Supplementary Material for
 "Statistical Inference for Incomplete Ranking Data: The Case of Rank-Dependent Coarsening"

1 Proofs of Theoretical Results in Section 7

Definition 1. Let $\hat{\pi}_{N}$ denote the ranking produced as a prediction by a ranking method on the basis of N observed (pairwise) preferences. The method is consistent if $\boldsymbol{p}\left(\hat{\pi}_{N}=\pi^{*}\right) \rightarrow 1$ for $N \rightarrow \infty$.

Definition 2. Consider a complete ranking $\pi \in \mathbb{S}_{K}$, and let us consider two indices $i \neq j$. We define the (i, j)-swap ranking, $\pi_{i, j}:[K] \rightarrow[K]$, as follows: $\pi_{i, j}(k)=$ $\pi(k), \forall k \in[K] \backslash\{i, j\}, \pi_{i, j}(i)=\pi(j)$ and $\pi_{i, j}(j)=\pi(i)$.

Lemma 3. (Lemma 2 in the paper) Let us consider a probability measure \boldsymbol{p}_{θ} over \mathbb{S}_{K}. Consider $q_{i, j}=\sum_{\pi \in E\left(a_{i} \succ a_{j}\right)} \boldsymbol{p}_{\theta}(\pi) \lambda_{\pi(i), \pi(j)}, \forall i \neq j$. (The model (8) in the paper, without assuming that the marginal distribution is necessarily PL). Then:

$$
\boldsymbol{p}_{\theta}(\pi) \geq \boldsymbol{p}_{\theta}\left(\pi_{i, j}\right), \forall \pi \in E\left(a_{i} \succ a_{j}\right) \Rightarrow q_{i, j}>q_{j, i} .
$$

Proof. We easily observe that:

$$
\begin{aligned}
q_{i, j} & =\sum_{\pi \in E\left(a_{i} \succ a_{j}\right)} \boldsymbol{p}_{\theta}(\pi) \lambda_{\pi(i), \pi(j)} \\
q_{j, i} & =\sum_{\pi \in E\left(a_{j} \succ a_{i}\right)} \boldsymbol{p}_{\theta}(\pi) \lambda_{\pi(j), \pi(i)}
\end{aligned}
$$

Furthermore, let us notice that the set $E\left(a_{j} \succ a_{i}\right)$ coincides with $\left\{\pi_{i, j}: \pi \in E\left(a_{i} \succ\right.\right.$ $\left.\left.a_{j}\right)\right\}$ and that $\lambda_{\pi_{i, j}(i), \pi_{i, j}(j)}=\lambda_{\pi(j), \pi(i)}$ for every $\pi \in E\left(a_{i} \succ a_{j}\right)$. Therefore, we can write:

$$
q_{j, i}=\sum_{\pi \in E\left(a_{i} \succ a_{j}\right)} \boldsymbol{p}_{\theta}\left(\pi_{i, j}\right) \lambda_{\pi(i), \pi(j)}
$$

By hypothesis, the following inequalities hold:

$$
\boldsymbol{p}_{\theta}(\pi) \geq \boldsymbol{p}_{\theta}\left(\pi_{i, j}\right), \forall \pi \in E\left(a_{i} \succ a_{j}\right)
$$

and therefore we deduce that $q_{i, j}>q_{j, i}$.
Lemma 4. Consider the PL model with $\theta_{i}>0$ for all $i \in[K]$, and let $\lambda=\left\{\lambda_{u, v} \mid 1 \leq\right.$ $u<v \leq K\}$ be any (pairwise) coarsening such that $\lambda_{u, v}$ is the probability to select positions u and v. Then, $q_{i, j}>0$ for all $i, j \in[K], i \neq j$. Thus, each preference $a_{i} \succ a_{j}$ has a positive probability to be observed.

Proof. Take any $\lambda_{u, v}>0$ and fix $i, j \in[K], i \neq j$. According to the PL model, if $\theta_{k}>0$ for all $k \in[K], \boldsymbol{p l}_{\theta}(\pi)>0$ for all $\pi \in \mathbb{S}_{K}$. Thus, there is a probability $p>0$ that $\pi(i)=u$ and $\pi(j)=v$. Consequently, $q_{i, j} \geq p \lambda_{u, v}>0$.
Lemma 5. (Lemma 3 in the paper) Assume the model (8) and let $\theta_{i}>0$ for all $i \in[K], \theta_{i} \neq \theta_{j}$ for $i \neq j$. The coarsening (7) is order-preserving for PL in the sense that $p_{i, j}>1 / 2$ if and only if $q_{i, j}^{\prime}>1 / 2$, where $q_{i, j}^{\prime}=q_{i, j} /\left(q_{i, j}+q_{j, i}\right)$.

