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Abstract
Policy evaluation is concerned with estimating
the value function that predicts long-term val-
ues of states under a given policy. It is a cru-
cial step in many reinforcement-learning algo-
rithms. In this paper, we focus on policy eval-
uation with linear function approximation over
a Þxeddataset. We Þrst transform the empiri-
cal policy evaluation problem into a (quadratic)
convex-concave saddle-point problem, and then
present a primal-dual batch gradient method, as
well as two stochastic variance reduction meth-
ods for solving the problem. These algorithms
scale linearly in both sample size and feature di-
mension. Moreover, they achievelinear conver-
gence even when the saddle-point problem has
only strong concavity in the dual variables butno
strong convexity in the primal variables. Numeri-
cal experiments on benchmark problems demon-
strate the effectiveness of our methods.

1 Introduction

Reinforcement learning (RL) is a powerful learning
paradigm for sequential decision making (see, e.g.,Bert-
sekas & Tsitsiklis, 1995; Sutton & Barto, 1998). An RL
agent interacts with the environment by repeatedly observ-
ing the current state, taking an action according to a certain
policy, receiving a reward signal and transitioning to a next
state. A policy speciÞes which action to take given the cur-
rent state.Policy evaluationestimates a value function that
predicts expected cumulative reward the agent would re-
ceive by following a Þxed policy starting at a certain state.
In addition to quantifying long-term values of states, which
can be of interest on its own, value functions also provide
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important information for the agent to optimize its policy.
For example,policy-iteration algorithms iterate between
policy-evaluation steps and policy-improvementsteps, un-
til a (near-)optimal policy is found (Bertsekas & Tsitsiklis,
1995; Lagoudakis & Parr, 2003). Therefore, estimating the
value function efÞciently and accurately is essential in RL.

There has been substantial work on policy evaluation, with
temporal-difference(TD) methods being perhaps the most
popular. These methods use the Bellman equation to boot-
strap the estimation process. Different cost functions are
formulated to exploit this idea, leading to different policy
evaluation algorithms; seeDann et al.(2014) for a compre-
hensive survey. In this paper, we study policy evaluation
by minimizing the mean squared projected Bellman error
(MSPBE) with linear approximation of the value function.
We focus on the batch setting where a Þxed, Þnite dataset
is given. This Þxed-data setting is not only important in it-
self (Lange et al., 2011), but also an important component
in other RL methods such asexperience replay(Lin, 1992).

The Þnite-data regime makes it possible to solve policy
evaluation more efÞciently with recently developed fast op-
timization methods based onstochastic variance reduction,
such as SVRG (Johnson & Zhang, 2013) and SAGA (De-
fazio et al., 2014). For minimizing strongly convex func-
tions with a Þnite-sum structure, such methods enjoy the
same low computational cost per iteration as the classi-
cal stochastic gradient method, but also achieve fast, linear
convergence rates (i.e., exponential decay of the optimality
gap in the objective). However, they cannot be applied di-
rectly to minimize the MSPBE, whose objective does not
have the Þnite-sum structure. In this paper, we overcome
this obstacle by transforming the empirical MSPBE prob-
lem to anequivalentconvex-concave saddle-point problem
that possesses the desired Þnite-sum structure.

In the saddle-point problem, we consider the model param-
eters as the primal variables, which are coupled with the
dual variables through a bilinear term. Moreover, without
an! 2-regularization on the model parameters, the objective
is only strongly concave in the dual variables, butnot in the
primal variables. We propose a primal-dual batch gradient
method, as well as two stochastic variance-reduction meth-
ods based on SVRG and SAGA, respectively. Surprisingly,
we show that when the coupling matrix is full rank, these
algorithms achieve linear convergence in both the primal
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and dual spaces, despite the lack of strong convexity of the
objective in the primal variables. Our results also extend to
off-policylearning and TD witheligibility traces(Sutton &
Barto, 1998; Precup et al., 2001).

We note thatBalamurugan & Bach(2016) have extended
both SVRG and SAGA to solve convex-concave saddle-
point problems with linear-convergence guarantees. The
main difference between our results and theirs are

¥ Linear convergence inBalamurugan & Bach(2016)
relies on the assumption that the objective is strongly
convex in the primal variables and strongly concave
in the dual. Our results show, somewhat surprisingly,
that only one of them is necessary if the primal-dual
coupling is bilinear and the coupling matrix is full
rank. In fact, we are not aware of similar previous re-
sults even for the primal-dual batch gradient method,
which we show in this paper.

