A. Proofs from Section 2

A.1. Proof of Proposition 1

For the sake of readability, throughout the proof we abbreviate $\Phi=\Phi(u, v, p), \Phi^{\prime}=\Phi\left(u^{\prime}, v^{\prime}, p^{\prime}\right)$, and denote $\Delta u=u-u^{\prime}, \Delta v=v-v^{\prime}, \Delta p=p-p^{\prime}$. In this notation, proving p-Lipschitzness for metric Φ amounts to showing that:

$$
\left|\Phi-\Phi^{\prime}\right| \leq U_{p}|\Delta u|+V_{p}|\Delta v|+P_{p}|\Delta p|
$$

for constants U_{p}, V_{p}, P_{p}, which may only depend on p.
The following fact is going to be very useful in proving p-Lipschitzness. If the metric is of the rational form: $\Phi(u, v, p)=\frac{A(u, v, p)}{B(u, v, p)}+C$, where C is some constant, $B(u, v, p) \geq G_{p}$ for some positive constant G_{p} (which may depend on p), and $|\Phi(u, v, p)| \leq \Phi_{\max }$ for some constant $\Phi_{\text {max }}$, it suffices to check p-Lipschitzness of numerator and denominator separately. Indeed, using shorthand notation $A=A(u, v, p), A^{\prime}=A\left(u^{\prime}, v^{\prime}, p^{\prime}\right)$, and similarly for B, B^{\prime} :

$$
\begin{aligned}
\Phi-\Phi^{\prime} & =\frac{A-\frac{A^{\prime}}{B^{\prime}} B}{B}=\frac{A-A^{\prime}+\frac{A^{\prime}}{B^{\prime}} B^{\prime}-\frac{A^{\prime}}{B^{\prime}} B}{B} \\
& =\frac{A-A^{\prime}}{B}+\frac{A^{\prime}}{B^{\prime}} \frac{B-B^{\prime}}{B},
\end{aligned}
$$

hence:

$$
\left|\Phi-\Phi^{\prime}\right| \leq \frac{\left|A-A^{\prime}\right|}{G_{p}}+\frac{\Phi_{\max }}{G_{p}}\left|B^{\prime}-B\right|
$$

a) Accuracy $\Phi(u, v, p)=1-v-p+2 u$. We have:

$$
\Phi-\Phi^{\prime} \leq 2 \Delta u-\Delta v-\Delta p
$$

so that by triangle inequality:

$$
\left|\Phi-\Phi^{\prime}\right| \leq 2|\Delta u|+|\Delta v|+|\Delta p| .
$$

Hence, the statement follows with $U_{p}=2, V_{p}=$ $P_{p}=1$.
b) $A M \Phi(u, v, p)=1-\frac{v p-u}{2 p(1-p)}$. We can use the result on the rational metric by noting that $A(u, v, p)=$ $u-v p, B(u, v, p)=B(p)=2 p(1-p), C=1$, $\Phi_{\max }=1, G_{p}=2 p(1-p)$. We can now check the p-Lipschitzness of A and B separately:

$$
\begin{aligned}
A-A^{\prime} & =u-v p-u^{\prime}+v^{\prime} p^{\prime} \\
& =\Delta u+\left(v p^{\prime}-v p\right)+\left(v^{\prime} p^{\prime}-v p^{\prime}\right) \\
& =\Delta u-v \Delta p-p^{\prime} \Delta v,
\end{aligned}
$$

and since $|v| \leq 1,\left|p^{\prime}\right| \leq 1, p$-Lipschitzness follows from triangle inequality. For the denominator,

$$
\begin{aligned}
B-B^{\prime} & =2 p(1-p)-2 p^{\prime}\left(1-p^{\prime}\right) \\
& =2\left(p-p^{\prime}\right)+2\left(p^{\prime 2}-p^{2}\right) \\
& =2\left(1-p^{\prime}-p\right)\left(p-p^{\prime}\right)
\end{aligned}
$$

so that $\left|B-B^{\prime}\right| \leq 2|\Delta p|$.
c) Jaccard similarity $\Phi(u, v, p)=\frac{u}{p+v-u}$. Follows from the rational form of the metric, since $A(u, v, p)=u$, $B(u, v, p)=p+v-u, C=0, \Phi_{\max }=1, G_{p}=p$, and the p-Lipschitzness of $A(u, v, p)$ and $B(u, v, p)$ is trivial to show by the triangle inequality.
d) G-mean $\Phi(u, v, p)=\frac{u(1-v-p+u)}{p(1-p)}$. Exploiting the rational form of the metric, we have $A(u, v, p)=$ $u(1-v-p+u), B(u, v, p)=p(1-p), C=0$, $\Phi_{\max }=1, G_{p}=p(1-p)$. The p-Lipschitzness of B was shown above for AM measure. As for A :

$$
\begin{aligned}
& A-A^{\prime}=(1-v-p+u)\left(u-u^{\prime}\right) \\
& \quad+u^{\prime}\left(u-p-v-u^{\prime}-p^{\prime}-v^{\prime}\right) \\
& \quad=(1-v-p+u) \Delta u+u^{\prime}(\Delta u-\Delta v-\Delta p)
\end{aligned}
$$

and hence the p-Lipschitzness follows by triangle inequality and the fact that $|1-v-p+u| \leq 2$ and $\left|u^{\prime}\right| \leq 1$.
e) $A U C \frac{(v-u)(p-u)}{p(1-p)}$. Exploiting the rational form of the metric, we have $A(u, v, p)=(v-u)(p-u)$ and $B(u, v, p)=p(1-p)$. The p-Lipschitzness of B was shown above for AM measure; as for A :

$$
\begin{aligned}
& A-A^{\prime}=(v-u)(p-u)-\left(v^{\prime}-u^{\prime}\right)(p-u) \\
& \quad+\left(v^{\prime}-u^{\prime}\right)(p-u)-\left(v^{\prime}-u^{\prime}\right)\left(p^{\prime}-u^{\prime}\right) \\
& \quad=(\Delta v-\Delta u)(p-u)+\left(v^{\prime}-u^{\prime}\right)(\Delta p-\Delta u)
\end{aligned}
$$

and hence the p-Lipschitzness follows by triangle inequality and the fact that $|p-u| \leq 1$ and $\left|v^{\prime}-u^{\prime}\right| \leq 1$.
f) Linear-fractional metric of the form:

$$
\Phi(u, v, p)=\frac{a_{1}+a_{2} u+a_{3} v+a_{4} p}{b_{1}+b_{2} u+b_{3} v+b_{4} p}
$$

as long as the denominator is bounded from below by some positive constant G_{p}. This follows immediately from the rational form of the metric, as the numerator $A(u, v, p)$ and denominator $B(u, v, p)$ are linear functions of (u, v, p), so showing p-Lipschitzness of $A(u, v, p)$ and $B(u, v, p)$ is straightforward.

B. Proofs from Section 3.1

B.1. Proof of Lemma 1

We fix classifier h and use a shorthand notation $u, v, \widehat{u}, \widehat{v}$ to denote $u(h), v(h), \widehat{u}(h), \widehat{v}(h)$. Due to the Lipschitz assumption:
$|\Phi(u, v, p)-\Phi(\widehat{u}, \widehat{v}, \widehat{p})| \leq U_{p}|u-\widehat{u}|+V_{p}|v-\widehat{v}|+P_{p}|p-\widehat{p}|$.

