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Abstract important information for the agent to optimize its policy.
Policy evaluation is concerned with estimating For example,policy-iteration algorithms iterate between
the value function that predicts long-term val- policy-evaluation steps and poliggprovemensteps, un-
ues of states under a given policy. It is a cru- til a (near-)optimal policy is foundBertsekas & Tsitsiklis
cial step in many reinforcement-learning algo- 1995 Lagoudakis & Parr2003. Therefore, estimating the
rithms. In this paper, we focus on policy eval- value function efbciently and accurately is essential in RL.
uation with linear function approximation over There has been substantial work on policy evaluation, with
a bxeddataset. We prst transform the empiri- temporal-differencéTD) methods being perhaps the most
cal policy evaluation problem into a (quadratic) popular. These methods use the Bellman equation to boot-

convex-concave saddle-point problem, and then  sirap the estimation process. Different cost functions are
present a primal-dual batch gradient method, as  formulated to exploit this idea, leading to different policy

well as two stochastic variance reduction meth- evaluation algorithms; s€@ann et al(2014) for a compre-

ods for solving the problem. These algorithms  hensive survey. In this paper, we study policy evaluation
scale linearly in both sample size and feature di- by minimizing the mean squared projected Bellman error
mension. Moreover, they achielinear conver- (MSPBE) with linear approximation of the value function.
gence even when the saddle-point problem has e focus on the batch setting where a bxed, bnite dataset
only strong concavity in the dual variables Inat is given. This Pxed-data setting is not only important in it-
strong convexity in the primal variables. Numeri- self (Lange et al.2011), but also an important component
cal experiments on benchmark problems demon- i other RL methods such agperience replagLin, 1992.

strate the effectiveness of our methods. ) . . . .
The Pbnite-data regime makes it possible to solve policy

evaluation more efpciently with recently developed fast op-
1 Introduction timization methods based sitochastic variance reduction
. . ) . such as SVRGJphnson & Zhang2013 and SAGA De-
Relnfqrcement Iearnl_ng (R!‘)_ IS a powerful learning fazio et al, 2014. For minimizing strongly convex func-
paradigm for sequential decision making (see, @8Il yjons with a pnite-sum structure, such methods enjoy the
sekas .& TS'tS'k“S, 1995 Sut_ton & Bartg 1999. AnRL e o computational cost per iteration as the classi-
agent interacts with the environment by repeatedly 0bservy; o chastic gradient method, but also achieve fast, linear

ing the current state, taking an action according to a Certai'&onvergence rates (i.e., exponential decay of the optimality

policy, receiving a reward signal and transitioning to a nextgap in the objective). However, they cannot be applied di-

state. A policy specibes which action to take given the Cur'rectly to minimize the MSPBE, whose objective does not

rent state Policy evaluatiorestimates a value function that have the Pnite-sum structure. In this paper, we overcome
prgdicts expec_ted cumulativg rewarc_i the agent WOUld "®this obstacle by transforming the empirical MSPBE prob-
ceive by following a bxed policy starting at a certain state. .o m to anequivaleniconvex-concave saddle-point problem
In addition to quantifying long-term values of states, WhiChthat possesses the desired bnite-sum structure

can be of interest on its own, value functions also provide ) )

- In the saddle-point problem, we consider the model param-
~ 'Machine Learning Department, Carnegie Mellon Univer- eters as the primal variables, which are coupled with the
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zho@microsoft.com. method, as well as two stochastic variance-reduction meth-
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and dual spaces, despite the lack of strong convexity of thavhereR' is the expected reward vector under polity
objective in the primal variables. Our results also extend talebPned elementwise & (s) = E, ajs)R (s, a); andP'
off-policylearning and TD witteligibility traces(Sutton & is the transition matrix induced by the policy applyitg
Bartg, 1998 Precup et a).2007). debned entrywise @' (s,s" = E; (a)5)P&:.