¥ Even if a strongly convex regularization on the primal
variables is introduced to the MSPBE objective, the
algorithms inBalamurugan & Bach(2016) cannot be
applied efÞciently. Their algorithms require that the
proximal mappings of the strongly convex and con-
cave regularization functions be computed efÞciently.
In our saddle-point formulation, the strong concavity
of the dual variables comes from a quadratic func-
tion deÞned by the feature covariance matrix, which
cannot be inverted efÞciently and makes the proximal
mapping costly to compute. Instead, our algorithms
only use its (stochastic) gradients and hence are much
more efÞcient.

We compare various gradient based algorithms on a Ran-
dom MDP and Mountain Car data sets. The experiments
demonstrate the effectiveness of our proposed methods.

2 Preliminaries

We consider aMarkov Decision Process(MDP) (Puterman,
2005) described by(S, A , Pa

ss! , R , " ), whereS is the set of
states,A the set of actions,Pa

ss! the transition probability
from states to states0 after taking actiona, R (s, a) the re-
ward received after taking actiona in states, and" ! [0, 1)
a discount factor. The goal of an agent is to Þnd an action-
selection policy#, so that the long-term reward under this
policy is maximized. For ease of exposition, we assumeS
is Þnite, but none of our results relies on this assumption.

A key step in many algorithms in RL is to estimate the
value function of a given policy#, deÞned asV ! (s) ,
E[

! 1
t =0 " t R (st , at )|s0 = s, #]. Let V ! denote a vector

constructed by stacking the values ofV ! (1), . . . , V ! (|S|)
on top of each other. ThenV ! is the unique Þxed point of
theBellman operatorT ! :

V ! = T ! V ! , R! + "P ! V ! , (1)

whereR! is the expected reward vector under policy#,
deÞned elementwise asR! (s) = E! (a|s) R(s, a); andP!

is the transition matrix induced by the policy applying#,
deÞned entrywise asP! (s, s0) = E! (a|s) Pa

ss! .

2.1 Mean squared projected Bellman error (MSPBE)

One approach to scale up when the state space size|S| is
large or inÞnite is to use a linear approximation forV ! .
Formally, we use a feature map$ : S " Rd and ap-
proximate the value function by"V ! (s) = $(s)T %, where
%! Rd is the model parameter to be estimated. Here, we
want to Þnd%that minimizes the mean squared projected
Bellman error, or MSPBE:

MSPBE(%) , 1
2

#"V ! $ ! T ! "V ! #2
! , (2)

where" is a diagonal matrix with diagonal elements be-
ing the stationary distribution overS induced by the pol-
icy #, and ! is the weighted projection matrix onto the
linear space spanned by$(1), . . . , $(|S|), that is,

! = #(# T "#) �1# T " (3)

where# , [$T (1), . . . , $T (|S|)] is the matrix obtained by
stacking the feature vectors row by row. Substituting (3)
and (1) into (2), we obtain (see, e.g.,Dann et al., 2014)

MSPBE(%) =
1
2

## T "( "V ! $ T ! "V ! )#2
(" T !") " 1 .

We can further rewrite the above expression for MSPBE as
a standard weighted least-squares problem:

MSPBE(%) =
1
2

#A%$ b#2
C " 1 ,

with properly deÞnedA, b and C, described as follows.
Suppose the MDP under policy# settles at its stationary
distribution and generates an inÞnite transition sequence
{ (st , at , r t , st +1 )} 1

t =1 , wherest is the current state,at is
the action,r t is the reward, andst +1 is the next state. Then
with the deÞnitions$t , $(st ) and$0

t , $(st +1 ), we have

A = E[$t ($t $ "$ 0
t )

T ], b = E[$t r t ], C = E[$t $T
t ], (4)

whereE[á] are with respect to the stationary distribution.
Many TD solutions converge to a minimizer of MSPBE in
the limit (Tsitsiklis & Van Roy, 1997; Dann et al., 2014).

2.2 Empirical MSPBE

In practice, quantities in (4) are often unknown, and we
only have access to a Þnite dataset withn transitionsD =
{ (st , at , r t , st +1 )} n

t =1 . By replacing the unknown statistics
with their Þnite-sample estimates, we obtain the Empirical
MSPBE, or EM-MSPBE. SpeciÞcally, let

"A , 1
n

n#

t =1

At , "b, 1
n

n#

t =1

bt , "C , 1
n

n#

t =1

Ct , (5)
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where fort = 1 , . . . , n,

At , $t ($t $ "$ 0
t )

T , bt , r t $t , Ct , $t $T
t . (6)

EM-MSPBE with anoptional! 2-regularization is given by:

EM-MSPBE(%) =
1
2

# "A%$ "b#2
bC " 1 +

&
2

#%#2, (7)

where&% 0 is a regularization factor.