Fixing $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ and taking expectation with respect to $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$ conditioned on \boldsymbol{x}, we have:

$$
\begin{aligned}
\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}} & {[|\Phi(u, v, p)-\Phi(\widehat{u}, \widehat{v}, \widehat{p})|] } \\
& \leq U_{p} \mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}[|u-\widehat{u}|]+V_{p}|v-\widehat{v}|+P_{p} \mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}[|p-\widehat{p}|] .
\end{aligned}
$$

Denote:

$$
\begin{gathered}
\widetilde{p}=\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}[\widehat{p}]=\frac{1}{n} \sum_{i=1}^{n} \eta\left(x_{i}\right), \\
\widetilde{u}=\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}[\widehat{u}]=\frac{1}{n} \sum_{i=1}^{n} h\left(x_{i}\right) \eta\left(x_{i}\right)
\end{gathered}
$$

We have:

$$
\begin{aligned}
\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}[|p-\widehat{p}|] & =\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}[|p-\widetilde{p}+\widetilde{p}-\widehat{p}|] \\
& \leq|p-\widetilde{p}|+\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}[|\widetilde{p}-\widehat{p}|] \\
& =|p-\widetilde{p}|+\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}\left[\sqrt{(\widetilde{p}-\widehat{p})^{2}}\right] \\
& \leq|p-\widetilde{p}|+\sqrt{\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}\left[(\widetilde{p}-\widehat{p})^{2}\right]} \\
& =|p-\widetilde{p}|+\sqrt{\operatorname{Var}_{\boldsymbol{y} \mid \boldsymbol{x}}(\widetilde{p})} \leq|p-\widetilde{p}|+\sqrt{\frac{1}{4 n}},
\end{aligned}
$$

where the second inequality follows from Jensen's inequality applied to a concave function $x \mapsto \sqrt{x}$. In an analogous way, one can show that:

$$
\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}[|u-\widehat{u}|] \leq|u-\widetilde{u}|+\sqrt{\frac{u}{4 n}} \leq|u-\widetilde{u}|+\sqrt{\frac{1}{4 n}}
$$

Furthermore, using the convexity of the absolute value function, Jensen's inequality implies:

$$
\begin{aligned}
\mid \Phi(u, v, p) & -\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}[\Phi(\widehat{u}, \widehat{v}, \widehat{p})] \mid \\
& \leq \mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}[|\Phi(u, v, p)-\Phi(\widehat{u}, \widehat{v}, \widehat{p})|]
\end{aligned}
$$

so that:

$$
\begin{aligned}
\left|\Phi(u, v, p)-\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}[\Phi(\widehat{u}, \widehat{v}, \widehat{p})]\right| & \leq U_{p}|u-\widetilde{u}|+V_{p}|v-\widehat{v}| \\
& +P_{p}|p-\widetilde{p}|+\frac{U_{p}+V_{p}}{2 \sqrt{n}}
\end{aligned}
$$

We will now show that under the class of thresholded functions \mathcal{H} specified in the statement of the theorem to which h belongs, all the terms on the right-hand side are well controlled. The rest of the proof follows in a straightforward way from Hoeffding's inequality and Vapnik-Chervonenkis bounds, except for minor, technical details, which are included for completeness.
We first apply Hoeffding's inequality to say that with probability at least $1-\delta / 2$,

$$
|p-\widetilde{p}| \leq \sqrt{\frac{\log \frac{4}{\delta}}{2 n}}
$$

Similarly, using standard Rademacher complexity arguments (see, e.g. Mohri et al., 2012), we have, uniformly over all $h \in \mathcal{H}$, with probability $1-\delta / 4$,

$$
|v-\widehat{v}| \leq 2 \mathbb{E}_{\boldsymbol{x}}\left[\mathcal{R}_{n}(\mathcal{H})\right]+\sqrt{\frac{\log \frac{4}{\delta}}{2 n}}
$$

and similarly, with probability $1-\delta / 4$,

$$
|u-\widetilde{u}| \leq 2 \mathbb{E}_{\boldsymbol{x}}\left[\mathcal{R}_{n}\left(\mathcal{H}_{\eta}\right)\right]+\sqrt{\frac{\log \frac{4}{\delta}}{2 n}}
$$

where $\mathcal{H}_{\eta}=\{h \cdot \eta: h \in \mathcal{H}\}$, and:

$$
\mathcal{R}_{n}(\mathcal{H})=\mathbb{E}_{\sigma}\left[\sup _{h \in \mathcal{H}} \frac{1}{n}\left|\sum_{i=1}^{n} \sigma_{i} h\left(x_{i}\right)\right|\right]
$$

is the Rademacher complexity ${ }^{6}$ of \mathcal{H}. Furthermore, if we let $z_{i} \in\{-1,1\}, i=1, \ldots, n$, with $\operatorname{Pr}\left(z_{i}=1\right)=\frac{1+\eta\left(x_{i}\right)}{2}$, so that $\mathbb{E}\left[z_{i}\right]=\eta\left(x_{i}\right)$, we have:

$$
\sum_{i=1}^{n} \sigma_{i} h\left(x_{i}\right) \eta\left(x_{i}\right)=\mathbb{E}_{\boldsymbol{z}}\left[\sum_{i=1}^{n} \sigma_{i} h\left(x_{i}\right) z_{i}\right]
$$

so that:

$$
\begin{aligned}
\mathcal{R}_{n}\left(\mathcal{H}_{\eta}\right) & =\mathbb{E}_{\sigma}\left[\sup _{h \in \mathcal{H}} \frac{1}{n}\left|\mathbb{E}_{\boldsymbol{z}}\left[\sum_{i=1}^{n} \sigma_{i} h\left(x_{i}\right) z_{i}\right]\right|\right] \\
& \leq \mathbb{E}_{\sigma, \boldsymbol{z}}\left[\sup _{h \in \mathcal{H}} \frac{1}{n}\left|\sum_{i=1}^{n} \sigma_{i} h\left(x_{i}\right) z_{i}\right|\right] \\
& =\mathbb{E}_{\sigma}\left[\sup _{h \in \mathcal{H}} \frac{1}{n}\left|\sum_{i=1}^{n} \sigma_{i} h\left(x_{i}\right)\right|\right]=\mathcal{R}_{n}(\mathcal{H})
\end{aligned}
$$

where the inequality is due to Jensen's inequality applied to convex functions $|\cdot|$ and $\sup \{\cdot\}$, and the second equality is due to the fact that $\sigma_{i} z_{i}$ and σ_{i} are distributed in the same way.

Thus choosing $L_{p}=\max \left\{U_{p}, V_{p}, P_{p}\right\}$, with probability $1-\delta$, uniformly over all $h \in \mathcal{H}$,

$$
\begin{aligned}
\left|\Phi(u, v, p)-\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}[\Phi(\widehat{u}, \widehat{v}, \widehat{p})]\right| & \leq 4 L_{p} \mathbb{E}_{\boldsymbol{x}}\left[\mathcal{R}_{n}(\mathcal{H})\right] \\
& +3 L_{p} \sqrt{\frac{\log \frac{4}{\delta}}{2 n}}+\frac{L_{p}}{\sqrt{n}} .
\end{aligned}
$$

Now, if \mathcal{H} is the class of threshold functions on η, its growth function (Mohri et al., 2012) is equal to $m+1$, and thus we have ${ }^{7}$:

$$
\mathcal{R}_{n}(\mathcal{H}) \leq \sqrt{\frac{2 \log (n+1)}{n}}
$$

[^0]so that with probability $1-\delta$, uniformly over all $h \in \mathcal{H}$, we get the bound in the statement of the theorem. The proof is complete.

Lower bound. The dependence $\tilde{O}(1 / \sqrt{n})$ on the sample size stated in Lemma 1 cannot be improved in general. To see this, take a metric $\Phi(u, v, p)=u, p$-Lipschitzness of which is trivial to show. Choose $h(x)=1$ for all x. Then, $u(h)=p$, while $\widehat{u}(h)=\frac{1}{n} \sum_{i=1}^{n} y_{i}$. Hence, $\left|\Phi(u, v, p)-\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}[\Phi(\widehat{u}, \widehat{v}, \widehat{p})]\right|=|p-\widetilde{p}|$, where $\widetilde{p}=$ $\frac{1}{n} \sum_{i=1}^{n} \eta\left(x_{i}\right)$ and $\mathbb{E}_{\boldsymbol{x}}[\widetilde{p}]=p$. Assume that $\eta(x)$ follows a binomial distribution with $\mathbb{P}(\eta(x)=1)=\mathbb{P}(\eta(x)=$ $0)=\frac{1}{2}$. Denote $|p-\widetilde{p}|$ by Z. By Khinchine inequality, $\mathbb{E}[Z] \geq 2 c \sqrt{\mathbb{E}\left[Z^{2}\right]}=c / \sqrt{n}$ for some constant $c>0$. Furthermore, by Paley-Zygmund inequality $\mathbb{P}(Z>\mathbb{E}[Z] / 2) \geq \frac{(\mathbb{E}[Z])^{2}}{4 \mathbb{E}\left[Z^{2}\right]} \geq c^{2}$. Hence, with constant probability,

$$
\left|\Phi(u, v, p)-\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}[\Phi(\widehat{u}, \widehat{v}, \widehat{p})]\right| \geq \frac{c}{2 \sqrt{n}}
$$

for some $c>0$, which shows that the rate $\tilde{O}(1 / \sqrt{n})$ cannot be improved.