We note thaBalamurugan & Bactf2016 have extended 5 1 Mean squared projected Bellman error (MSPBE)
both SVRG and SAGA to solve convex-concave saddle-

point problems with linear-convergence guarantees. Th&N€ approach to scale up when the state spaceS|ae

main difference between our results and theirs are large or inbnite is to use a linear approximation o
. , Formally, we use a feature ma&p : S " RY and ap-
¥ Linear convergence iBalamurugan & Bact{2016 proximate the value function by' (s) = $(s)™ % where

relies on the ass_umption_ that the objective is stronglyo, Rrd is the model parameter to be estimated. Here, we
convex in the primal variables and strongly concavey,ant to pndtthat minimizes the mean squared projected
in the dual. Our results show, somewhat surprlsmgIy,Be”mam error, or MSPBE:

that only one of them is necessary if the primal-dual

coupling is bilinear and the coupling matrix is full MSPBE(% 2 }#\"/! $ 1TV 2, 2)
rank. In fact, we are not aware of similar previous re- 2 '

sults even for the primal-dual batch gradient methodwhere" is a diagonal matrix with diagonal elements be-
which we show in this paper. ing the stationary distribution oved induced by the pol-

¥ Even if a strongly convex regularization on the primaljcy #, and! is the weighted projection matrix onto the
variables is introduced to the MSPBE objective, thelinear space spanned By1), ..., $(|S|), that s,
algorithms inBalamurugan & Baclf2016 cannot be
applied efbciently. Their algorithms require that the L=#(# ) T 3)

proximal mappings of the strongly convex and Con-where# 2 [$7(1),....$7 (IS])] is the matrix obtained by

cave regularization functions be computed efbciently. . -
g P ystackmg the feature vectors row by row. SubstitutiBy (

In our saddle-point formulation, the strong concavity > i
of the dual variables comes from a quadratic func-and @) into (2), we obtain (see, e.gdann et al, 2014

tion debned by the feature covariance matrix, which I SR L
cannot be inverted efbciently and makes the proximal MSPBH = E# (VsTV )#%‘ Ty T

mappmg_costly to co_mpute.. Instead, our algorithm e can further rewrite the above expression for MSPBE as
only use its (stochastic) gradients and hence are muc

. ndard weighted | - r roblem:
more efbcient. standard weighted least-squares proble

We compare various gradient based algorithms on a Ran- MSPBH% = }#A%$ b#% 1,

dom MDP and Mountain Car data sets. The experiments 2

demonstrate the effectiveness of our proposed methods. with properly debPned\, b and C, described as follows.
Suppose the MDP under poligy settles at its stationary

2 Preliminaries distribution and generates an inPnite transition sequence

{(st, @, rt, St+1 )}fjl , wheres; is the current stateg; is

the actiony; is the reward, and;+1 is the next state. Then

with the debnition$; £ $(s;) and${’2 $(s+1 ), we have

We consider darkov Decision ProcegdDP) (Puterman
2009 described byS, A, P%4,:, R, "), whereS is the set of
states A the set of actionsPZ, the transition probability
from states to stateszbﬁertaking_actiora, R (s, a) the re- A=E$($$"$)"] b= E[$:ri], C= E[$:$/] 4)
ward received after taking acti@nn states, and” ! [0, 1)

a discount factor. The goal of an agent is to bnd an actionwhereE[§ are with respect to the stationary distribution.
selection policy#, so that the long-term reward under this Many TD solutions converge to a minimizer of MSPBE in
policy is maximized. For ease of exposition, we ass@ne the limit (Tsitsiklis & Van Roy, 1997 Dann et al.2014).

is Pnite, but none of our results relies on this assumption. 2.2 Empirical MSPBE

In practice, quantities in4} are often unknown, and we
only have access to a bnite dataset witttansitionsD =
{(st,a,re, St+1 )}{‘:1 . By replacing the unknown statistics
with their Pnite-sample estimates, we obtain the Empirical
MSPBE, or EM-MSPBE. Specibcally, let

v oo 1# L1 L. 1F
V! - T[v[ éRl + "P!V! , (1) :ﬁ At, b ﬁ h, C:ﬁ Ct, (5)
t=1 t=1 t=1

A key step in many algorithms in RL is to estimate the
vajue function of a given policy, dePned a¥/' (s) =
E[ o "'R(st,a)|so = s,#]. LetV' denote a vector
constructed by stacking the values\of (1),...,V' (|S])

on top of each other. Thew' is the unique bxed point of
the Bellman operatoiT" :

(>
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RY " Ris debned ag” (y) £ sup (y'x $ f(x)). Note
that the conjugate function éf#x#% is %#y#é e,
(6) & -
1 _ o1
E#y#é,. ,=max y'x$ Q#X#é .