Observe that (7) is a (regularized) weighted least squares
problem. Assuming"C is invertible, its optimal solution is

%" = ( "A> "C�1 "A + &I)�1 "A> "C�1"b. (8)

Computing%" directly requiresO(nd2) operations to form
the matrices"A, "b and "C, and thenO(d3) operations to
complete the calculation. This method, known as least-
squares temporal difference or LSTD (Bradtke & Barto,
1996; Boyan, 2002), can be very expensive whenn and
d are large. One can also skip forming the matrices ex-
plicitly and compute%" usingn recusive rank-one updates
(Nedi«c & Bertsekas, 2003). Since each rank-one update
costsO(d2), the total cost isO(nd2).

In the sequel, we develop efÞcient algorithms to minimize
EM-MSPBE by using stochastic variance reduction meth-
ods, which samples one($t , $0

t ) per update without pre-
computing"A, "band "C. These algorithms not only maintain
a low O(d) per-iteration computation cost, but also attain
fast linear convergence rates with alog(1/' ) dependence
on the desired accuracy' .

3 Saddle-Point Formulation of EM-MSPBE

Our algorithms (in Section5) are based on the stochastic
variance reduction techniques developed for minimizing a
Þnite sum of convex functions, more speciÞcally, SVRG
(Johnson & Zhang, 2013) and SAGA (Defazio et al., 2014).
They deal with problems of the form

min
x 2Rd

$
f (x) , 1

n

n#

i =1

f i (x)
%

, (9)

where eachf i is convex. We immediately notice that the
EM-MSPBE in (7) cannotbe put into such a form, even
though the matrices"A, "b and "C have the Þnite-sum struc-
ture given in (5). Thus, extending variance reduction tech-
niques to EM-MSPBE minimization is not straightforward.

Nevertheless, we will show that the minimizing the EM-
MSPBE is equivalent to solving a convex-concave saddle-
point problem which actually possesses the desired Þnite-
sum structure. To proceed, we resort to the machinery of
conjugate functions(e.g. Rockafellar, 1970, Section 12).
For a functionf : Rd " R, its conjugate functionf " :

Rd " R is deÞned asf " (y) , supx (yT x $ f (x)) . Note
that the conjugate function of12 #x#2

bC
is 1

2 #y#2
bC " 1 , i.e.,

1
2

#y#2
bC " 1 = max

x

&
yT x $

1
2

#x#2
bC

'
.

With this relation, we can rewrite EM-MSPBE in (7) as

max
w

&
wT ("b$ "A%) $

1
2

#w#2
bC

'
+

&
2

#%#2 ,

so that minimizing EM-MSPBE is equivalent to solving

min
#2Rd

max
w2Rd

$
L (%, w) =

1
n

n#

t =1

L t (%, w)
%

, (10)

where the Lagrangian, deÞned as

L (%, w) , &
2

#%#2 $ wT "A%$
&1

2
#w#2

bC $ wT "b
'

, (11)

may be decomposed using (5), with

L t (%, w) , &
2

#%#2 $ wT At %$
&1

2
#w#2

Ct
$ wT bt

'
.

Therefore, minimizing the EM-MSPBE is equivalent to
solving the saddle-point problem (10), which is convex in
the primal variable%and concave in the dual variablew.
Moreover, it has a Þnite-sum structure similar to (9).

Liu et al. (2015) andValcarcel Macua et al.(2015) inde-
pendently showed that the GTD2 algorithm (Sutton et al.,
2009b) is indeed astochastic gradientmethod for solving
the saddle-point problem (10), although they obtained the
saddle-point formulation with different derivations. More
recently,Dai et al.(2016) used the conjugate function ap-
proach to obtain saddle-point formulations for a more gen-
eral class of problems and derived primal-dual stochastic
gradient algorithms for solving them. However, these al-
gorithms have sublinear convergence rates, which leaves
much room to improve when applied to problems with Þ-
nite datasets. Recently,Lian et al.(2017) developed SVRG
methods for a general Þnite-sum composition optimization
that achieve linear convergence rate. Different from our
methods, their stochastic gradients are biased and they have
worse dependency on the condition numbers (( 3 and( 4).

The fast linear convergence of our algorithms presented in
Sections4 and5 requires the following assumption:

Assumption 1. "A has full rank, "C is strictly positive deÞ-
nite, and the feature vector$t is uniformly bounded.

Under mild regularity conditions (e.g.,Wasserman, 2013,
Chapter 5), we have"A and "C converge in probability toA
andC deÞned in (4), respectively. Thus, if the true statistics
A is non-singular andC is positive deÞnite, and we have
enough training samples, these assumptions are usually sat-
isÞed. They have been widely used in previous works on
gradient-based algorithms (e.g.,Sutton et al., 2009a;b).
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A direct consequence of Assumption1 is that%" in (8) is
the unique minimizer of the EM-MSPBE in (7), even with-
out any strongly convex regularization on%(i.e., even if
& = 0 ). However, if& = 0 , then the LagrangianL (%, w) is
only strongly concave inw, but not strongly convex in%. In
this case, we will show that non-singularity of the coupling
matrix "A can ÒpassÓ an implicit strong convexity on%,
which is exploited by our algorithms to obtain linear con-
vergence in both the primal and dual spaces.