B.2. Proof of Theorem 1

First, note that for a given \mathbb{P}, p-Lipschitzness implies that $\Phi(u, v, p)$ is continuous as a function of (u, v). Let $\mathcal{H}=\left\{h_{\eta} \mid h_{\eta}=\mathbb{1}_{\eta(x) \geq \eta}, \eta \in[0,1]\right\}$ be the set of binary threshold functions on $\eta(x)$. By Assumption 1, $u\left(h_{\eta}\right)$ and $v\left(h_{\eta}\right)$ are continuous in the threshold η, and hence the maximizer of $\Phi(u, v, p)$ over \mathcal{H} exists due to compactness of the domain of η. The existence of the maximizer, together with Assumption 1 and TP monotonicity implies by (Narasimhan et al., 2014a, Lemma 11) that $h_{\mathrm{PU}}^{*} \in \mathcal{H}$, i.e. the optimal PU classifier is a threshold function. ${ }^{8}$.
For any given $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$, let $h_{\mathrm{ETU}}^{*}(\boldsymbol{x})$ be the optimal ETU classifier. By TP monotonicity of Ψ, (Natarajan et al., 2016, Theorem 1) implies that $h_{\mathrm{ETU}}^{*}(\boldsymbol{x})$ satisfies:

$$
\begin{aligned}
\max _{i=1, \ldots, n} & \left\{\eta\left(x_{i}\right): h_{\mathrm{ETU}}^{*}\left(x_{i}\right)=0\right\} \\
& \leq \min _{i=1, \ldots, n}\left\{\eta\left(x_{i}\right): h_{\mathrm{ETU}}^{*}\left(x_{i}\right)=1\right\}
\end{aligned}
$$

However, by Assumption 1, $\eta\left(x_{i}\right) \neq \eta\left(x_{j}\right)$ for all $i \neq j$ with probability one, so that the condition above is satisfied with strict inequality, and hence there exists τ^{*}, which is between $\max \left\{\eta\left(x_{i}\right): h_{\mathrm{ETU}}^{*}\left(x_{i}\right)=0\right\}$ and $\min \left\{\eta\left(x_{i}\right): h_{\mathrm{ETU}}^{*}\left(x_{i}\right)=1\right\}$. This means that $h_{\mathrm{ETU}}^{*}(\boldsymbol{x})$

[^1]is a threshold function on $\eta(x)$ with threshold τ^{*}, i.e. $h_{\mathrm{ETU}}^{*} \in \mathcal{H}$.

To conclude, with probability one, $h_{\mathrm{ETU}}^{*}(\boldsymbol{x}), h_{\mathrm{PU}}^{*} \in \mathcal{H}$.
Now, define $\epsilon / 2=4 L_{p} \sqrt{\frac{2 \log (n+1)}{n}}+3 L_{p} \sqrt{\frac{\log \frac{4}{\delta}}{2 n}}+\frac{L_{p}}{\sqrt{n}}$. Then, with probability $1-\delta$ (over the random choice of \boldsymbol{x}),

$$
\begin{aligned}
& \Phi\left(u\left(h_{\mathrm{ETU}}^{*}(\boldsymbol{x})\right), v\left(h_{\mathrm{ETU}}^{*}(\boldsymbol{x})\right), p\right) \\
& \quad \leq \Phi\left(u\left(h_{\mathrm{PU}}^{*}\right), v\left(h_{\mathrm{PU}}^{*}\right), p\right) \\
& \quad \leq \mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}\left[\Phi\left(\widehat{u}\left(h_{\mathrm{PU}}^{*}\right), \widehat{v}\left(h_{\mathrm{PU}}^{*}\right), \widehat{p}\right)\right]+\epsilon / 2 \\
& \quad \leq \mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}\left[\Phi\left(\widehat{u}\left(h_{\mathrm{ETU}}^{*}(\boldsymbol{x})\right), \widehat{v}\left(h_{\mathrm{ETU}}^{*}(\boldsymbol{x})\right), \widehat{p}\right)\right]+\epsilon / 2, \\
& \quad \leq \Phi\left(u\left(h_{\mathrm{ETU}}^{*}(\boldsymbol{x})\right), v\left(h_{\mathrm{ETU}}^{*}(\boldsymbol{x})\right), p\right)+\epsilon,
\end{aligned}
$$

where we used Lemma 1 twice in the second and fourth inequality. Hence, with probability $1-\eta$,

$$
\begin{aligned}
\mid \Phi\left(u\left(h_{\mathrm{ETU}}^{*}(\boldsymbol{x})\right)\right. & \left., v\left(h_{\mathrm{ETU}}^{*}(\boldsymbol{x})\right), p\right) \\
& -\Phi\left(u\left(h_{\mathrm{PU}}^{*}\right), v\left(h_{\mathrm{PU}}^{*}\right), p\right) \mid \leq \epsilon
\end{aligned}
$$

Using analogous argument, one can show that with probability $1-\delta$,

$$
\begin{aligned}
\mid \mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}} & {\left[\Phi\left(\widehat{u}\left(h_{\mathrm{ETU}}^{*}(\boldsymbol{x})\right), \widehat{v}\left(h_{\mathrm{ETU}}^{*}(\boldsymbol{x})\right), \widehat{p}\right)\right] } \\
& -\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}\left[\Phi\left(\widehat{u}\left(h_{\mathrm{PU}}^{*}\right), \widehat{v}\left(h_{\mathrm{PU}}^{*}\right), \widehat{p}\right)\right] \mid \leq \epsilon,
\end{aligned}
$$

which finishes the proof.

B.3. Finite Sample Regime: Proof of Theorem 2

The PU-optimal classifier is:
$h_{\mathrm{PU}}^{*}=\underset{h}{\operatorname{argmax}} \Phi_{\mathrm{Prec}}(u(h), v(h), p)=\underset{h}{\operatorname{argmax}} \frac{u(h)}{v(h)+\alpha}$.

Proposition 2.

$$
h_{\mathrm{PU}}^{*}(x)=\left\{\begin{array}{l}
1, \text { if } x \in \mathcal{X}_{1}, \\
0, \text { else }
\end{array}\right.
$$

Proof. Note that for the defined h_{PU}^{*} classifier, we have $u\left(h_{\mathrm{PU}}^{*}\right)=v\left(h_{\mathrm{PU}}^{*}\right)=\mathbb{P}\left(\mathcal{X}_{1}\right)$, and

$$
\Phi_{\mathrm{Prec}}\left(u\left(h_{\mathrm{PU}}^{*}\right), v\left(h_{\mathrm{PU}}^{*}\right), p\right)=\frac{\mathbb{P}\left(\mathcal{X}_{1}\right)}{\mathbb{P}\left(\mathcal{X}_{1}\right)+\alpha}
$$

Firstly, observe that for any candidate optimal classifier h^{\prime}, it must hold that $h^{\prime}(x)=0$ for all $x \in \mathcal{X}_{3}$ (otherwise the metric strictly decreases). Now, suppose there exists a classifier $h^{\prime} \neq h_{\mathrm{PU}}^{*}$ which has strictly higher utility than h_{PU}^{*}. Then, it must be that $h^{\prime}(x)=1$ for all
$x \in \mathcal{X}_{2}$. We have, $u\left(h^{\prime}\right)=\mathbb{P}\left(\mathcal{X}_{1}\right)+\mathbb{P}\left(\mathcal{X}_{2}\right)(1-\sqrt{\alpha})$ and $v\left(h^{\prime}\right)=\mathbb{P}\left(\mathcal{X}_{1}\right)+\mathbb{P}\left(\mathcal{X}_{2}\right)$. So:

$$
\Phi_{\mathrm{Prec}}\left(u\left(h^{\prime}\right), v\left(h^{\prime}\right), p\right)=\frac{\mathbb{P}\left(\mathcal{X}_{1}\right)+\mathbb{P}\left(\mathcal{X}_{2}\right)(1-\sqrt{\alpha})}{\mathbb{P}\left(\mathcal{X}_{1}\right)+\mathbb{P}\left(\mathcal{X}_{2}\right)+\alpha}
$$

But for the chosen small value of α, we can show the contradiction that:

$$
\Phi_{\mathrm{Prec}}\left(u\left(h^{\prime}\right), v\left(h^{\prime}\right), p\right)<\Phi_{\mathrm{Prec}}\left(u\left(h_{\mathrm{PU}}^{*}\right), v\left(h_{\mathrm{PU}}^{*}\right), p\right)
$$

Therefore, h_{PU}^{*} as stated is indeed optimal.