wherefort =1,...,n,

A é$t($t $ "$5T, h £r$, G é$t$tT-

EM-MSPBE with aroptional! ,-regularization is given by:

1 . & With this relation, we can rewrite EM-MSPBE iif)(as
EM-MSPBE(% = E#A%$ b | + E#o,#z, 7) & 1 Ce
max w'(b$ A% $ é#w#g + E#o/#z,

where& % 0 is a regularization factor.
so that minimizing EM-MSPBE is equivalent to solving

$ 1 %
ma L(%,Ww= — L (%, ,
mE Lo L L6y

Observe that?) is a (regularized) weighted least squares
problem. Assuming: is invertible, its optimal solution is

% = (ATEFIA + &) LARE D,

min

min (10)

(8)

Computing% directly requiresO(nd?) operations to form
the matricesA, b and &, and thenO(d®) operations to
complete the calculation. This method, known as least-
squares temporal difference or LSTBrédtke & Bartg ~ may be decomposed using) (with

1996 Boyan 2002, can be very expensive whenand &4 '
d are large. One can also skip forming the matrices ex- f#w#%l $whh .
plicitly and compute usingn recusive rank-one updates 2
(Nedie & Bertsekas2003. Since each rank-one update Therefore, minimizing the EM-MSPBE is equivalent to
costsO(d?), the total cost i©(nd?). solving the saddle-point problem @), which is convex in
In the sequel, we develop efpcient algorithms to minimizethe primal _vanable%a_nd concave in the_dqal variabhe
EM-MSPBE by using stochastic variance reduction meth_Moreover, ithas a Pnite-sum structure similardj (
ods, which samples ong;, ${) per update without pre- Liu et al. (2015 and Valcarcel Macua et a2019 inde-
computingA, bandC. These algorithms not only maintain Pendently showed that the GTD2 algorithButon et al.
a low O(d) per-iteration computation cost, but also attain 20091 is indeed astochastic gradientnethod for solving

fast linear convergence rates witHag(1/' ) dependence the saddle-point probleni(), although they obtained the
on the desired accuracy saddle-point formulation with different derivations. More

recently,Dai et al. (2016 used the conjugate function ap-
3 Saddle-Point Formulation of EM-MSPBE

proach to obtain saddle-point formulations for a more gen-
. . . ._eral class of problems and derived primal-dual stochastic
Our algorithms .(m Secthﬁ) are based on the ;tqcha;ﬂc gradient algorithms for solving them. However, these al-
variance reduction techniques developed for minimizing agorithms have sublinear convergence rates, which leaves
Pnite sum of convex functions, more specibcally, SVRG,,ich room to improve when applied to problems with b-
(Johnson & Zhang;Ola and SAGA Defazio et al.2014). nite datasets. Recentljian et al.(2017) developed SVRG
They deal with problems of the form methods for a general Pnite-sum composition optimization
$ that achieve linear convergence rate. Different from our

where the Lagrangian, debned as
& & A
L (%, 2 E#%@ $ w' A%$ é#w#g $w'b, (11)

L(%, W £ 2‘#0/#2$ w' A %5

%

min  f(x) £ 1
x [RY ni:l

fi(x) . 9)

where eachi; is convex. We immediately notice that the

methods, their stochastic gradients are biased and they have
worse dependency on the condition numbérsand( #).

The fast linear convergence of our algorithms presented in

EM-MSPBE in (7) cannotbe put into such a form, even Sectionst and5 requires the following assumption:

though the matrice., band® have the Pnite-sum struc- Assumption L. A has full rank C is strictly positive deb-
ture given in B). Thus, extending variance reduction tech- Nite, and the feature vect@: is uniformly bounded.