4 A Primal-Dual Batch Gradient Method

Before diving into the stochastic variance reduction algo-
rithms, we Þrst present Algorithm1, which is a primal-dual
batch gradient (PDBG) algorithm for solving the saddle-
point problem (10). In Step 2, the vectorB (%, w) is ob-
tained by stacking the primal and negative dual gradients:

B (%, w) ,
(

& #L(%, w)
$& w L(%, w)

)
=

*
&%$ "AT w

"A%$ "b+ "Cw

+

. (12)

Some notation is needed in order to characterize the con-
vergence rate of Algorithm1. For any symmetric and pos-
itive deÞnite matrixS, let ) max (S) and) min (S) denote its
maximum and minimum eigenvalues respectively, and de-
Þne its condition number to be( (S) , ) max (S)/) min (S).
We also deÞneL $ andµ$ for any&% 0:

L $ , ) max (&I + "AT "C�1 "A), (13)

µ$ , ) min (&I + "AT "C�1 "A). (14)

By Assumption1, we haveL $ % µ$ > 0. The following
theorem is proved in AppendixB.

Theorem 1. Suppose Assumption1 holds and let(%" , w" )
be the (unique) solution of(10). If the step sizes are chosen
as * # = 1

9L ! %( bC )
and * w = 8

9&max ( bC )
, then the number

of iterations of Algorithm1 to achieve#%$ %" #2 + #w $
w" #2 ' ' 2 is upper bounded by

O
,

(
&

&I + "AT "C�1 "A
'

á( ( "C) álog
&1

'

' -
. (15)

We assigned speciÞc values to the step sizes* # and * w

for clarity. In general, we can use similar step sizes while
keeping their ratio roughly constant as' w

' "
( 8L !

&min ( bC )
; see

AppendicesA andB for more details. In practice, one can
use a parameter search on a small subset of data to Þnd
reasonable step sizes. It is an interesting open problem how
to automatically select and adjust step sizes.

Note that the linear rate is determined by two parts: (i)
the strongly convex regularization parameter&, and (ii) the
positive deÞniteness of"AT "C�1 "A. The second part could
be interpreted as transferring strong concavity in dual vari-
ables via the full-rank bi-linear coupling matrix"A. For

Algorithm 1 PDBG for Policy Evaluation

Inputs: initial point (%, w), step sizes* # and * w , and
number of epochsM .

1: for i = 1 to M do

2:

(
%
w

)
)

(
%
w

)
$

(
* # 0
0 * w

)
B (%, w)

whereB (%, w) is computed according to (12).
3: end for

this reason, even if the saddle-point problem (10) has only
strong concavity in dual variables (when& = 0 ), the algo-
rithm still enjoys a linear convergence rate.

Moreover, even if& > 0, it will be inefÞcient to solve prob-
lem (10) using primal-dual algorithms based on proximal
mappings of the strongly convex and concave terms (e.g.,
Chambolle & Pock, 2011; Balamurugan & Bach, 2016).
The reason is that, in (10), the strong concavity of the La-
grangian with respect to the dual lies in the quadratic func-
tion (1/ 2)#w#bC , whose proximal mapping cannot be com-
puted efÞciently. In contrast, the PDBG algorithm only
needs its gradients.

If we pre-compute and store"A, "b and "C, which costs
O(nd2) operations, then computing the gradient operator
B (%, w) in (12) during each iteration of PDBG costsO(d2)
operations. Alternatively, if we do not want to store these
d * d matrices (especially ifd is large), then we can com-
puteB (%, w) as Þnite sums on the ßy. More speciÞcally,
B (%, w) = 1

n

! n
t =1 Bt (%, w), where for eacht = 1 , . . . , n,

Bt (%, w) =
(

&%$ At w
At %$ bt + Ct w

)
. (16)

SinceAt , bt and Ct are all rank-one matrices, as given
in (6), computing eachBt (%, w) only requiresO(d) op-
erations. Therefore, computingB (%, w) costsO(nd) oper-
ations as it averagesBt (%, w) overn samples.

5 Stochastic Variance Reduction Methods

If we replaceB (%, w) in Algorithm 1 (line 2) by the
stochastic gradientBt (%, w) in (16), then we recover the
GTD2 algorithm ofSutton et al.(2009b), applied to a Þxed
dataset, possibly withmultiple passes. It has a low per-
iteration cost but a slow,sublinearconvergence rate. In
this section, we provide two stochastic variance reduction
methods and show they achieve fast linear convergence.

