8. Appendix

This appendix contains additional plots and proofs of the results from Section 2.
Lemma 6. The divergence from $q(z)$ to $p(z)$ is

$$
\begin{equation*}
K L(q(Z) \| p(Z))=\underbrace{K L(q(Z \mid W) \| p(Z))}_{D_{0}}-I_{q}[W, Z], \tag{27}
\end{equation*}
$$

where $D_{0}=\mathbb{E}_{q(W, Z)} \log (q(Z \mid W) / p(Z))$ is conditional divergence and I_{q} denotes mutual information under q.

Proof. Define the joint distribution $p(w, z)=q(w) p(z)$. Then, the chain-rule of KL-divergence (Cover \& Thomas, 2006, Thm. 2.5.3) states that

$$
\begin{align*}
K L(q(Z, W) \| p(Z, W))= & K L(q(W \mid Z) \| p(W \mid Z)) \\
& +K L(q(Z) \| p(Z)) \tag{28}
\end{align*}
$$

The left-hand side simplifies into D_{0}, and the first term on the right-hand side simplifies into $I_{q}[W, Z]$.

Theorem 7. For fixed values of β and $p(w \mid z)$, the distribution $q(w)$ that minimizes D_{β} is

$$
\begin{aligned}
q^{*}(w) & =\exp (s(w)-A) \\
A & =\log \int_{w} \exp s(w) \\
s(w) & =\log p(w)-K L(q(Z \mid w) \| p(Z \mid w)) \\
& -\left(\beta^{-1}-1\right) K L(q(Z \mid w) \| p(Z))
\end{aligned}
$$

Moreover, at q^{*}, the objective value is $D_{\beta}^{*}=-\beta A$.
Proof. First, consider derivatives of D_{0} and D_{1} with respect to $q(w)$. The first can immediately be seen to be

$$
\frac{d D_{0}}{d q(w)}=K L(q(Z \mid w) \| p(Z))
$$

For the second, we can derive

$$
\begin{aligned}
& \frac{d D_{1}}{d q(w)}=\frac{d}{d q(w)} \int_{w, z} q(w, z) \log \frac{q(z \mid w)}{p(w, z)} \\
& +\frac{d}{d q(w)} \int_{w, z} q(w) \log q(w) \\
& =\int_{z} q(z \mid w) \log \frac{q(z \mid w)}{p(w, z)}+\log q(w)+1 \\
& =K L(q(Z \mid w) \| p(Z \mid w))-\log p(w)+\log q(w)+1 \text {. }
\end{aligned}
$$

If we create a Lagrangian for D_{β} with a Lagrange multiplier λ to enforce normalization of $q(w)$, we know that at
the optimal $q(w)$ its gradient will be zero. Using the above derivatives, we therefore have that
$0=(1-\beta) K L(q(Z \mid w) \| p(Z))+\beta K L(q(Z \mid w) \| p(Z \mid w))$
$-\beta \log p(w)+\beta \log q(w)+\lambda$,
Which solved for $q(w)$, this gives

$$
\begin{aligned}
q(w) \propto & \exp \left(-\left(1-\beta^{-1}\right) K L(q(Z \mid w) \| p(Z))\right. \\
& -K L(q(Z \mid w) \| p(Z \mid w))+\log p(w))
\end{aligned}
$$

which establishes the given form for $s(w)$ and A.
Now, to establish the value of D_{β} at the solution, expand the negative entropy of $q(w)$ to get

$$
\begin{align*}
& \beta \int_{w} q(w) \log q(w) \\
& \quad=\beta \int_{w} q(w)\left(-\left(1-\beta^{-1}\right) K L(q(Z \mid w) \| p(Z))\right. \\
& \quad-K L(q(Z \mid w) \| p(Z \mid w))+\log p(w))-\beta A \tag{29}
\end{align*}
$$

Now, taking the left-hand side and terms in the bottom line, we can recognize that

$$
\int_{w} q(w)\left(\log \frac{p(w)}{q(w)}-K L(q(Z \mid w) \| p(Z \mid w))\right)=-D_{1}
$$

Further, if we take the terms from the middle line, we have that

$$
-\beta \int_{w} q(w)\left(1-\beta^{-1}\right) K L(q(Z \mid w) \| p(Z))=(\beta-1) D_{0}
$$

Thus, we can re-write Eq. 29 as $-\beta A=(1-\beta) D_{0}+\beta D_{1}$, establishing the value of D_{β}^{*}.