nigues to EM-MSPBE minimization is not straightforward. Under mild regularity conditions (e.gWasserman2013
Nevertheless, we will show that the minimizing the EM- Chapter 5), we havA and€ converge in probability té\
MSPBE is equivalent to solving a convex-concave saddleandC debned in4), respectively. Thus, if the true statistics
point problem which actually possesses the desired PnitéA is non-singular andC is positive debnite, and we have
sum structure. To proceed, we resort to the machinery oénough training samples, these assumptions are usually sat-
conjugate functionge.g. Rockafellar 197Q Section 12). isbed. They have been widely used in previous works on
For a functionf : RY " R, its conjugate functiori " : gradient-based algorithms (e.§ytton et al.20093b).
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A direct consequence of Assumptidris that% in (8) is  Algorithm 1 PDBG for Policy Evaluation

the unique minimizer of the EM-MSPBE i), even with- Inputs: initial point (%,Vy, step sizes» and *,, and
out any strongly convex regularization éf(i.e., even if number of epochM .
&= 0). However, if&= 0, then the Lagrangiah (%, W is 1: fori =1t do
only strongly concave iw, but not strongly convex i In ( 02 ? % (,
this case, we V\/jll shovy that non-singularity of the coupling 2: W ) W $ g
matrix A can OpassO an implicit strong convexity%n
which is exploited by our algorithms to obtain linear con-
vergence in both the primal and dual spaces.

4 A Primal-Dual Batch Gradient Method this reason, even if the saddle-point probletfl) (has only

Before diving into the stochastic variance reduction algo-strong concavity in dual variables (whém 0), the algo-
rithms, we Prst present Algorithfiy which is a primal-dual  rithm still enjoys a linear convergence rate.

batch gradient (PDBG) algorithm for solving the saddle-
point problem {0). In Step 2, the vectoB (%, W} is ob-
tained by stacking the primal and negative dual gradients:

)
2 By

whereB (%, Wy is computed according td ).
3: end for

Moreover, even i& > 0, it will be inefbcient to solve prob-
lem (10) using primal-dual algorithms based on proximal
: ) . . mappings of the strongly convex and concave terms (e.g.,
N Chambolle & Pock2011 Balamurugan & Bach2016.
$§L#LL((()/°(Z>WW = Af;:fbﬁ év . (12)  The reason is that, inL(Q), the strong concavity of the La-
W ’ w grangian with respect to the dual lies in the quadratic func-

ry_on (1/ 2y#w#s, whose proximal mapping cannot be com-
puted efpciently. In contrast, the PDBG algorithm only
needs its gradients.

B (%,W =

Some notation is needed in order to characterize the co
vergence rate of Algorithrt. For any symmetric and pos-
itive dePnite matrixS, let) max (S) and) min (S) denote its
maximum and minimum eigenvalues respectively, and delf we pre-compute and stord, b and €, which costs
Pne its condition number to {€S) £ ) max (S)/) min (S). O(nd?) operations, then computing the gradient operator

We also debnk g andug for any& % O: B (%, Wy in (12) during each iteration of PDBG costy d?)
N “ T gk operations. Alternatively, if we do not want to store these
Ls =) max (& + A CT7A), (13)  d* dmatrices (especially ifl is large), then we can com-
Hs 2 ) min (&1 + ATETLA). (14) puteB(%,vl)r!asnDnlte sums on the RBy. More specibcally,
B(%,Ww= 5 . Bt(%,W,whereforeach=1,...,n,
By Assumptionl, we haveLg % pg > 0. The following ( )
theorem is proved in AppendR. O iy = &% Aw
Bt(/O,W Ato/l:$ h + CtW (16)

Theorem 1. Suppose Assumptidnholds and le{%, w-)
be the (unique) solution dfL0). If the step sizes are chosen gince A, b and C; are all rank-one matrices, as given

as*y = oo 01/45) and*y = 9&m: @ then the number i (6), computing eactB. (%, \y only requiresO(d) op-
of iterations of Algorithml to achieve#%$ %# + #w $  erations. Therefore, computi(%, \y costsO(nd) oper-
w:#2 ' '2is upper bounded by ations as it average; (%, Wy overn samples.
L & ' & ' - - -
0 ( &l+ATEA a(@)dog - . (5 ° Stochastic Variance Reduction Methods

If we replaceB (%, W in Algorithm 1 (line 2) by the
stochastic gradierB;(%, W in (16), then we recover the

i 1 *
we ass_|gned specibc values to thg s_tep S"Z‘ea.”d " . GTD2 algorithm ofSutton et al(2009h, applied to a bxed
for clarity. In general, we can use similar step sizes while

keeping their rati hi tant 8L, . dataset, possibly witimultiple passes It has a low per-
eeping their ratio roughly constant as ( &min (C)’ € iteration cost but a slowsublinearconvergence rate. In