5.1 SVRG for policy evaluation

Algorithm 2 is adapted from the stochastic variance reduc-
tion gradient (SVRG) method (Johnson & Zhang, 2013).
It uses two layers of loops and maintains two sets of pa-
rameters(÷%,÷w) and(%, w). In the outer loop, the algorithm
computes a full gradientB (÷%,÷w) using(÷%,÷w), which takes
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Algorithm 2 SVRG for Policy Evaluation

Inputs: initial point (%, w), step sizes{ * #, * w } , number of
outer iterationsM , and number of inner iterationsN .

1: for m = 1 to M do
2: Initialize (÷%,÷w) = ( %, w) and computeB (÷%,÷w).
3: for j = 1 to N do
4: Sample an indext j from { 1, á á á, n} and do
5: ComputeBt j (%, w) andBt j ( ÷%,÷w).

6:

(
%
w

)
)

(
%
w

)
$

(
* # 0
0 * w

)
Bt j (%, w,÷%,÷w)

whereBt j (%, w,÷%,÷w) is given in (17).
7: end for
8: end for

Algorithm 3 SAGA for Policy Evaluation

Inputs: initial point (%, w), step sizes* # and * w , and
number of iterationsM .

1: Compute eachgt = Bt (%, w) for t = 1 , . . . , n.
2: ComputeB = B (%, w) = 1

n

! n
t =1 gt .

3: for m = 1 to M do
4: Sample an indextm from { 1, á á á, n} .
5: Computeht m = Bt m (%, w).

6:

(
%
w

)
)

(
%
w

)
$

(
* # 0
0 * w

)
(B + ht m $ gt m ).

7: B ) B + 1
n (ht m $ gt m )

8: gt m ) ht m .
9: end for

O(nd) operations. Afterwards, the algorithm executes the
inner loop, which randomly samples an indext j and up-
dates(%, w) using variance-reduced stochastic gradient:

Bt j (%, w,÷%,÷w) = Bt j (%, w) + B (÷%,÷w) $ Bt j ( ÷%,÷w). (17)

Here,Bt j (%, w) contains the stochastic gradients at(%, w)
computed using the random sample with indext j , and
B (÷%,÷w) $ Bt j ( ÷%,÷w) is a term used to reduce the variance
in Bt j (%, w) while keepingBt j (%, w,÷%,÷w) an unbiased es-
timate ofB (%, w).

SinceB (÷%,÷w) is computed once during each iteration of
the outer loop with costO(nd) (as explained at the end of
Section4), and each of theN iterations of the inner loop
cost O(d) operations, the total computational cost of for
each outer loop isO(nd+ Nd). We will present the overall
complexity analysis of Algorithm2 in Section5.3.

5.2 SAGA for policy evaluation

The second stochastic variance reduction method for policy
evaluation is adapted from SAGA (Defazio et al., 2014);
see Algorithm3. It uses a single loop, and maintains a sin-
gle set of parameters(%, w). Algorithm 3 starts by Þrst

computing each component gradientsgt = Bt (%, w) at
the initial point, and also form their averageB =

! n
t gt .

At each iteration, the algorithm randomly picks an index
tm ! { 1, . . . , n} and computes the stochastic gradient
ht m = Bt m (%, w). Then, it updates(%, w) using a vari-
ance reduced stochastic gradient:B + ht m $ gt m , where
gt m is the previously computed stochastic gradient using
the tm -th sample (associated with certain past values of%
andw). Afterwards, it updates the batch gradient estimate
B asB + 1

n (ht m $ gt m ) and replacesgt m with ht m .

As Algorithm3 proceeds, different vectorsgt are computed
using different values of%andw (depending on when the
index t was sampled). So in general we need to store all
vectorsgt , for t = 1 , . . . , n, to facilitate individual updates,
which will cost additionalO(nd) storage. However, by ex-
ploiting the rank-one structure in (6), we only need to store
three scalars($t $ " 0

( )T %, ($t $ " 0
( )T w, and$T

t w, and
form gt m on the ßy usingO(d) computation. Overall, each
iteration of SAGA costsO(d) operations.

5.3 Theoretical analyses of SVRG and SAGA

In order to study the convergence properties of SVRG and
SAGA for policy evaluation, we introduce a smoothness
parameterL G based on the stochastic gradientsBt (%, w).
Let + = * w /* # be the ratio between the primal and dual
step-sizes, and deÞne a pair of weighted Euclidean norms

$( %, w) , (#%#2 + +�1#w#2)1/ 2,

$ ⇤(%, w) , (#%#2 + +#w#2)1/ 2.

