Source Task Classes Examples

ALOI Geusebroek et al. (2005) Visual Object Recognition 1k 105

Imagenet Oquab et al. (2014) Visual Object Recognition ≈ 20k ≈ 107

LTCB Mahoney (2009) Language Modeling ≈ 80k ≈ 108

ODP Bennett & Nguyen (2009) Document Classification ≈ 100k ≈ 106

with a multiplicative γ are necessarily vacuous for large K
while additive approaches do not suffer from this issue.

As long as Weak Learning occurs, we can prove the follow-
ing theorem.
Theorem 2. If γ Weak Learning holds for every node in
the tree and nodes with the largest fraction of examples are
split first, then after t > 2 splits the multiclass error rate ε
of the tree is bounded by:

ε ≤ H1 − γ ln(t+ 1)

where H1 is the entropy of the marginal distribution of
class labels.

The proof in appendix A reuses techniques from (Choro-
manska & Langford, 2015; Kearns & Mansour, 1996) but
has a tighter result.

The most important observation from the theorem is that
as t (the number of splits) increases, the error rate is in-
creasingly bounded. This rate depends on ln t agreeing
with the intuition that boosting happens level by level in
the tree. The dependence on the initial entropy H1 shows
that skewed marginal class distributions are inherently eas-
ier to learn than uniform marginal class distributions, as
might be expected. These results are similar to previ-
ous results (Choromanska et al., 2016; Choromanska &
Langford, 2015; Kearns & Mansour, 1996; Takimoto &
Maruoka, 2003) with advantages. We handle multiclass
rather than binary classification (Kearns & Mansour, 1996),
we bound error rates instead of entropy (Choromanska
et al., 2016; Choromanska & Langford, 2015), and we use
additive rather than multiplicative weak learning (Takimoto
& Maruoka, 2003).

4. Empirical Results
We study several questions empirically.

1. What is the benefit of using one-against-some on a re-
call set?

2. What is the benefit of path features?
3. Is the online nature of the Recall Tree useful on non-

stationary problems?
4. How does the Recall Tree compare to one-against-all

statistically and computationally?

5. How does the Recall Tree compare to LOMTree sta-
tistically and computationally?

Throughout this section we conduct experiments using
learning with a linear representation.

4.1. Datasets

Table 1 overviews the data sets used for experimentation.
These include the largest datasets where published results
are available for LOMTree (Aloi, Imagenet, ODP), plus
an additional language modeling data set (LTCB). Imple-
mentations of the learning algorithms, and scripts to repro-
duce the data sets and experimental results, are available
on github (Mineiro, 2017). Additional details about the
datasets can be found in Appendix B.

4.2. Comparison with other Algorithms

In our first set of experiments, we compare Recall Tree
with a strong computational baseline and a strong statisti-
cal baseline. The computational baseline is LOMTree, the
only other online logarithmic-time multiclass algorithm of
which we are aware. The statistical baseline is OAA, whose
statistical performance we want to match (or even exceed),
and whose linear computational dependence on the number
of classes we want to avoid. Details regarding the experi-
mental methodology are in Appendix C. Results are sum-
marized in Figure 4.

Comparison with LOMTree The Recall Tree uses a fac-
tor of 32 less state than the LOMTree which makes a dra-
matic difference in feasibility for large scale applications.
Given this state reduction, the default expectation is worse
prediction performance by the Recall Tree. Instead, we ob-
serve superior or onpar statistical performance despite the
state constraint. This typically comes with an additional
computational cost since the Recall Tree evaluates a num-
ber of per-class regressors.

Comparison with OAA On one dataset (ALOI) predic-
tion performance is superior to OAA while on the others it
is somewhat worse.

Computationally OAA has favorable constant factors since
it is highly amenable to vectorization. Conversely, the



Logarithmic Time One-Against-Some

-4

 0

 4

 8

 12

ALOI
Im

agenet

ODP

D
e
lt

a
 T

e
st

 E
rr

o
r 

(%
)

Fr
o
m

 O
A

A
Statistical Performance

LOMTree
Recall Tree

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

ALOI
Im

agenet

ODP

In
fe

re
n
ce

 T
im

e
P
e
r 

E
x
a
m

p
le

 (
se

co
n
d
s)

Computational Performance

OAA
Recall Tree

LOMTree

Figure 4. Empirical comparison of statistical (left) and computational (right) performance of Recall Tree against two strong competitors:
OAA (statistically good) and LOMTree (computationally good). In both graphs, lower is better. Recall Tree has poly(log) dependence
upon number of classes (like LOMTree) but can surpass OAA statistically.

conditional execution pattern of the Recall Tree frustrates
vectorization even with example mini-batching. Thus on
ALOI although Recall Tree does on average 50 hyperplane
evaluations per example while OAA does 1000, OAA is
actually faster: larger numbers of classes are required to
experience the asymptotic benefits. For ODP with ∼ 105

classes, with negative gradient subsampling and using 24
cores in parallel, OAA is about the same wall clock time
to train as Recall Tree on a single core.2 Negative gradi-
ent sampling does not improve inference times, which are
∼ 300 times slower for OAA than Recall Tree on ODP.

4.3. Online Operation

In this experiment we leverage the online nature of the al-
gorithm to exploit nonstationarity in the data to improve
results. This is not something that is easily done with batch
oriented algorithms, or with algorithms that post-process a
trained predictor to accelerate inference.