Remark 8. In the limit where $\beta \rightarrow 0$ the divergence bound becomes

$$
\lim _{\beta \rightarrow 0} D_{\beta}^{*}=\inf _{w} K L(q(Z \mid w) \| p(Z))
$$

Proof. Use the representation that $\lim _{\beta \rightarrow 0} D_{\beta}^{*}=$ $\lim _{\beta \rightarrow 0}-\beta A$ is equal to

$$
\begin{aligned}
& \lim _{\beta \rightarrow 0}-\beta \log \int_{w} \exp (\log p(w)-K L(q(Z \mid w) \| p(Z \mid w)) \\
&\left.\quad\left(\beta^{-1}-1\right) K L(q(Z \mid w) \| p(Z))\right) \\
&=\lim _{\beta \rightarrow 0}- \beta \log \int_{w} \exp \left(-\beta^{-1} K L(q(Z \mid w) \| p(Z))\right)
\end{aligned}
$$

The form for D_{β}^{*} follows from the fact that $\lim _{\beta \rightarrow 0} \beta \log \int_{w} \exp \left(\beta^{-1} f(w)\right)=\sup _{w} f(w)$.

Lemma 9. If $p(w \mid z)=r(w) q(z \mid w) / r_{z}$ and r_{z} is a constant, then the solution in Thm. 3 holds with

$$
\begin{aligned}
& s(w)=\log r(w)-\log r_{z} \\
& \quad+\mathbb{E}_{q_{w}(Z)}\left[\beta^{-1} \log p(z)+\left(1-\beta^{-1}\right) \log q(z \mid w)\right]
\end{aligned}
$$

Proof. First, without using the particular form for $p(w \mid z)$, we can write $s(w)$ as

$$
\begin{aligned}
& \log p(w)-\int_{z} q(z \mid w) \log \frac{q(z \mid w)}{p(z \mid w)} \\
& \quad-\left(\beta^{-1}-1\right) \int_{z} q(z \mid w) \log \frac{q(z \mid w)}{p(z)}
\end{aligned}
$$

Cancelling terms involving $q(z \mid w)$ in the numerators, this is

$$
\begin{aligned}
\log p(w)-\int_{z} q(z \mid w) \log & \frac{p(z)}{p(z \mid w)} \\
& -\beta^{-1} \int_{z} q(z \mid w) \log \frac{q(z \mid w)}{p(z)}
\end{aligned}
$$

The $\log p(w)$ can be absorbed into the first term to give, after some cancellation that

$$
s(w)=\int_{z} q(z \mid w) \log p(w \mid z)-\beta^{-1} K L(q(Z \mid w) \| p(Z))
$$

Now, using the assumed form for $p(w \mid z)$, we can immediately write that $s(w)$ is

$$
\int_{z} q(z \mid w) \log \frac{r(w) q(z \mid w)}{r_{z}}-\beta^{-1} \int_{z} q(z \mid w) \log \frac{q(z \mid w)}{p(z)}
$$

equivalent to the form stated.

Figure 5. Examples sampling from a two-dimensional mixture of three gaussians after running inference for 5×10^{5} iterations. The sampled weights w are pictured as ellipsoids at one standard deviation. Colored contours show the density $p(z)$. To avoid visual clutter, a smaller number (equally spaced) of samples are shown for smaller β.

Figure 6. Examples sampling from a two-dimensional "donut" distribution after running inference for 5×10^{5} iterations. The sampled weights w are pictured as ellipsoids at one standard deviation. Colored contours show the density $p(z)$. To avoid visual clutter, a smaller number (equally spaced) of samples are shown for smaller β.

$$
\beta=0.0 \quad \beta=0.2
$$

$$
\beta=0.4
$$

$$
\beta=0.6
$$

$\beta=0.8$
$\beta=1.0$
Stan

Figure 7. Inference for various values of β on ionosphere after 10^{4} (top row) 10^{5} (middle row) or 10^{6} (bottom row) iterations. After each iteration, one sample is drawn from $q_{w}(Z)$, and plots show the first two principal components (computed on samples from Stan). Each plot show samples resulting from the (constant) step-size ϵ that resulted in the minimum MMD for that β and number of iterations. The same sequence of random numbers is for all inference methods. (More results are in the appendix.)

Figure 8. Inference for various values of β on ala after 10^{4} (top row) 10^{5} (middle row) or 10^{6} (bottom row) iterations. In some of these plots, a "tail" is visible, reflecting the path into the high-density region from where $w=0$ where inference was initialized.

Figure 9. Inference for various values of β on australian after 10^{4} (top row) 10^{5} (middle row) or 10^{6} (bottom row) iterations.

Figure 10. Inference for various values of β on sonar after 10^{4} (top row) 10^{5} (middle row) or 10^{6} (bottom row) iterations.