AppendicesA andB for more details. In practice, one can this section, we provide two stochastic variance reduction

use a parameter search on a small subset of data to PRgethods and show they achieve fast linear convergence.
reasonable step sizes. Itis an interesting open problem how

to automatically select and adjust step sizes. 5.1 SVRG for policy evaluation

Note that the linear rate is determined by two parts: (i)Algorithm 2 is adapted from the stochastic variance reduc-
the strongly convex regularization parameieand (ii) the  tion gradient (SVRG) methodl6hnson & Zhang2013.
positive debniteness @& C~1A. The second part could It uses two layers of loops and maintains two sets of pa-
be interpreted as transferring strong concavity in dual varitameterg %) and(%, W}. In the outer loop, the algorithm
ables via the full-rank bi-linear coupling matrik. For  computes a full gradier (%6y) using(%y), which takes
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Algorithm 2 SVRG for Policy Evaluation computing each component gradiemgts = B (%, W at
Inputs: initial point (%, \y, step size§* «, *}, number of the |n|t|al_ pom.t, and also fqrm their avera@e_: [‘ G-
outer iterationsv , and number of inner iterations. At each iteration, the algorithm randomly picks an index
1: form=1toM do tm ! { 1,...,n} and computes the stochastic gradient
2: Initialize (%) = ( %, Wy and computd (Fow). ht, = Bt, (%,W. Then, it update¢%,y using a vari-
3 forj=1toN do ance reduced s_tochastlc gradieBt:+ h;, $ O, » yvhere _
4 Sample an indek from{1,444an} and do grt]m is tEe prev;OLzst cqmptated_ Etocha;uc grad|e|nt ;Sl?g
o o thetn, -th sample (associated with certain past value%o
> (C(()))mput(elj‘; (/%'*W andEjt" (%) andw). Afterwards, it updates the batch gradient estimate
6: 0y g # *O By, (%, Wiow) B asB + i(h, $ g, ) and replaces;, with h;, .
W W ,O .W ) ) As Algorithm 3 proceeds, different vectogs are computed
whereBy; (%, wioy) is given in (L7). using different values o¥andw (depending on when the
7. end for indext was sampled). So in general we need to store all
8: end for vectorsy, fort = 1, ..., n, to facilitate individual updates,
which will cost additionalO(nd) storage. However, by ex-
Algorithm 3 SAGA for Policy Evaluation ploiting the rank-one structure iB), we only need to store
Inputs: initial point (%, \y, step sizesty and*,, and three scalarg$: $ "()7% ($: $ "()Tw, and${w, and
number of iteration . formg,,, onthe By usingd(d) computation. Overall, each
1: Compute eacky = B((%,Wfort=1,...,n. iteration of SAGA cost$(d) operations.
n
2: ComputeB = B (%, = % =1 - 5.3 Theoretical analyses of SVRG and SAGA
3: form=1toM do
4: Sample an indek, from{1,aaan}. In order to study the convergence properties of SVRG and
5: gompu'teht = By, (%,W. SAGA for policy evaluation, we introduce a smoothness
% (J (*# 0) parametet g based on the stochastic gradieBtg%, \y.
w $ 0 *, (B+hi, $a,) Let+ = *,/* 4 be the ratio between the primal and dual
step-sizes, and debne a pair of weighted Euclidean norms
7. B) B+ i(h, $a,)
8 G, ) hi - $(%,\y 2 (A + + i)V 2,
9: end for

$ (%, W & (H2 + +HwH)Y 2,

i i Note that$(49 upper bounds the error in optimizirtd
O(nd) operations. Afterwards, the algorithm executes the$( %S %, w$ W) % #4$ %#. Therefore, any bound on

inner loop, which randomly samples an indgxand up- $( %5 %, w$ w-) applies automatically t6%5 %#.
dateq(%, W using variance-reduced stochastic gradient: ]
Next, we debne the parameteg through its square:

B, (%, Woy) = By (%, W+ B (%Ww) $ By (%ow). (17) I /
’ ' | P 100 $TB (%, Wi) $ By (%, W) -

Here, By, (%, \y contains the stochastic gradients(#t, vy ¢ =, ’Wsilf#F:’WZ $(% S %, W1 $ Wy)?