We see from the above constructed example that the PU optimal classifier assigns negative labels to 50% of the data which are highly likely to belong to the positive class. PU is sensitive to label noise if the metric is less stable as implied by the high p-Lipschitz constant. Next, we show that ETU is relatively more robust.

Given a set of instances $\boldsymbol{x}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, recall that the ETU-optimal assignments can be computed as:

$$
h_{\mathrm{ETU}}^{*}(\boldsymbol{x})=\mathbf{s}^{*}:=\underset{\mathbf{s} \in\{0,1\}^{n}}{\operatorname{argmax}} \mathbb{E}_{\boldsymbol{y} \sim \mathbb{P}(. \mid \boldsymbol{x})} \Phi_{\mathrm{Prec}}(\mathbf{s}, \boldsymbol{y})
$$

Proposition 3. On the subset of instances in \boldsymbol{x} that have deterministic labels, the ETU-optimal predictions satisfy:

$$
h_{\mathrm{ETU}}^{*}\left(x_{j}\right)=s_{j}^{*}=\left\{\begin{array}{l}
1, \text { if } x \in \mathcal{X}_{1} \\
0, \text { if } x \in \mathcal{X}_{3}
\end{array}\right.
$$

Note that the predictions coincide with that of h_{PU}^{*} on these indices.

Proof. Let $\mathcal{I}_{i}=\left\{j: x_{j} \in \mathcal{X}_{i}\right\}$, for $i=1,2,3$. Note that the optimal value at the solution s^{*} is given by:
$\mathbb{E}_{\boldsymbol{y} \sim \mathbb{P}(. \mid \boldsymbol{x})} \Phi_{\mathrm{Prec}}\left(\mathbf{s}^{*}, \boldsymbol{y}\right)=\frac{\sum_{j \in \mathcal{I}_{1}} s_{j}^{*}+\Delta\left(\mathbf{s}_{\mathcal{I}_{2}}^{*}, \boldsymbol{y}_{\mathcal{I}_{2}}\right)}{\sum_{j \in \mathcal{I}_{1} \cup \mathcal{I}_{3}} s_{j}^{*}+\sum_{j \in \mathcal{I}_{2}} s_{j}^{*}+\alpha n}$,
where $\mathrm{s}_{\mathcal{I}_{2}}^{*}$ indicates the optimal assignments corresponding to indices in \mathcal{I}_{2} and $\Delta\left(\mathbf{s}_{\mathcal{I}_{2}}^{*}, \boldsymbol{y}_{\mathcal{I}_{2}}\right)$ is a quantity that depends only on indices in \mathcal{I}_{2}, and is given by:

$$
\begin{equation*}
\Delta\left(\mathbf{s}_{\mathcal{I}_{2}}^{*}, \boldsymbol{y}_{\mathcal{I}_{2}}\right)=\sum_{\mathbf{y}_{\mathcal{I}_{2}} \in\{0,1\}\left|\mathcal{I}_{2}\right|} \mathbb{P}\left(\mathbf{y}_{\mathcal{I}_{2}}\right)\left\langle\mathbf{y}_{\mathcal{I}_{2}}, \mathbf{s}_{\mathcal{I}_{2}}^{*}\right\rangle \tag{3}
\end{equation*}
$$

Fixing the optimal predictions for indices corresponding to \mathcal{I}_{2}, the value (2) is maximized by maximizing the numerator term $\sum_{j \in \mathcal{I}_{1}} s_{j}^{*}$ and minimizing the denominator term $\sum_{j \in \mathcal{I}_{1} \cup \mathcal{I}_{3}} s_{j}^{*}$. This is achieved precisely when the optimal solution satisfies the statement in the proposition. The proof is complete.

We know from Proposition 2 that h_{PU}^{*} sets the labels corresponding to indices in the set \mathcal{I}_{2} to 0 . Now let us examine what happens in the case of ETU, when labels have mild noise (i.e. with some small probability $\sqrt{\epsilon}$, the label of an instance from \mathcal{X}_{2} can be 0), at optimality. Consider a candidate optimal solution s^{\prime} that behaves exactly like h_{PU}^{*}, i.e. $\mathbf{s}_{j}^{\prime}=0$ for all $j \in \mathcal{I}_{2}$, for some $1 \leq k \leq\left|\mathcal{I}_{2}\right|$.
Then, $\Delta\left(\mathbf{s}_{\mathcal{I}_{2}}^{\prime}, \boldsymbol{y}_{\mathcal{I}_{2}}\right)=0$, so:

$$
\begin{equation*}
\mathbb{E}_{\boldsymbol{y} \sim \mathbb{P}(. \mid \boldsymbol{x})} \Phi_{\mathrm{Prec}}\left(\mathbf{s}^{\prime}, \boldsymbol{y}\right)=\frac{\left|\mathcal{I}_{1}\right|}{\left|\mathcal{I}_{1}\right|+\alpha n} \tag{4}
\end{equation*}
$$

Now, consider another candidate solution $s^{\prime \prime}$ that is equal to s^{\prime}, but has a value of 1 corresponding to a subset of indices $j_{1}, j_{2}, \ldots, j_{k} \in \mathcal{I}_{2}$. The value of this solution can be shown to be:

$$
\begin{equation*}
\mathbb{E}_{\boldsymbol{y} \sim \mathbb{P}(. \mid \boldsymbol{x})} \Phi_{\text {Prec }}\left(\mathbf{s}^{\prime \prime}, \boldsymbol{y}\right)=\frac{\left|\mathcal{I}_{1}\right|+k(1-\epsilon)}{\left|\mathcal{I}_{1}\right|+k+\alpha n} \tag{5}
\end{equation*}
$$

Comparing equations (4) and (5), we have that if:

$$
\begin{equation*}
\epsilon<\frac{\alpha n}{\left|\mathcal{I}_{1}\right|+\alpha n} \tag{6}
\end{equation*}
$$

then $\mathbf{s}^{\prime \prime}$ is a strictly better solution than \mathbf{s}^{\prime}. In particular, as (5) is mononotic in k, the optimal choice is $k=\left|\mathcal{I}_{2}\right|$. This immediately leads to the following corollary.
Corollary 1. 1. If $\left|\mathcal{I}_{2}\right|=0$, then

$$
h_{\mathrm{ETU}}^{*}(\boldsymbol{x}):=\mathbf{s}^{*}=h_{\mathrm{PU}}^{*}(\boldsymbol{x}) .
$$

2. Otherwise, if $\epsilon<\frac{\alpha}{1+\alpha}$, then

$$
h_{\mathrm{ETU}}^{*}(\boldsymbol{x}):=\mathbf{s}^{*} \neq h_{\mathrm{PU}}^{*}(\boldsymbol{x}) .
$$

In particular, h_{ETU}^{*} assigns label 1 to all instances that are overwhelmingly positive under \mathbb{P}, corresponding to indices \mathcal{I}_{2}, whereas h_{PU}^{*} assigns label 0 .

$$
\text { 3. If }\left|\mathcal{I}_{1}\right|=0 \text {, but }\left|\mathcal{I}_{2}\right|>0 \text { then for any } 0<\epsilon<1 \text {, }
$$

$$
h_{\mathrm{ETU}}^{*}(\boldsymbol{x}):=\mathbf{s}^{*} \neq h_{\mathrm{PU}}^{*}(\boldsymbol{x}):=\mathbf{0}
$$

Note that $\epsilon<\alpha /(1+\alpha)$ does not hold for our choice of $\epsilon=\sqrt{\alpha}$. However, case 3 in Corollary 1 is sufficient to establish the bound in Theorem 2, when $\mathbb{P}\left(\mathcal{X}_{2}\right)$ is very large.