Proof. First, note that, according to the previous lemma, $q_{i, j}>0$ for all $i, j \in[K]$, $i \neq j$, so all $q_{i, j}^{\prime}$ are well defined.

- Let us first prove the "only if" part. According to Lemma 3, it only remains to prove that any Plackett-Luce distribution $\boldsymbol{p} \boldsymbol{l}_{\theta}$ satisfies the following implication:

$$
p_{i, j}>p_{j, i} \Rightarrow \boldsymbol{p} \boldsymbol{l}_{\theta}(\pi) \geq \boldsymbol{p} \boldsymbol{l}_{\theta}\left(\pi_{i, j}\right), \forall \pi \in E\left(a_{i} \succ a_{j}\right)
$$

Let us first notice that $p_{i, j}>p_{j, i}$ if and only if $\theta_{i}>\theta_{j}$. Let us take an arbitrary ranking $\pi \in E\left(a_{i} \succ a_{j}\right)$. We can write:

$$
\begin{aligned}
\boldsymbol{p} \boldsymbol{l}_{\theta}(\pi) & =C_{i, j} \cdot \frac{\theta_{\pi^{-1}(\pi(i))}}{\sum_{s=\pi(i)}^{\pi(K)} \theta_{\pi^{-1}(s)}} \cdot \frac{\theta_{\pi^{-1}(\pi(j))}}{\sum_{s=\pi(j)}^{\pi(K)} \theta_{\pi^{-1}(s)}} \\
\boldsymbol{p} \boldsymbol{l}_{\theta}\left(\pi_{i, j}\right) & =C_{i, j} \cdot \frac{\theta_{\pi_{i, j}^{-1}\left(\pi_{i, j}(i)\right)}^{\sum_{s=\pi_{i, j}(i)}^{\pi_{i, j}(K)} \theta_{\pi_{i, j}^{-1}(s)}} \cdot \frac{\theta_{\pi_{i, j}^{-1}\left(\pi_{i, j}(j)\right)}^{\sum_{s=\pi_{i, j}(j)}^{\pi_{i, j}(K)} \theta_{\pi_{i, j}^{-1}(s)}}}{},}{},
\end{aligned}
$$

where

$$
\begin{aligned}
C_{i, j} & =\prod_{r \notin\{\pi(i), \pi(j)\}} \frac{\theta_{\pi^{-1}(r)}}{\theta_{\pi^{-1}(r)}+\theta_{\pi^{-1}(r+1)}+\ldots+\theta_{\pi^{-1}(K)}} \\
& =\prod_{r \notin\left\{\pi_{i, j}(i), \pi_{i, j}(j)\right\}} \frac{\theta_{\pi_{i, j}^{-1}(r)}}{\theta_{\pi_{i, j}^{-1}(r)}+\theta_{\pi_{i, j}^{-1}(r+1)}+\ldots+\theta_{\pi_{i, j}^{-1}(K)}} .
\end{aligned}
$$

According to the relation between π and $\pi_{i, j}$, we can easily check the following equality:

$$
\sum_{s=\pi(i)}^{\pi(K)} \theta_{\pi^{-1}(s)}=\sum_{s=\pi_{i, j}(j)}^{\pi_{i, j}(K)} \theta_{\pi_{i, j}^{-1}(s)}
$$

(In fact, both θ_{i} and θ_{j} appear in both sums). Furthermore, we observe that:

$$
\sum_{s=\pi(j)}^{\pi(K)} \theta_{\pi^{-1}(s)}-\sum_{s=\pi_{i, j}(i)}^{\pi_{i, j}(K)} \theta_{\pi_{i, j}^{-1}(s)}=\theta_{j}-\theta_{i}
$$

and therefore

$$
\sum_{s=\pi(j)}^{\pi(K)} \theta_{\pi^{-1}(s)}<\sum_{s=\pi_{i, j}(i)}^{\pi_{i, j}(K)} \theta_{\pi_{i, j}^{-1}(s)}
$$

We deduce that $\boldsymbol{p} \boldsymbol{l}_{\theta}(\pi)>\boldsymbol{p l}_{\theta}\left(\pi_{i, j}\right)$.