computed using the random sample with indgx and

B (%w) $ By, (%w) is a term used to reduce the variance This depnition is similar to the smoothness consaused

in By, (%, \y while keepingBy, (%, %) an unbiased es- I Balamurugan & Bach2016 except that we used the

timate ofB (%, . step-size ratie- rather than the strong convexity and con-

cavity parameters of the Lagrangian to del$nand$ -2

Substituting the debnition & (%, W in (16), we have

SinceB (%w) is computed once during each iteration of
the outer loop with cosD(nd) (as explained at the end of
Sectiond), and each of th&\ iterations of the inner loop 81 . a N ( &l $ + IAT)
costO(d) operations, the total computational cost of for LG = 0 G; Gi, whereG; = +1At +C t
each outer loop i®(nd+ Nd). We will present the overall t=1 (18)
complexity analysis of Algorithn2 in Section5.3.

With the above debnitions, we characterize the conver-
5.2 SAGA for policy evaluation gence of( %, $ %, wn, $ w-), where(%, w-) is the so-

The second stochastic variance reduction method for policition of (10), and(%, , wi ) is the output of the algorithms

evaluation is adapted from SAGAEfazio et gl,. 2,014); . 1Since our saddle-point problem is not necessarily strongly
see Algorithmg. It uses a single loop, and maintains a sin-convex in! (when" = 0), we could not debn® andQ* in the

gle set of parameter&b,y. Algorithm 3 starts by brst same way aBalamurugan & Bacl{2016.
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after them-th iteration. For SVRG, it is then-th outer

iteration in Algorithm2. The following two theorems are Table 1. Complexity of different policy evaluation algorithms. In

the tabled is feature dimensiom is dataset sizet £ #("l +

proved in Appendice€ andD, respectively. ATETA): #o 2 Lo/$ mn("l +ATETA): and#’ is a con-
Theorem 2 (Convergence rate of SVRGBuppose As-  dition number related to GTD2.
sumptionl holds. If we chooséy = W’ w = Algorithm Tofal Camplexity , Y
&miLlc N = 751%?”2 whereL s and s are depned SVRG/SAGA| O nd- 1+ 15 log 1%
in (13) and(14), then GTD2 O(d-#1% #

2, &4'm ) PDBG-(I) | O, nd - #(&)# - log(1/%
E$(%h$%,wm$w--) = (%% %, Wo$ w-)2.

5 1 PDBG-(Il) | O nd? 4 d?#(&)# - log(1/%
The overall %omputational cost for reachig) $( %, $ LSTD o$nd2 /or O$nd2 + d3/
%,wm $ w-) ' " isupperbounded by
O” n+ ((é)LZ d Iog&} (19)  Theu i i
2 (@l + ATE1A) S pper part of the table lists algorithms whose complex-

ity is linear in feature dimensiod, including the two new
Theorem 3 (Convergence rate of SAGA)Suppose As- algorithms presented in the previous section. We can also
sumptionl holds. If we choosé&, = ———————— apply GTD2 to a bnite dataset with samples drawn uni-
3(80/@(C)L2+np ) . .
. _ 8L 4 ) formly at random with replacement. It cosi¥d) per iter-
and*y, = &mn (C) 7 in Algorithms3, then ation, but has a sublinear convergence rate regardihg
practice, people may choose= $(1 /n) for generaliza-
tion reasons (see, e.d¢.azaric et al(2010), leading to an
u? O(( 'd) overall complexity for GTD2, whergHis a condi-
9(89¢ (C)L2 +21u.2) tion number related to the algorithm. However, as veribed
E $( % $ %,wm $w-) ' ' hasthe same bound {@9). by our experiments, the bounds in the table show that our

o ) SVRG/SAGA-based algorithms are much faster as their ef-
Similar to our PDBG results inl®), both the SVRG and  ¢acive condition numbers vanish whenbecomes large.

SAGA algorithms for policy evaluation enjoy linear con- +pc has a similar complexity to GTD2.
vergence even if there is no strong convexity in the saddle-

point problem £0) (i.e., when&= 0). This is mainly dueto !N the table, we list two different implementations of
the positive debniteness A € 1A when& is positive- PDBG. PDBG- -(I) computes the gradients by averaging the
debnite and is full-rank. In contrast, the linear conver- Stochastic gradients over the entire dataset at each iteration,

gence of SVRG and SAGA iBalamurugan & Bac201§  Which costsO(nd) operations; see discussions at the end of

requires the Lagrangian to be both strongly conveamd ~ Section4. PDBG-(Il) brst pre-computes the matricksh
strongly concave imv. andC usingO(nd?) operations, then computes the batch