Note that$( á, á) upper bounds the error in optimizing%:
$( %$ %" , w $ w" ) % #%$ %" #. Therefore, any bound on
$( %$ %" , w $ w" ) applies automatically to#%$ %" #.

Next, we deÞne the parameterL G through its square:

L 2
G , sup

#1 ,w 1 ,#2 ,w 2

1
n

! n
t =1 $ ⇤.

Bt (%1, w1) $ Bt (%2, w2)
/ 2

$( %1 $ %2, w1 $ w2)2 .

This deÞnition is similar to the smoothness constantøL used
in Balamurugan & Bach(2016) except that we used the
step-size ratio+ rather than the strong convexity and con-
cavity parameters of the Lagrangian to deÞne$ and$ ⇤.1

Substituting the deÞnition ofBt (%, w) in (16), we have

L 2
G =

0
0
0
0

1
n

n#

t =1

GT
t Gt

0
0
0
0, whereGt ,

(
&I $

+
+AT

t+
+At +Ct

)
.

(18)

With the above deÞnitions, we characterize the conver-
gence of$( %m $ %" , wm $ w" ), where(%" , w" ) is the so-
lution of (10), and(%m , wm ) is the output of the algorithms

1Since our saddle-point problem is not necessarily strongly
convex in! (when" = 0), we could not deÞne⌦ and⌦⇤ in the
same way asBalamurugan & Bach(2016).
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after them-th iteration. For SVRG, it is them-th outer
iteration in Algorithm2. The following two theorems are
proved in AppendicesC andD, respectively.

Theorem 2 (Convergence rate of SVRG). Suppose As-
sumption1 holds. If we choose* # = µ !

48%( bC )L 2
G

, * w =

8L !

&min ( bC )
* #, N = 51%2( bC )L 2

G
µ 2

!
, whereL $ andµ$ are deÞned

in (13) and(14), then

E
1
$( %m $ %" , wm $ w" )22

'
&4

5

' m
$( %0 $ %" , w0 $ w" )2.

The overall computational cost for reachingE
1
$( %m $

%" , wm $ w" )
2

' ' is upper bounded by

O
,,

n +
( ( "C)L 2

G

) 2
min (&I + "AT "C�1 "A)

-
d log

&1
'

' -
. (19)

Theorem 3 (Convergence rate of SAGA). Suppose As-
sumption1 holds. If we choose* # = µ !

3(8%2 ( bC )L 2
G + nµ 2

! )
and* w = 8L !

&min ( bC )
* # in Algorithm3, then

E
1
$( %m $ %" , wm $ w" )22

' 2(1$ &)m $( %0$ %" , w0$ w" )2,

where& %
µ 2

!

9(8%2 ( bC )L 2
G + nµ 2

! ) . The total cost to achieve

E
1
$( %m $ %" , wm $ w" )

2
' ' has the same bound in(19).

Similar to our PDBG results in (15), both the SVRG and
SAGA algorithms for policy evaluation enjoy linear con-
vergence even if there is no strong convexity in the saddle-
point problem (10) (i.e., when&= 0 ). This is mainly due to
the positive deÞniteness of"AT "C�1 "A when "C is positive-
deÞnite and"A is full-rank. In contrast, the linear conver-
gence of SVRG and SAGA inBalamurugan & Bach(2016)
requires the Lagrangian to be both strongly convex in%and
strongly concave inw.

Moreover, in the policy evaluation problem, the strong con-
cavity with respect to the dual variablew comes from a
weighted quadratic norm(1/ 2)#w#bC , which does not ad-
mit an efÞcient proximal mapping as required by the prox-
imal versions of SVRG and SAGA inBalamurugan &
Bach(2016). Our algorithms only require computing the
stochastic gradients of this function, which is easy to do
due to its Þnite sum structure.

Balamurugan & Bach(2016) also proposed accelerated
variants of SVRG and SAGA using the ÒcatalystÓ frame-
work of Lin et al. (2015). Such extensions can be done
similarly for the three algorithms presented in this paper,
and we omit the details due to space limit.

6 Comparison of Different Algorithms

This section compares the computation complexities of
several representative policy-evaluation algorithms that
minimize EM-MSPBE, as summarized in Table1.

Table 1. Complexity of different policy evaluation algorithms. In
the table,d is feature dimension,n is dataset size,# , #("I +

!AT !C�1 !A); #G , L G /$
min

("I +

!AT !C�1 !A); and#0 is a con-
dition number related to GTD2.