C. Proofs for Section 4.1

Fix a binary classifier $h: X \rightarrow\{0,1\}$ and let the input sample $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ be generated i.i.d. from \mathbb{P}. For the sake of clarity, abbreviate $\eta\left(x_{i}\right)=\eta_{i}$ and $h\left(x_{i}\right)=h_{i}$, $i=1, \ldots, n$. In the proofs of Lemma 2 and Lemma 3 we will use the following:

- Empirical quantities:

$$
\widehat{u}(h)=\frac{1}{n} \sum_{i=1}^{n} h_{i} y_{i}, \widehat{v}(h)=\frac{1}{n} \sum_{i=1}^{n} h_{i}, \widehat{p}=\frac{1}{n} \sum_{i=1}^{n} y_{i}
$$

- Semi-empirical quantities:

$$
\widetilde{u}(h)=\frac{1}{n} \sum_{i=1}^{n} h_{i} \eta_{i}, \quad \text { and } \quad \widetilde{p}=\frac{1}{n} \sum_{i=1}^{n} \eta_{i}
$$

(we do not define $\widetilde{v}(h)$, as it would the same as $\widehat{v}(h)$).
Note that:

$$
\widetilde{u}(h)=\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}[\widehat{u}(h)], \quad \text { and } \quad \widetilde{p}=\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}[\widehat{p}]
$$

We will jointly denote $\widehat{\boldsymbol{z}}=(\widehat{u}(h), \widehat{p})$, and similarly $\widetilde{\boldsymbol{z}}=(\widetilde{u}(h), \widetilde{p})$. We will also abbreviate $\Phi(\widehat{\boldsymbol{z}})=$ $\Phi(\widehat{u}(h), \widehat{v}(h), \widehat{p})$ and similarly for $\Phi(\widetilde{\boldsymbol{z}})$.

C.1. Proof of Lemma 2

Assume Φ is two-times differentiable, with all partial second-order derivatives bounded by A. Taylor expanding $\Phi(\widehat{\boldsymbol{z}})$ around point $\widetilde{\boldsymbol{z}}$ up to the second order gives:

$$
\begin{aligned}
\Phi(\widehat{\boldsymbol{z}}) & =\Phi(\widetilde{\boldsymbol{z}})+\nabla \Phi(\widetilde{\boldsymbol{z}})^{\top}(\widehat{\boldsymbol{z}}-\widetilde{\boldsymbol{z}}) \\
& +\frac{1}{2}(\widehat{\boldsymbol{z}}-\widetilde{\boldsymbol{z}})^{\top} \nabla^{2} \Phi(\boldsymbol{z})(\widehat{\boldsymbol{z}}-\widetilde{\boldsymbol{z}})
\end{aligned}
$$

for some \boldsymbol{z} between $\widehat{\boldsymbol{z}}$ and $\widetilde{\boldsymbol{z}}$. Note that $\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}[\widehat{\boldsymbol{z}}]=\widetilde{\boldsymbol{z}}$, so that:

$$
\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}\left[\nabla \Phi(\widetilde{\boldsymbol{z}})^{\top}(\widehat{\boldsymbol{z}}-\widetilde{\boldsymbol{z}})\right]=0
$$

Furthermore, note that:

$$
\begin{aligned}
(\widehat{\boldsymbol{z}} & -\widetilde{\boldsymbol{z}})^{\top} \nabla^{2} \Phi(\boldsymbol{z})(\widehat{\boldsymbol{z}}-\widetilde{\boldsymbol{z}}) \\
& =\nabla_{u u}^{2}(\widehat{u}-\widetilde{u})^{2}+2 \nabla_{u p}^{2}(\widehat{u}-\widetilde{u})(\widehat{p}-\widetilde{p})+\nabla_{p p}^{2}(\widehat{p}-\widetilde{p})^{2} \\
& \leq A\left((\widehat{u}-\widetilde{u})^{2}+2|(\widehat{u}-\widetilde{u})(\widehat{p}-\widetilde{p})|+(\widehat{p}-\widetilde{p})^{2}\right) \\
& \leq 2 A\left((\widehat{u}-\widetilde{u})^{2}+(\widehat{p}-\widetilde{p})^{2}\right),
\end{aligned}
$$

where we used elementary inequality $a b \leq a^{2}+b^{2}$, and $\nabla_{u u}^{2}, \nabla_{u p}^{2}, \nabla_{p p}^{2}$ denote the second-order derivatives evaluated at some $\boldsymbol{z}=(u, p)$. Hence:

$$
\begin{aligned}
\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}} & {\left[(\widehat{\boldsymbol{z}}-\widetilde{\boldsymbol{z}})^{\top} \nabla^{2} \Phi(\widetilde{\boldsymbol{z}})(\widehat{\boldsymbol{z}}-\widetilde{\boldsymbol{z}})\right] } \\
& \leq 2 A\left(\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}\left[(\widehat{u}-\widetilde{u})^{2}\right]+\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}\left[(\widehat{p}-\widetilde{p})^{2}\right]\right)
\end{aligned}
$$

Since \widehat{u} is the empirical average over n labels and \widetilde{u} is its expectation (over the labels), $\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}\left[(\widehat{u}-\widetilde{u})^{2}\right]$ is the variance of \widehat{u}, which is at most $\frac{1}{4 n}$, because $\widehat{u} \in[0,1]$:

$$
\operatorname{var}(\widehat{u})=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{var}\left(h_{i} y_{i}\right) \leq \frac{1}{n} \sum_{i=1}^{n} h_{i} \eta_{i}\left(1-\eta_{i}\right) \leq \frac{1}{4 n},
$$

where we used the independence of labels $y_{i}, i=1, \ldots, n$. Similarly, $\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}\left[(\widehat{p}-\widetilde{p})^{2}\right]$ is at most $\frac{1}{4 n}$, which in total gives:

$$
\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}\left[(\widehat{\boldsymbol{z}}-\widetilde{\boldsymbol{z}})^{\top} \nabla^{2} \Phi(\widetilde{\boldsymbol{z}})(\widehat{\boldsymbol{z}}-\widetilde{\boldsymbol{z}})\right] \leq \frac{A}{n}
$$

Using a lower bound $-A$ on the second-order derivatives and performing a similar chain of reasoning, one also gets:

$$
\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}\left[(\widehat{\boldsymbol{z}}-\widetilde{\boldsymbol{z}})^{\top} \nabla^{2} \Phi(\widetilde{\boldsymbol{z}})(\widehat{\boldsymbol{z}}-\widetilde{\boldsymbol{z}})\right] \geq-\frac{A}{n}
$$

From that we have:

$$
\left\|\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}[\Phi(\widehat{\boldsymbol{z}})]-\Phi(\widetilde{\boldsymbol{z}})\right\| \leq \frac{A}{2 n}
$$

which is exactly what was to be shown.