Moreover, in the policy evaluation problem, the strong Con_gradient at each iteration withh(d) operations. Ifd is

. o ) ’ very large (e.g., whed , n), then PDBG-(l) would have
ca\{lty with respe(_:t to the dual varlab\h_z comes from a an advantage over PDBG-(Il). The lower part of the table
weighted quadratic norr(l/ 2)#wi#e, which does not ad- 401 des LSTD, which had(nd?) complexity if rank-
mit an efbcient proximal mapping as required by the Prox-; o updates are used
imal versions of SVRG and SAGA iBalamurugan & '
Bach (2016. Our algorithms only require computing the SVRG and SAGA are more efpcient than the other al-

stochastic gradients of this function, which is easy to dogorithms, when eithed or n is very large. In particu-
due to its bnite sum structure. lar, they have a jower complexity than LSTD when>

/((C)/ 1
Balamurugan & Bach2016 also proposed accelerated (1 + % ) 1og y » This condition is easy to satisfy,

variants of SVRG and SAGA using the OcatalystO framewvhenn is very large. On the other hand, SVRG and SAGA
work of Lin et al. (2015. Such extensions can be done algorithms are rTg)re efbcient than PDBG-(Inifis large,
similarly for the three algorithms presented in this papersayn > ( (C)(G ((€)( $ 1, where( and(g are de-
and we omit the details due to space limit. scribed in the caption of Table

There are other algorithms whose complexity scales
linearly with n and d, including iLSTD Geramifard
This section compares the computation complexities okt al, 2007, and TDC Gutton et al. 20098, fLSTD-
several representative policy-evaluation algorithms thaSA (Prashanth et gl2014), and the more recent algorithms
minimize EM-MSPBE, as summarized in Taldle of Wang et al(2016 andDai et al.(2016. However, their

1 2
E $(%$%, Wn$w)2 ' 2(1$ &M $( %$ %, wod w-)?,

Where& % The total cost to achieve

6 Comparison of Different Algorithms
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convergence is slow: the number of iterations required to . :
reach a desired accuratygrows asl/ or worse. The Table 2. Expressmns oA, % andC; for different cases of pAol-
CTD algorithm Korda & Prashanth2015 uses a similar @/t evg.u;t'_oir(]'i V:,_ihegreég >:0 if éaé!\f;)r{i;(rgtrfét)ér_and =
idea as SVRG to reduce variance in TD updates. This al- /= i -

gorithm is shown to have a similar linear convergence rate At b C

in anonlinesetting where the data stream is generated by a On-policy (=" r(e | GG

Markov process witlPnitestates an@xponentiaimixing. Off-policy "GOO e GG

The method solves for a bxed-point solution by stochas- | Eligibility trace | z ((v —'( {)" reze | (ol

tic approximation. As a result, they can be non-convergent

in off-policy learning, while our algorithms remain stable ] o ] .

(c.f., Sectior7.1). putation complexity linear im andd. We need additional
O(nd) operations to pre-compugg recursively and an ad-

7 Extensions ditional O(nd) storage forz;. However, it does not change

) . .. the order of the total complexity for SVRG/SAGA.
Itis possible to extend our approach to accelerate optimiza-

tion of other objectives such as MSBE and NEDagn 8 Experiments
et al, 2014). In this section, we briel3y describe two ex-

tensions of the algorithms developed earlier. In this section, we compare the following algorithms on

two benchmark problems: (IPDBG (Algorithm 1); (ii)
7.1 Off-policy learning GTD2 with samples drawn randomly with replacement
om a dataset; (iii)TD: the fLSTD-SA algorithm of
rashanth et al(2014); (iv) SVRG (Algorithm 2); and
(v) SAGA (Algorithm 3). Note that when& > 0, the

In some cases, we may want to estimate the value functiog
of a policy # from a set of datdD generated by a differ-

ent ObehaviorO polié. This is calledoff-policy learn- TD solution and EM-MSPBE minimizer differ, so we do

ing (Sutton & Bartg 1998 Chapter 8). ot includeTD. For step size tuning; 4 is chosen from
ifbution incuced by the benavior polis. not the the 4 -0 517" Ty and”w is chosen from
target policy#. While such a mismatcl:JF,I often causes 1,107%,10°* &maxl(f)' We only report the results of
stochastic-approximation-based methods to divefgit( ~ €ach algorithm which correspond to the best-tuned step
siklis & Van Roy, 1997), our gradient-based algorithms re- Sizes; for SVRG we choodé = 2n.