Algorithm Total Complexity

SVRG / SAGA O
"

nd ·
"
1 +

! (

bC )! 2
G

n

#
· log

$
1/%

%#

GTD2 O (d · #0/%)

PDBG-(I) O
"

nd · #( !C)# · log(1/%)
#

PDBG-(II) O
"

nd2

+ d2#( !C)# · log(1/%)
#

LSTD O
$
nd2

%
or O

$
nd2

+ d3

%

The upper part of the table lists algorithms whose complex-
ity is linear in feature dimensiond, including the two new
algorithms presented in the previous section. We can also
apply GTD2 to a Þnite dataset with samples drawn uni-
formly at random with replacement. It costsO(d) per iter-
ation, but has a sublinear convergence rate regarding' . In
practice, people may choose' = $(1 /n ) for generaliza-
tion reasons (see, e.g.,Lazaric et al.(2010)), leading to an
O(( 0nd) overall complexity for GTD2, where( 0 is a condi-
tion number related to the algorithm. However, as veriÞed
by our experiments, the bounds in the table show that our
SVRG/SAGA-based algorithms are much faster as their ef-
fective condition numbers vanish whenn becomes large.
TDC has a similar complexity to GTD2.

In the table, we list two different implementations of
PDBG. PDBG-(I) computes the gradients by averaging the
stochastic gradients over the entire dataset at each iteration,
which costsO(nd) operations; see discussions at the end of
Section4. PDBG-(II) Þrst pre-computes the matrices"A, "b
and "C usingO(nd2) operations, then computes the batch
gradient at each iteration withO(d2) operations. Ifd is
very large (e.g., whend , n), then PDBG-(I) would have
an advantage over PDBG-(II). The lower part of the table
also includes LSTD, which hasO(nd2) complexity if rank-
one updates are used.

SVRG and SAGA are more efÞcient than the other al-
gorithms, when eitherd or n is very large. In particu-
lar, they have a lower complexity than LSTD whend >

(1 + %( bC )%2
G

n ) log
&

1
)

'
, This condition is easy to satisfy,

whenn is very large. On the other hand, SVRG and SAGA
algorithms are more efÞcient than PDBG-(I) ifn is large,
sayn > ( ( "C)( 2

G

3.
( ( "C)( $ 1

/
, where( and( G are de-

scribed in the caption of Table1.

There are other algorithms whose complexity scales
linearly with n and d, including iLSTD (Geramifard
et al., 2007), and TDC (Sutton et al., 2009b), fLSTD-
SA (Prashanth et al., 2014), and the more recent algorithms
of Wang et al.(2016) andDai et al.(2016). However, their
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convergence is slow: the number of iterations required to
reach a desired accuracy' grows as1/' or worse. The
CTD algorithm (Korda & Prashanth, 2015) uses a similar
idea as SVRG to reduce variance in TD updates. This al-
gorithm is shown to have a similar linear convergence rate
in anonlinesetting where the data stream is generated by a
Markov process withÞnitestates andexponentialmixing.
The method solves for a Þxed-point solution by stochas-
tic approximation. As a result, they can be non-convergent
in off-policy learning, while our algorithms remain stable
(c.f., Section7.1).

7 Extensions

It is possible to extend our approach to accelerate optimiza-
tion of other objectives such as MSBE and NEU (Dann
et al., 2014). In this section, we brießy describe two ex-
tensions of the algorithms developed earlier.

7.1 Off-policy learning

In some cases, we may want to estimate the value function
of a policy # from a set of dataD generated by a differ-
ent ÒbehaviorÓ policy#b. This is calledoff-policy learn-
ing (Sutton & Barto, 1998, Chapter 8).

In the off-policy case, samples are generated from the dis-
tribution induced by the behavior policy#b, not the the
target policy #. While such a mismatch often causes
stochastic-approximation-based methods to diverge (Tsit-
siklis & Van Roy, 1997), our gradient-based algorithms re-
main convergent with the same (fast) convergence rate.

Consider the RL framework outlined in Section2. For each
state-action pair(st , at ) such that#b(at |st ) > 0, we deÞne
the importance ratio,&t , #(at |st )/# b(at |st ). The EM-
MSPBE for off-policy learning has the same expression as
in (7) except thatAt , bt andCt are modiÞed by the weight
factor &t , as listed in Table2; see alsoLiu et al. (2015,
Eqn 6) for a related discussion.) Algorithms1Ð3 remain the
same for the off-policy case afterAt , bt andCt are modiÞed
correspondingly.