C.2. Proof of Lemma 3

Assume Φ is three-times differentiable, with all partial third-order derivatives bounded by B. Taylor expanding $\Phi(\widehat{\boldsymbol{z}})$ around point $\widetilde{\boldsymbol{z}}$ up to the third order gives:

$$
\begin{aligned}
\Phi(\widehat{\boldsymbol{z}}) & =\Phi(\widetilde{\boldsymbol{z}})+\nabla \Phi(\widetilde{\boldsymbol{z}})^{\top}(\widehat{\boldsymbol{z}}-\widetilde{\boldsymbol{z}}) \\
& +\frac{1}{2}(\widehat{\boldsymbol{z}}-\widetilde{\boldsymbol{z}})^{\top} \nabla^{2} \Phi(\widetilde{\boldsymbol{z}})(\widehat{\boldsymbol{z}}-\widetilde{\boldsymbol{z}}) \\
& +\frac{1}{6} \sum_{\alpha, \beta, \gamma=1}^{2} \frac{\partial^{3} \Phi(\boldsymbol{z})}{\partial z_{\alpha} \partial z_{\beta} \partial z_{\gamma}}\left(\widehat{z}_{\alpha}-\widetilde{z}_{\alpha}\right)\left(\widehat{z}_{\beta}-\widetilde{z}_{\beta}\right)\left(\widehat{z}_{\gamma}-\widetilde{z}_{\gamma}\right),
\end{aligned}
$$

for some \boldsymbol{z} between $\widehat{\boldsymbol{z}}$ and $\widetilde{\boldsymbol{z}}$. First note that $\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}[\widehat{\boldsymbol{z}}]=\widetilde{\boldsymbol{z}}$, so that:

$$
\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}\left[\nabla \Phi(\widetilde{\boldsymbol{z}})^{\top}(\widehat{\boldsymbol{z}}-\widetilde{\boldsymbol{z}})\right]=0
$$

Furthermore,

$$
\begin{aligned}
\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}} & {\left[\nabla^{2}(\widehat{\boldsymbol{z}}-\widetilde{\boldsymbol{z}})^{\top} \Phi(\widetilde{\boldsymbol{z}})(\widehat{\boldsymbol{z}}-\widetilde{\boldsymbol{z}})\right] } \\
& =\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}\left[\operatorname{tr}\left(\nabla^{2} \Phi(\widetilde{\boldsymbol{z}})(\widehat{\boldsymbol{z}}-\widetilde{\boldsymbol{z}})(\widehat{\boldsymbol{z}}-\widetilde{\boldsymbol{z}})^{\top}\right)\right] \\
& =\operatorname{tr}\left(\nabla^{2} \Phi(\widetilde{\boldsymbol{z}}) \Sigma\right)
\end{aligned}
$$

where $\Sigma=\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}\left[(\widehat{\boldsymbol{z}}-\widetilde{\boldsymbol{z}})(\widehat{\boldsymbol{z}}-\widetilde{\boldsymbol{z}})^{\top}\right]$ is the covariance matrix of $\widehat{\boldsymbol{z}}-\widetilde{\boldsymbol{z}}$. By independence of examples,

$$
\begin{aligned}
\Sigma & =\frac{1}{n^{2}} \sum_{i=1}^{n} \mathbb{E}_{y_{i} \mid x_{i}}\left[\left(\begin{array}{cc}
h_{i}\left(y_{i}-\eta_{i}\right)^{2} & h_{i}\left(y_{i}-\eta_{i}\right)^{2} \\
h_{i}\left(y_{i}-\eta_{i}\right)^{2} & \left(y_{i}-\eta_{i}\right)^{2}
\end{array}\right)\right] \\
& =\frac{1}{n^{2}} \sum_{i=1}^{n} \eta_{i}\left(1-\eta_{i}\right)\left(\begin{array}{cc}
h_{i} & h_{i} \\
h_{i} & 1
\end{array}\right)
\end{aligned}
$$

so that:

$$
\operatorname{tr}\left(\nabla^{2} \Phi(\widetilde{\boldsymbol{z}}) \Sigma\right)=\left(\nabla_{u u}^{2}+2 \nabla_{u p}^{2}\right) s_{u}+\nabla_{p p}^{2} s_{p}
$$

where:

$$
\begin{aligned}
& s_{p}:=\frac{1}{n^{2}} \sum_{i=1}^{n} \eta_{i}\left(1-\eta_{i}\right), \\
& s_{u}:=\frac{1}{n^{2}} \sum_{i=1}^{n} h_{i} \eta_{i}\left(1-\eta_{i}\right),
\end{aligned}
$$

and $\nabla_{u u}^{2}, \nabla_{u p}^{2}, \nabla_{p p}^{2}$ denote be the second-order derivative terms evaluated at $(\widetilde{u}, \widetilde{p})$. Thus, to finish the proof, we only need to show that the first order term is bounded by $\frac{B}{3} n^{-3 / 2}$. To this end, note that for any numbers $a_{i}, b_{i j k}$, such that $\left|b_{i j k}\right| \leq B, i, j, k=1, \ldots, 2$:

$$
\sum_{i j k} b_{i j k} a_{i} a_{j} a_{k} \leq B \sum_{i j k}\left|a_{i}\right|\left|a_{j} \| a_{k}\right|=B\left(\left|a_{1}\right|+\left|a_{2}\right|\right)^{3}
$$

By Hölder's inequality,

$$
\sum_{i=1}^{2}\left|a_{i}\right| \leq\left(\sum_{i=1}^{2}\left|a_{i}\right|^{3}\right)^{1 / 3} 2^{2 / 3}
$$

so that:

$$
B\left(\left|a_{1}\right|+\left|a_{2}\right|+\left|a_{3}\right|\right)^{3} \leq 4 B\left(\left|a_{1}\right|^{3}+\left|a_{2}\right|^{3}+\left|a_{3}\right|^{3}\right)
$$

Hence, if we bound:

$$
\frac{\partial^{3} \Phi(\boldsymbol{z})}{\partial z_{\alpha} \partial z_{\beta} \partial z_{\gamma}} \leq B
$$

the third-order term $\frac{1}{6} \sum_{\alpha, \beta, \gamma=1}^{2} \ldots$ is bounded by:

$$
\frac{2 B}{3}\left(|\widehat{u}-\widetilde{u}|^{3}+|\widehat{p}-\widetilde{p}|^{3}\right)
$$

We now bound $\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}\left[|\widehat{u}-\widetilde{u}|^{3}\right]$ and $\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}\left[|\widehat{p}-\widetilde{p}|^{3}\right]$. By Cauchy-Schwarz inequality,

$$
\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}\left[|\widehat{p}-\widetilde{p}|^{3}\right] \leq \sqrt{\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}\left[(\widehat{p}-\widetilde{p})^{4}\right]} \sqrt{\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}\left[(\widehat{p}-\widetilde{p})^{2}\right]}
$$

Before, we already showed that

$$
\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}\left[(\widehat{p}-\widetilde{p})^{2}\right] \leq \frac{1}{4 n}
$$

Denote $a_{i}=y_{i}-\eta_{i}$, and let $\mu_{k}=\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}\left[a_{i}^{k}\right]$. Using $\mu_{1}=$ 0 , we have:

$$
\begin{gathered}
\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}\left[(\widehat{p}-\widetilde{p})^{4}\right]=\frac{1}{n^{4}} \sum_{i, j, k, \ell} a_{i} a_{j} a_{k} a_{\ell} \\
=\frac{1}{n^{4}}\left(n \mu_{4}+3 n(n-1) \mu_{2}^{2}\right) .
\end{gathered}
$$

Since $\mu_{2} \leq \frac{1}{4}$ and $\mu_{4} \leq \frac{1}{12}, \mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}\left[(\widehat{p}-\widetilde{p})^{4}\right] \leq \frac{3}{16 n^{2}}$, and thus:

$$
\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}\left[|\widehat{p}-\widetilde{p}|^{3}\right] \leq \frac{\sqrt{3}}{8} n^{-3 / 2} \leq \frac{1}{4} n^{-3 / 2}
$$

Using similar bound for $\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}\left[|\widehat{u}-\widetilde{u}|^{3}\right]$, we conclude that the third-order term is bounded by $\frac{B}{3} n^{-3 / 2}$. Bounding the third-order derivatives from below by $-B$, and using similar reasoning gives a lower bound of the same value. This finishes the proof.