- Let us now prove the "if" part. Suppose that $q_{i, j}^{\prime}>1 / 2$. Therefore, according to the "only if part", $p_{i, j}$ must be greater than or equal to $1 / 2$ (as otherwise, we would get $\left.q_{i, j}^{\prime}<1 / 2\right)$. Now, according to the hypotheses, all the components of the parameter θ are different from each other, and therefore $p_{i, j} \neq 1 / 2$, so we deduce that it must be strictly greater than $1 / 2$.

Lemma 6. (Lemma 4 in the paper) Assume the model (8), $\theta_{i} \neq \theta_{j}$ for $i \neq j$, and $\theta_{i}>0$ for all $i \in[K]$. Let us take an arbitrarily small $\epsilon^{*}>0$. There exists $N_{0} \in \mathbb{N}$ such that $\theta_{i}>\theta_{j}$ if and only if $\hat{p}_{i, j}>1 / 2$ for all $i, j \in[K]$, with probability at least $1-\epsilon^{*}$, after having observed at least N_{0} preferences.

Proof. Take an arbitrary pair (i, j), and let us consider the sequence $\left(\hat{p}_{i, j}^{(n)}\right)_{n \in \mathbb{N}}$, where $\hat{p}_{i, j}^{(n)}=\frac{c_{i, j}^{(n)}}{c_{i, j}^{(n)}+c_{j, i}^{(n)}}$, and $c_{i, j}^{(n)}$ denotes the number of times the pair $a_{i} \succ a_{j}$ is observed in the sample. According to the Strong Law of Large Numbers, the sequence

$$
\hat{p}_{i, j}^{(n)}=\frac{c_{i, j}^{(n)} / n}{c_{i, j}(n) / n+c_{j, i}(n) / n}
$$

converges in probability to $q_{i, j}^{\prime}=\frac{q_{i, j}}{q_{i, j}+q_{j, i}}$. This means that, for any pair of arbitrary $\epsilon>0$ and $\delta>0$, there exists $N_{\delta, \epsilon, i, j} \in \mathbb{N}$ such that $\left|\hat{p}_{i, j}^{(n)}-q_{i, j}^{\prime}\right|<\delta$, with probability greater than $1-\epsilon$, for every $n \geq N_{\delta, \epsilon, i, j}$. Now, $\theta_{i}<\theta_{j}$ if and only if $p_{i, j}>0.5$, which is equivalent to saying that $q_{i, j}^{\prime}=q_{i, j} /\left(q_{i, j}+q_{j, i}\right)>1 / 2$, according to Lemma 5 . Let us now take $\delta=\min _{i, j}\left|q_{i, j}^{\prime}-1 / 2\right| / 2, \epsilon=\epsilon^{*} / K(K-1)$, and $N_{0}=\max _{i, j} N_{\delta, \epsilon, i, j}$. Then, thanks to the union bound, with probability at least $1-\epsilon^{*}$, we can assure for every $n \geq N_{0}$ that $\hat{p}_{i, j}^{(n)}>0.5$ if and only if $q_{i, j}^{\prime}>1 / 2$ for every pair (i, j).

Theorem 7. (Theorem 5 in the paper) Copeland ranking is consistent.

Proof. It is a direct consequence of Lemma 6.
Theorem 8. (Theorem 6 in the paper) $F A S, F A S(R)$, and $F A S(B)$ are consistent.

Proof. Let us separately consider the three cases.

- $\operatorname{FAS}(\mathrm{R})$. Let us first notice that $\hat{p}_{i, j}+\hat{p}_{j, i}=1$ and therefore,

$$
\arg \min _{\pi \in \mathbb{S}_{k}}\left(\sum_{(i, j): \pi(i)<\pi(j)} \hat{p}_{j, i}\right)=\arg \max _{\pi \in \mathbb{S}_{k}}\left(\sum_{(i, j): \pi(i)<\pi(j)} \hat{p}_{i, j}\right)
$$