We consider two versions of LTCB. In both versions the
task is to predict the next word given the previous 6 tokens.
The difference is that in one version, the Wikipedia dump
is processed in the original order (“in-order”); whereas in
the other version the training data is permuted prior to input
to the learning algorithm (“permuted”). We assess progres-
sive validation loss (Blum et al., 1999) on the sequence.
The result in Figure 5a confirms the Recall Tree is able to
take advantage of the sequentially revealed data; in partic-
ular, the far-right difference in accuracies is significant at a
factor P < 0.0001 according to an N −1 Chi-squared test.

4.4. Path Features and Multiple Regressors

Two differences between Recall Tree and LOMTree are the
use of multiple regressors at each tree node and the aug-

2While not yet implemented, Recall Tree can presumably also
leverage multicore for acceleration.

mentation of the example with path features. In this exper-
iment we explore the impact of these design choices using
the ALOI dataset.

Figure 5b shows the effect of these two aspects on statisti-
cal performance. As the candidate set size is increased, test
error decreases, but with diminishing returns. Disabling
path features degrades performance, and the effect is more
pronounced as the candidate set size increases. This is ex-
pected, as a larger candidate set size decreases the difficulty
of obtaining good recall (i.e., a good tree) but increases the
difficulty of obtaining good precision (i.e., good class re-
gressors), and path features are only applicable to the lat-
ter. All differences here are significant at a P < 0.0001
according to an N − 1 Chi-squared test, except for when
the candidate set size is 2, where there is no significant dif-
ference.

4.5. Is the empirical Bernstein bound useful?

To test this we trained on the LTCB dataset with a mul-
tiplier on the bound of either 0 (i.e. just using empirical
recall directly) or 1. The results are stark: with a multiplier
of 1, the test error was 78% while with a multiplier of 0 the
test error was 91%. Clearly, in the few samples per class
regime this form of direct regularization is very helpful.

5. Related Work
The LOMTree (Choromanska et al., 2016; Choromanska
& Langford, 2015) is the closest prior work. It misses on
space requirements: up to a factor of 64 more space than
OAA was used experimentally. Despite working with radi-
cally less space we show the Recall Tree typically provides
better predictive performance. The key differences here are
algorithmic: a tighter reduction at internal nodes and the
one-against-some approach yields generally better perfor-
mance despite much tighter resource constraints.
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Figure 5.

Our use of entropy optimization is closely related to the
foundational work on decision tree learning (Quinlan,
1993), picking single features on which to split based on
entropy. More recently, it is decision tree learning can be
thought of as boosting (Kearns & Mansour, 1996) for mul-
ticlass learning (Takimoto & Maruoka, 2003), based on on
a generalized notion of entropy, which results in low 0/1
loss. Relative to these works we show how to efficiently
achieve weak learning by reduction to binary classification
making this approach empirically practical. We also ad-
dress a structural issue in the multiclass analysis (see sec-
tion 3.3).

Other approaches such as hierarchical softmax (HSM) and
the the Filter Tree (Beygelzimer et al., 2009) use a fixed
tree structure (Morin & Bengio, 2005). In domains in
which there is no prespecified tree hierarchy, using a ran-
dom tree structure can lead to considerable underperfor-
mance as shown previously (Bengio et al., 2010; Choro-
manska & Langford, 2015).

Most other approaches in extreme classification either do
not work online (Mnih & Hinton, 2009; Prabhu & Varma,
2014) or only focus on speeding up either prediction time
or training time but not both. Most of the works that enjoy
sublinear inference time (but (super)linear training time)
are based on tree decomposition approaches. In (Mnih &
Hinton, 2009) the authors try to add tree structure learning
to HSM via iteratively clustering the classes. While the end
result is a classifier whose inference time scales logarith-
mically with the number of classes, the clustering steps are
batch and scale poorly with the number of classes. Similar
remarks apply to (Bengio et al., 2010) where the authors
propose to learn a tree by solving an eigenvalue problem
after (OAA) training. The work of (Weston et al., 2013)
is similar in spirit to ours, as the authors propose to learn

a label filter to reduce the number of candidate classes in
an OAA approach. However they learn the tree after train-
ing the underlying OAA regressors while here we learn,
and more crucially use, the tree during training of the OAS
regressors. Among the approaches that speed up train-
ing time we distinguish exact ones (de Brébisson & Vin-
cent, 2015; Vincent et al., 2015) that have only been pro-
posed for particular loss functions and approximate ones
such as negative sampling as used e.g. in (Weston et al.,
2011). Though these techniques do not address inference
time, separate procedures for speeding up inference (given
a trained model) have been proposed (Shrivastava & Li,
2014). However, such two step procedures can lead to sub-
stantially suboptimal results.

6. Conclusion
In this work we proposed the Recall Tree, a reduction of
multiclass to binary classification, which operates online
and scales logarithmically with the number of classes. Un-
like the LOMTree (Choromanska & Langford, 2015), we
share classifiers among the nodes of the tree which alle-
viates data sparsity at deep levels while greatly reducing
the required state. We also use a tighter analysis which is
more closely followed in the implementation. These fea-
tures allow us to reduce the statistical gap with OAA while
still operating many orders of magnitude faster for large
K multiclass datasets. In the future we plan to investigate
multiway splits in the tree since O(logK)-way splits does
not affect our O(poly logK) running time and they might
reduce contention in the root and nodes high in the tree.
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