C.3. Proof of Theorem 3

Abbreviating $\Phi(h)=\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}[\Phi(\widehat{u}(h), \widehat{v}(h), \widehat{p})]$ and $\Phi_{a}(h)=\Phi_{\text {appr }}(h):$

$$
\begin{aligned}
& \Phi\left(h_{\mathrm{ETU}}^{*}\right)-\Phi\left(h_{a}^{*}\right)=\underbrace{\Phi\left(h_{\mathrm{ETU}}^{*}\right)-\Phi_{a}\left(h_{\mathrm{ETU}}^{*}\right)}_{\leq \frac{B}{3 n^{3 / 2}}} \\
& \underbrace{\Phi_{a}\left(h_{\mathrm{ETU}}^{*}\right)-\Phi_{a}\left(h_{a}^{*}\right)}_{\leq 0}+\underbrace{\Phi_{a}\left(h_{a}^{*}\right)-\Phi\left(h_{a}^{*}\right)}_{\leq \frac{B}{3 n^{3 / 2}}} \leq \frac{2 B}{3 n^{3 / 2}},
\end{aligned}
$$

where the bounds shown in the inequalities are from Lemma 3.

C.4. Derivation of the approximation algorithm for F_{β}-measure

Recall that $F_{\beta}(u, v, p)=\frac{\left(1+\beta^{2}\right) u}{\beta^{2} p+v}$. The seconder order derivatives with respect to u and p are:

$$
\frac{\partial^{2} F_{\beta}}{\partial u^{2}}=0, \frac{\partial^{2} F_{\beta}}{\partial u \partial p}=\frac{-\beta^{2}\left(1+\beta^{2}\right)}{\left(\beta^{2} p+v\right)^{2}}, \frac{\partial^{2} F_{\beta}}{\partial p^{2}}=\frac{2 \beta^{4}\left(1+\beta^{2}\right) u}{\left(\beta^{2} p+v\right)^{3}}
$$

To optimize $\Phi_{\text {appr }}(h)$, we first sort observations according to $\eta\left(x_{i}\right)$. Then we precompute:

$$
\widetilde{p}=\frac{1}{n} \sum_{i=1}^{n} \eta\left(x_{i}\right), \quad \widetilde{p}_{\text {var }}=\frac{1}{n^{2}} \sum_{i=1}^{n} \eta\left(x_{i}\right)\left(1-\eta\left(x_{i}\right)\right) .
$$

Next, for each $k=0,1, \ldots, n$, we precompute:

$$
\widetilde{u}^{k}=\frac{1}{n} \sum_{i=1}^{k} \eta\left(x_{i}\right), \widehat{v}^{k}=\frac{k}{n}, \widetilde{u}_{\mathrm{var}}^{k}=\frac{1}{n^{2}} \sum_{i=1}^{k} \eta\left(x_{i}\right)\left(1-\eta\left(x_{i}\right)\right) .
$$

We then choose k for which the ETU approximation:

$$
\frac{\left(1+\beta^{2}\right) \widetilde{u}^{k}}{\beta^{2} \widetilde{p}+\frac{k}{n}}-\frac{\beta^{2}\left(1+\beta^{2}\right)}{\left(\beta^{2} \widetilde{p}+\frac{k}{n}\right)^{2}} \widetilde{u}_{\mathrm{var}}^{k}+\frac{\beta^{4}\left(1+\beta^{2}\right) \widetilde{u}^{k}}{\left(\beta^{2} \widetilde{p}+\frac{k}{n}\right)^{3}} \widetilde{p}_{\mathrm{var}}
$$

is maximized. The maximization can be done in time linear in $O(n)$, so the most expensive operation is sorting the instances.

D. Additional material to Section 4.2

Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ be the input sample (test set) of size n generated i.i.d. from \mathbb{P}. Given \boldsymbol{x} and a function $\widehat{\eta}: X \rightarrow$ $[0,1]$, let

$$
\widehat{h}=\underset{h \in \widehat{\mathcal{H}}}{\operatorname{argmax}} \underbrace{\mathbb{E}_{\boldsymbol{y} \sim \widehat{\eta}(\boldsymbol{x})}[\Phi(\widehat{u}(h), \widehat{v}(h), \widehat{p})]}_{=: \widehat{\Phi}_{\mathrm{ETV}}(h)}
$$

be the classifier returned by the ETU procedure upon receiving the input sample \boldsymbol{x}. Likewise, let:

$$
h^{*}=\underset{h \in \widehat{\mathcal{H}}}{\operatorname{argmax}} \underbrace{\mathbb{E}_{\boldsymbol{y} \sim \eta(\boldsymbol{x})}[\Phi(\widehat{u}(h), \widehat{v}(h), \widehat{p})]}_{=: \Phi_{\mathrm{ETv}}(h)},
$$

be the optimal ETU classifier in $\widehat{\mathcal{H}}$. We want to bound the difference $\mathbb{E}_{\boldsymbol{x}}\left[\left|\Phi_{\mathrm{ETU}}(\widehat{h})-\Phi_{\mathrm{ETU}}\left(h^{*}\right)\right|\right]$. By the definition of $h^{*}, \Phi_{\mathrm{ETU}}(\widehat{h}) \leq \Phi_{\mathrm{ETU}}\left(h^{*}\right)$ for any \boldsymbol{x}, and thus:

$$
\begin{align*}
\mathbb{E}_{\boldsymbol{x}}[& \left.\left|\Phi_{\mathrm{ETU}}(\widehat{h})-\Phi_{\mathrm{ETU}}\left(h^{*}\right)\right|\right] \\
= & \mathbb{E}_{\boldsymbol{x}}\left[\Phi_{\mathrm{ETU}}\left(h^{*}\right)\right]-\mathbb{E}_{\boldsymbol{x}}\left[\Phi_{\mathrm{ETU}}(\widehat{h})\right] \\
= & \mathbb{E}_{\boldsymbol{x}}\left[\Phi_{\mathrm{ETU}}\left(h^{*}\right)\right]-\mathbb{E}_{\boldsymbol{x}}\left[\widehat{\Phi}_{\mathrm{ETU}}\left(h^{*}\right)\right] \\
& +\underbrace{\mathbb{E}_{\boldsymbol{x}}\left[\widehat{\Phi}_{\mathrm{ETU}}\left(h^{*}\right)\right]-\mathbb{E}_{\boldsymbol{x}}\left[\widehat{\Phi}_{\mathrm{ETU}}(\widehat{h})\right]}_{\leq 0} \\
& +\mathbb{E}_{\boldsymbol{x}}\left[\widehat{\Phi}_{\mathrm{ETU}}(\widehat{h})\right]-\mathbb{E}_{\boldsymbol{x}}\left[\Phi_{\mathrm{ETU}}(\widehat{h})\right] \\
\leq & 2 \sup _{h \in \widehat{\mathcal{H}}}\left|\mathbb{E}_{\boldsymbol{x}}\left[\Phi_{\mathrm{ETU}}(h)-\widehat{\Phi}_{\mathrm{ETU}}(h)\right]\right| . \tag{7}
\end{align*}
$$

Now, fix some classifier h and input sample \boldsymbol{x}. We let $\widehat{u}(h), \widehat{v}(h), \widehat{p}$ denote the random variables generated according to η (for fixed \boldsymbol{x}), while $\widehat{u}^{\prime}(h), \widehat{p}^{\prime}(h)$ denote random variables generated according to $\widehat{\eta}$; for instance, $\widehat{u}^{\prime}(h)=\frac{1}{n} \sum_{i=1}^{n} h\left(x_{i}\right) y_{i}$, where $y_{i} \sim \widehat{\eta}\left(x_{i}\right)$. Using this notation, we have:

$$
\begin{aligned}
& \Phi_{\mathrm{ETU}}(h)=\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}[\Phi(\widehat{u}(h), \widehat{v}(h), \widehat{p})] \\
& \widehat{\Phi}_{\mathrm{ETU}}(h)=\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}\left[\Phi\left(\widehat{u}^{\prime}(h), \widehat{v}(h), \widehat{p}^{\prime}\right)\right]
\end{aligned}
$$