Now, for an arbitrary $\pi \in \mathbb{S}_{k}$, the following equality holds:

$$
\sum_{(i, j): \pi(i)<\pi(j)} \hat{p}_{j, i}=\sum_{i<j} r_{i, j}^{\pi}
$$

where $r_{i, j}^{\pi}$ is defined as follows for every $i<j$:

$$
r_{i, j}^{\pi}= \begin{cases}\hat{p}_{i, j} & \text { if } \pi(i)<\pi(j) \\ \hat{p}_{j, i} & \text { otherwise }\end{cases}
$$

Furthermore, according to Lemmas 5 and 6 , for an arbitrarily small $\epsilon^{*}>0$, there exists $N_{0} \in \mathbb{N}$ such that $\theta_{i}>\theta_{j}$, or equivalently, $q_{i, j}>q_{i, j}$, if and only if $\hat{p}_{i, j}>1 / 2$, for every pair (i, j) and every $n \geq N_{0}$, with probability greater than or equal to $1-\epsilon^{*}$. Let us now consider the function $f: \mathbb{S}_{K} \rightarrow \mathbb{R}$: $f(\pi)=\sum_{(i, j): \pi(i)<\pi(j)} s_{i, j}^{\pi}$, where

$$
s_{i, j}^{\pi}= \begin{cases}q_{i, j} & \text { if } \pi(i)<\pi(j) \\ q_{j, i} & \text { otherwise }\end{cases}
$$

The argument of the maximum of this function is $\pi^{*}=\arg \operatorname{sort}\left\{\theta_{1}, \ldots, \theta_{k}\right\}$. Consequently, the solution to FAS, after having observed at least N_{0} preferences, coincides with $\arg \operatorname{sort}\left\{\theta_{1}, \ldots, \theta_{k}\right\}$ with probability at least $1-\epsilon^{*}$.

- FAS. The proof is analogous to the previous case. (Let us notice that $c_{i, j}>c_{j, i}$ if and only if $\left.\hat{p}_{i, j}>1 / 2\right)$.
- $\operatorname{FAS}(\mathrm{B})$. First of all, let us take into account that $\mathbb{I}\left(\hat{p}_{j, i}>1 / 2\right)+\mathbb{I}\left(\hat{p}_{i, j}>1 / 2\right)=$ 1 , for every (i, j) and therefore the $\operatorname{FAS}(\mathrm{B})$ ranking is $\hat{\pi}$ satisfying:

$$
\begin{aligned}
\hat{\pi} & =\arg \max _{\pi \in \mathbb{S}_{K}} \sum_{(i, j): \pi(i)<\pi(j)} \mathbb{I}\left(\hat{p}_{i, j}>1 / 2\right) \\
& =\arg \max _{\pi \in \mathbb{S}_{K}} \#\left\{(i, j): \pi(i)<\pi(j) \text { and } \hat{p}_{i, j}>1 / 2\right\} .
\end{aligned}
$$

Now, let us take an arbitrarily small $\epsilon^{*}>0$. According to Lemma 6, there exists N_{0} such that $\hat{p}_{i, j}>1 / 2$ if and only if $\theta_{i}>\theta_{j}$, for every pair (i, j) and for all $n \geq N_{0}$ with probability at least $1-\epsilon^{*}$. Therefore, with probability at least $1-\epsilon^{*}$ and for a sufficiently large sample, we can equivalently write that the solution to the $\operatorname{FAS}(\mathrm{B})$ algorithm is $\hat{\pi}$ satisfying:

$$
\begin{aligned}
\hat{\pi} & =\arg \max _{\pi \in \mathbb{S}_{K}} \sum_{(i, j): \pi(i)<\pi(j)} \mathbb{I}\left(\hat{p}_{i, j}>1 / 2\right) \\
& =\arg \max _{\pi \in \mathbb{S}_{K}} \#\left\{(i, j): \pi(i)<\pi(j) \text { and } \theta_{i}>\theta_{j}\right\} .
\end{aligned}
$$

Clearly, the solution to this problem is $\pi^{*}=\arg \operatorname{sort}\left\{\theta_{1}, \ldots, \theta_{k}\right\}$ (the mode of the underlying PL distribution).

2 Experimental Results

Figure 1: Simulation results of algorithms for coarsened rankings when full rankings are generated according to PL (with $K=3$) and coarsening is degenerate ($\lambda_{i, j}=1$ for some $1 \leq i<j \leq K$). Full breaking (extraction of all pairwise preferences) is shown as a baseline. X-axis shows the sample size. Y-axis is the Kendall distance averaged over 500 runs.