main convergent with the same (fast) convergence rate. |n the brst task, we consider a randomly generated MDP

Consider the RL framework outlined in SectidnFor each ~ With 400states andOactions Dann et al,2014. The tran-
state-action paifs;, a;) such thatt,(a:|s;) > 0, we debne Sition probabilities are debned Rgsa, §) - p§$! +107°,

the importance ratio& 2 #(a|s¢)/# n(a|st). The EM- vv.herepgs! . U[0,1]. The datg—gengra}mg policy and start
MSPBE for off-policy learning has the same expression adlistribution were generated in a similar way. Each state
in (7) except tha#\;, b andC; are modiPed by the weight IS represented by 201-dimensional feature vector, where
factor &, as listed in Table2; see alsdLiu et al. (2015 200 of the features were sampled from a uniform distri-

Eqn 6) for a related discussion.) AlgorithriB8 remainthe ~ Pution, and the last feature was constant one. We chose

same for the off-policy case aftds, b andC; are modibed ~ = 0.95. Fig. 1 shows the performance of various al-

correspondingly. gorithms forn = 20000. First, notice that the stochastic
variance methods converge much faster than others. In fact,

7.2 Learning with eligibility traces our proposed methods achieve linear convergence. Second,

S we increasé&, the performances of PDBG, SVRG and
SAGA improve signibcantly due to better conditioning, as
e Predicted by our theoretical results.

Eligibility traces are a useful technique to trade off bias an
variance in TD learningRingh & Sutton 1996 Kearns &
Singh 2000. When they are used, we can pre-commyt
in Table 2 before running our new algorithms. Note that Next, we test these algorithms on Mountain Cawntfon &
EM-MSPBE with eligibility traces has the same form of Barto 1998 Chapter 8). To collect the dataset, we brst ran
(7), with A¢, by andC; debned differently according to the Sarsa witid = 300 CMAC features to obtain a good policy.
last row of Table2. At the m-th step of the learning pro- Then, we ran this policy to collect trajectories that com-
cess, the algorithm randomly samplag , $:,, ,$Fm and prise the dataset. Fig8.and3 show our proposed stochas-
ri, fromthe pbxed dataset and computes the correspondinir variance reduction methods dominate other prst-order
stochastic gradients, where the indgxis uniformly dis- methods. Moreover, with better conditioning (through a
tributed over{ 1,...,n} and are independent for different larger&), PDBG, SVRG and SAGA achieve faster conver-
values ofm. Algorithms 1E8 immediately work for this gence rate. Finally, as we increase sample 8izBVRG
case, enjoying a similar linear convergence rate and a comand SAGA converge faster. This simulation veribes our
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Figure 1. Random MDP witts = 400, d = 200, andn = 20000.
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Figure 2. Mountain Car Data Set witth = 300 andn = 5000.
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Figure 3. Mountain Car Data Set witth = 300 andn = 20000.

theoretical Pnding in Tablethat SVRG/SAGA need fewer

epochs for larga.

9 Conclusions

In this paper, we reformulated the EM-MSPBE minimiza-
tion problem in policy evaluation into an empirical saddle-
point problem, and developed and analyzed a batch gradiFhis work leads to several interesting directions for re-
ent method and two Prst-order stochastic variance redusearch. First, we believe it is important to extend the
tion methods to solve the problem. An important result westochastic variance reduction methods to nonlinear approx-
obtained is that even when the reformulated saddle-poinimation paradigmsRhatnagar et al2009, especially with
problem lacks strong convexity in primal variables and hagleep neural networks. Moreover, it remains an important
only strong concavity in dual variables, the proposed algoopen problem how to apply stochastic variance reduction

batch gradient methods or stochastic variance reduction
methods. Furthermore, we showed that when both the fea-
ture dimensiom and the number of samplasare large, the

developed stochastic variance reduction methods are more
efbcient than any other gradient-based methods which are
convergent in off-policy settings.

rithms are still able to achieve a linear convergence ratetechniques to policy optimization.
We are not aware of any similar results for primal-dual
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