(note that $\widehat{v}(h)$ does not depend on $\widehat{\eta}$ or η, we $\widehat{v}^{\prime}(h)=$ $\widehat{v}(h))$. We now bound the term under sup in (7):

$$
\begin{aligned}
\mid \mathbb{E}_{\boldsymbol{x}} & {\left[\Phi_{\mathrm{ETU}}(h)-\widehat{\Phi}_{\mathrm{ETU}}(h)\right] \mid } \\
& \leq \mathbb{E}\left[\left|\Phi(\widehat{u}, \widehat{v}, \widehat{p})-\Phi\left(\widehat{u}^{\prime}, \widehat{v}, \widehat{p}^{\prime}\right)\right|\right] \\
& \leq \mathbb{E}[|\Phi(\widehat{u}, \widehat{v}, \widehat{p})-\Phi(u, v, p)|] \\
& +\mathbb{E}\left[\left|\Phi(u, v, p)-\Phi\left(\widehat{u}^{\prime}, \widehat{v}, \widehat{p}^{\prime}\right)\right|\right]
\end{aligned}
$$

where the first inequality is due to Jensen's inequality applied to a convex function $x \mapsto|x|$, the all expectations except for the first line are joint with respect to $(\boldsymbol{x}, \boldsymbol{y})$, and for the sake of clarity we drop the dependence on h in $\widehat{u}(h), \widehat{v}(h), \widehat{u}^{\prime}(h)$. Now, it follow from Lemma 1 that:

$$
\mathbb{E}[|\Phi(\widehat{u}, \widehat{v}, \widehat{p})-\Phi(u, v, p)|] \leq c \sqrt{\frac{\log n}{n}}
$$

for some constant c. Moreover, using p-Lipschitzness of Φ, we have:

$$
\begin{aligned}
& \mathbb{E}\left[\left|\Phi(u, v, p)-\Phi\left(\widehat{u}^{\prime}, \widehat{v}, \widehat{p}^{\prime}\right)\right|\right] \leq U_{p} \mathbb{E}\left[\left|\widehat{u}^{\prime}-u\right|\right] \\
& \quad+V_{p} \mathbb{E}[|\widehat{v}-v|]+P_{p} \mathbb{E}\left[\left|\widehat{p}^{\prime}-p\right|\right]
\end{aligned}
$$

Now, the term $\mathbb{E}[|\widehat{v}-v|]$ is well-controlled and was shown in the proof of Lemma 1 to be at most $\sqrt{\frac{1}{4 n}}$ as the expected deviation of the empirical average of $[0,1]$-valued random variable from its mean. Thus it remains to bound the terms $\mathbb{E}\left[\left|\hat{p}^{\prime}-p\right|\right]$ and $\mathbb{E}\left[\left|\widehat{u}^{\prime}-u\right|\right]$. Define:

$$
\begin{aligned}
& \widetilde{p}^{\prime}=\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}\left[\widehat{p}^{\prime}\right]=\frac{1}{n} \sum_{i=1}^{n} \widehat{\eta}\left(x_{i}\right) \\
& \widetilde{u}^{\prime}=\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}\left[\widehat{u}^{\prime}\right]=\frac{1}{n} \sum_{i=1}^{n} h\left(x_{i}\right) \widehat{\eta}\left(x_{i}\right) \\
& p_{\widehat{\eta}}=\mathbb{E}_{\boldsymbol{x}}\left[\widehat{p}^{\prime}\right]=\mathbb{E}[\widehat{\eta}(x)] \\
& u_{\widehat{\eta}}=\mathbb{E}_{\boldsymbol{x}}\left[\widetilde{u}^{\prime}\right]=\mathbb{E}[h(x) \widehat{\eta}(x)]
\end{aligned}
$$

We decompose:

$$
\left|p-\widehat{p}^{\prime}\right| \leq\left|p-p_{\widehat{\eta}}\right|+\left|p_{\widehat{\eta}}-\widetilde{p}^{\prime}\right|+\left|\widetilde{p}^{\prime}-\widehat{p}^{\prime}\right|
$$

As before, we use the fact that $\mathbb{E}_{\boldsymbol{x}}\left[\left|p_{\widehat{\eta}}-\widetilde{p}^{\prime}\right|\right]$, as well as $\mathbb{E}_{\boldsymbol{y} \mid \boldsymbol{x}}\left[\left|\widetilde{p}^{\prime}-\widehat{p}^{\prime}\right|\right]$ are both the expected deviations of the empirical averages of $[0,1]$-valued random variables from their means, and therefore are bounded by $\sqrt{\frac{1}{4 n}}$. Hence:

$$
\mathbb{E}\left[\left|\widehat{p}^{\prime}-p\right|\right] \leq\left|p-p_{\widehat{\eta}}\right|+\frac{1}{\sqrt{n}}
$$

Using analogous way of reasoning, one gets:

$$
\mathbb{E}\left[\left|\widehat{u}^{\prime}-u\right|\right] \leq\left|u-u_{\widehat{\eta}}\right|+\frac{1}{\sqrt{n}}
$$

Putting it all together, we get:

$$
\begin{aligned}
& \left|\mathbb{E}_{\boldsymbol{x}}\left[\Phi_{\mathrm{ETU}}(h)-\widehat{\Phi}_{\mathrm{ETU}}(h)\right]\right| \\
& \quad \leq c^{\prime} \sqrt{\frac{\log n}{n}}+U_{p}\left|u(h)-u_{\widehat{\eta}}(h)\right|+P_{p}\left|p-p_{\widehat{\eta}}\right|
\end{aligned}
$$

for some constant c^{\prime}. Using (7), we finally get:

$$
\begin{aligned}
\mathbb{E}_{\boldsymbol{x}}\left[\left|\Phi_{\mathrm{ETU}}(\widehat{h})-\Phi_{\mathrm{ETU}}\left(h^{*}\right)\right|\right] & \leq c^{\prime} \sqrt{\frac{\log n}{n}}+P_{p}\left|p-p_{\widehat{\eta}}\right| \\
& +\sup _{h \in \widehat{\mathcal{H}}} U_{p}\left|u(h)-u_{\widehat{\eta}}(h)\right|
\end{aligned}
$$

which was to be shown.

E. Isotron Algorithm (Kalai \& Sastry, 2009)

Here we include the Isotron Algorithm of (Kalai \& Sastry, 2009) for completeness. The second update step is the Pool of Adjacent Violators (PAV) routine, which solves the isotonic regression problem:

$$
u_{1}^{*}, u_{2}^{*}, \ldots, u_{n}^{*}=\arg \min _{u_{1} \leq u_{2} \leq \cdots \leq u_{n}} \sum_{i=1}^{n}\left(y_{i}-u_{i}\right)^{2}
$$

where the instances are assumed to be sorted according to their scores $\mathbf{w}^{T} x$ (using \mathbf{w} obtained in first update step of the iteration). This is a convex quadratic program and can be solved efficiently. The output link function u of the Algorithm is a piecewise linear estimate.

```
Algorithm 2 The Isotron algorithm (Kalai \& Sastry, 2009).
    Input: Training data \(\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}\), iterations \(T\)
    Output: \(\mathbf{w}_{T}, u_{T}\)
    \(\mathbf{w}_{0} \leftarrow 0\)
    \(u_{0} \leftarrow z \mapsto \min (\max (0,2 \cdot z+1), 1)\)
    for \(t=1,2, \ldots, T\) do
        \(\mathbf{w}_{t} \leftarrow \mathbf{w}_{t-1}+\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-u_{t-1}\left(\left\langle\mathbf{w}_{t-1}, x_{i}\right\rangle\right)\right) \cdot x_{i}\)
        \(u_{t} \leftarrow \operatorname{PAV}\left(\left\{\left\langle\mathbf{w}_{t}, x_{i}\right\rangle, y_{i}\right\}\right)\)
    end for
```


[^0]: ${ }^{6}$ Variables $\sigma_{i}, i=1, \ldots, n$, are i.i.d. Rademacher variables distributed according to $\mathbb{P}\left(\sigma_{i}=1\right)=\mathbb{P}\left(\sigma_{i}=-1\right)=\frac{1}{2}$.
 ${ }^{7}$ We could alternatively use the fact that VC-dimension of \mathcal{H} is 1 , which would give a bound with $\log (n+1)$ replaced by $1+$ $\log (n)$.

[^1]: ${ }^{8}$ Lemma 11 of Narasimhan et al. (2014a) requires that the PU maximizer within \mathcal{H} is h_{η} for some $\eta \in(0,1)$. However, we do not impose this constraint here because the lemma can easily be extended to the case $\eta \in[0,1]$ under our assumption that $\eta(x)$ has a density over $[0,1]$.