Figure 2: Simulation results of algorithms for coarsened rankings when full rankings are generated according to PL (with $K=4$) and coarsening is degenerate ($\lambda_{i, j}=1$ for some $1 \leq i<j \leq K)$. Full breaking (extraction of all pairwise preferences) is shown as a baseline. X-axis shows the sample size. Y-axis is the Kendall distance averaged over 500 runs.

Figure 3: Simulation results of algorithms for coarsened rankings when full rankings are generated according to PL (with $K=5$) and coarsening is degenerate ($\lambda_{i, j}=1$ for some $1 \leq i<j \leq K)$. Full breaking (extraction of all pairwise preferences) is shown as a baseline. X-axis shows the sample size. Y-axis is the Kendall distance averaged over 500 runs.

Figure 4: Simulation results of algorithms for coarsened rankings when full rankings are generated according to PL (with $K=7$) and coarsening is degenerate ($\lambda_{i, j}=1$ for some $1 \leq i<j \leq K$). Full breaking (extraction of all pairwise preferences) is shown as a baseline. X-axis shows the sample size. Y-axis is the Kendall distance averaged over 500 runs.

Figure 5: Performance of algorithms averaged over all coarsening positions (i, j) when rankings are generated according to PL. Each plot from left to right corresponds to the number of items $K \in\{3,4,5,7\}$, respectively. X-axis is the sample size. Y-axis shows the Kendall distance.

Figure 6: Simulation results of algorithms for coarsened rankings when full rankings are generated according to Mallows (with $K=3$ and dispersion $\phi=0.1$), and coarsening is degenerate ($\lambda_{i, j}=1$ for some $1 \leq i<j \leq K$). Full breaking (extraction of all pairwise preferences) is shown as a baseline. X-axis shows the sample size. Y-axis is the Kendall distance averaged over 500 runs.

Figure 7: Simulation results of algorithms for coarsened rankings when full rankings are generated according to Mallows (with $K=4$ and dispersion $\phi=0.1$), and coarsening is degenerate ($\lambda_{i, j}=1$ for some $1 \leq i<j \leq K$). Full breaking (extraction of all pairwise preferences) is shown as a baseline. X-axis shows the sample size. Y-axis is the Kendall distance averaged over 500 runs.

Figure 8: Simulation results of algorithms for coarsened rankings when full rankings are generated according to Mallows (with $K=5$ and dispersion $\phi=0.1$), and coarsening is degenerate ($\lambda_{i, j}=1$ for some $1 \leq i<j \leq K$). Full breaking (extraction of all pairwise preferences) is shown as a baseline. X-axis shows the sample size. Y-axis is the Kendall distance averaged over 500 runs.

Figure 9: Simulation results of algorithms for coarsened rankings when full rankings are generated according to Mallows (with $K=7$ and dispersion $\phi=0.1$), and coarsening is degenerate $\left(\lambda_{i, j}=1\right.$ for some $\left.1 \leq i<j \leq K\right)$. Full breaking (extraction of all pairwise preferences) is shown as a baseline. X-axis shows the sample size. Y-axis is the Kendall distance averaged over 500 runs.

Figure 10: Performance of algorithms averaged over all coarsening positions (i, j) when rankings are generated according to Mallows with dispersion $\phi=0.1$. Each plot from left to right corresponds to the number of items $K \in\{3,4,5,7\}$, respectively. X-axis is the sample size. Y-axis shows the Kendall distance.

Figure 11: Simulation results of algorithms for coarsened rankings when full rankings are generated according to Mallows (with $K=4$ and dispersion $\phi=0.5$), and coarsening is degenerate ($\lambda_{i, j}=1$ for some $1 \leq i<j \leq K$). Full breaking (extraction of all pairwise preferences) is shown as a baseline. X-axis shows the sample size. Y-axis is the Kendall distance averaged over 500 runs.

Figure 12: Simulation results of algorithms for coarsened rankings when full rankings are generated according to Mallows (with $K=5$ and dispersion $\phi=0.5$), and coarsening is degenerate ($\lambda_{i, j}=1$ for some $1 \leq i<j \leq K$). Full breaking (extraction of all pairwise preferences) is shown as a baseline. X-axis shows the sample size. Y-axis is the Kendall distance averaged over 500 runs.