7.2 Learning with eligibility traces

Eligibility traces are a useful technique to trade off bias and
variance in TD learning (Singh & Sutton, 1996; Kearns &
Singh, 2000). When they are used, we can pre-computezt

in Table2 before running our new algorithms. Note that
EM-MSPBE with eligibility traces has the same form of
(7), with At , bt andCt deÞned differently according to the
last row of Table2. At the m-th step of the learning pro-
cess, the algorithm randomly sampleszt m , $t m , $0

t m
and

r t m from the Þxed dataset and computes the corresponding
stochastic gradients, where the indextm is uniformly dis-
tributed over{ 1, . . . , n} and are independent for different
values ofm. Algorithms 1Ð3 immediately work for this
case, enjoying a similar linear convergence rate and a com-

Table 2. Expressions ofAt , bt andCt for different cases of pol-
icy evaluation. Here," t , &(at |st )/& b(at |st ); and zt ,& t

i =1

($' )t �i ( i , where$ � 0 is a given parameter.

At bt Ct

On-policy ( t (( t � '( 0
t )

> r t ( t ( t ( >
t

Off-policy " t ( t (( t � '( 0
t )

> " t r t ( t ( t ( >
t

Eligibility trace zt (( t � '( 0
t )

> r t zt ( t ( >
t

putation complexity linear inn andd. We need additional
O(nd) operations to pre-computezt recursively and an ad-
ditionalO(nd) storage forzt . However, it does not change
the order of the total complexity for SVRG/SAGA.

8 Experiments

In this section, we compare the following algorithms on
two benchmark problems: (i)PDBG (Algorithm 1); (ii)
GTD2 with samples drawn randomly with replacement
from a dataset; (iii)TD: the fLSTD-SA algorithm of
Prashanth et al.(2014); (iv) SVRG (Algorithm 2); and
(v) SAGA (Algorithm 3). Note that when& > 0, the
TD solution and EM-MSPBE minimizer differ, so we do
not includeTD. For step size tuning,* # is chosen from4

10�1, 10�2, . . . , 10�6
5

1
L ! %( bC )

and * w is chosen from
4

1, 10�1, 10�2
5

1
&max ( bC )

. We only report the results of

each algorithm which correspond to the best-tuned step
sizes; for SVRG we chooseN = 2n.

In the Þrst task, we consider a randomly generated MDP
with 400states and10actions (Dann et al., 2014). The tran-
sition probabilities are deÞned asP (s0|a, s) - pa

ss! +10�5,
wherepa

ss! . U[0, 1]. The data-generating policy and start
distribution were generated in a similar way. Each state
is represented by a201-dimensional feature vector, where
200 of the features were sampled from a uniform distri-
bution, and the last feature was constant one. We chose
" = 0 .95. Fig. 1 shows the performance of various al-
gorithms forn = 20000. First, notice that the stochastic
variance methods converge much faster than others. In fact,
our proposed methods achieve linear convergence. Second,
as we increase&, the performances of PDBG, SVRG and
SAGA improve signiÞcantly due to better conditioning, as
predicted by our theoretical results.

Next, we test these algorithms on Mountain Car (Sutton &
Barto, 1998, Chapter 8). To collect the dataset, we Þrst ran
Sarsa withd = 300 CMAC features to obtain a good policy.
Then, we ran this policy to collect trajectories that com-
prise the dataset. Figs.2 and3 show our proposed stochas-
tic variance reduction methods dominate other Þrst-order
methods. Moreover, with better conditioning (through a
larger&), PDBG, SVRG and SAGA achieve faster conver-
gence rate. Finally, as we increase sample sizen, SVRG
and SAGA converge faster. This simulation veriÞes our
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Figure 1. Random MDP withs = 400, d = 200, andn = 20000.
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Figure 2. Mountain Car Data Set withd = 300 andn = 5000.
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Figure 3. Mountain Car Data Set withd = 300 andn = 20000.

theoretical Þnding in Table1 that SVRG/SAGA need fewer
epochs for largen.

9 Conclusions

In this paper, we reformulated the EM-MSPBE minimiza-
tion problem in policy evaluation into an empirical saddle-
point problem, and developed and analyzed a batch gradi-
ent method and two Þrst-order stochastic variance reduc-
tion methods to solve the problem. An important result we
obtained is that even when the reformulated saddle-point
problem lacks strong convexity in primal variables and has
only strong concavity in dual variables, the proposed algo-
rithms are still able to achieve a linear convergence rate.
We are not aware of any similar results for primal-dual

batch gradient methods or stochastic variance reduction
methods. Furthermore, we showed that when both the fea-
ture dimensiond and the number of samplesn are large, the
developed stochastic variance reduction methods are more
efÞcient than any other gradient-based methods which are
convergent in off-policy settings.

This work leads to several interesting directions for re-
search. First, we believe it is important to extend the
stochastic variance reduction methods to nonlinear approx-
imation paradigms (Bhatnagar et al., 2009), especially with
deep neural networks. Moreover, it remains an important
open problem how to apply stochastic variance reduction
techniques to policy optimization.
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