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Abstract
There exist many problem domains where the
interpretability of neural network models is es-
sential for deployment. Here we introduce a re-
current architecture composed of input-switched
affine transformations – in other words an RNN
without any explicit nonlinearities, but with input-
dependent recurrent weights. This simple form
allows the RNN to be analyzed via straightfor-
ward linear methods: we can exactly characterize
the linear contribution of each input to the model
predictions; we can use a change-of-basis to dis-
entangle input, output, and computational hid-
den unit subspaces; we can fully reverse-engineer
the architecture’s solution to a simple task. De-
spite this ease of interpretation, the input switched
affine network achieves reasonable performance
on a text modeling tasks, and allows greater com-
putational efficiency than networks with standard
nonlinearities.

1. Introduction
1.1. The importance of interpretable machine learning

As neural networks move into applications where the out-
comes of human lives depend on their decisions, it is in-
creasingly crucial that we are able to interpret the decisions
they make. Indeed, the European Union is considering legis-
lation with a clause that asserts that individuals have ’rights
to explanation’, i.e. individuals should be able to under-
stand how algorithms make decisions about them (Council
of European Union, 2016). Example problem domains re-
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quiring interpretable ML include self-driving cars (Bojarski
et al., 2016), air traffic control (Katz et al., 2017), power
grid control (Siano et al., 2012), hiring and promotion deci-
sions while preventing bias (Scarborough & Somers, 2006),
automated sentencing decisions in US courts (Tashea, 2017;
Berk et al., 2017), and medical diagnosis (Gulshan et al.,
2016). For many of these applications, practitioners will not
adopt ML models without fully understanding what drives
their predictions, including understanding when and how
these models fail (Ching et al., 2017; Deo, 2015).

1.2. Post hoc analysis

One approach to interpreting neural networks is to train
the network as normal, and then apply analysis techniques
after training. Often this approach yields systems that per-
form extremely well, but where interpretability is challeng-
ing. For example, Sussillo & Barak (2013) used lineariza-
tion and nonlinear dynamical systems theory to understand
RNNs solving a set of simple but varied tasks. Karpathy
et al. (2015) analyzed an LSTM (Hochreiter & Schmidhu-
ber, 1997) trained on a character-based language modeling
task. They were able to break down LSTM language model
errors into classes, such as e.g., “rare word” errors. Con-
currently with our submission, Murdoch & Szlam (2017)
decomposed LSTM outputs using telescoping sums of statis-
tics computed from memory cells at different RNN steps.
The decomposition is exact, but not unique and the authors
justify it by demonstrating good performance of decision
rules formed using the computed cell statistics.

The community is also interested in post hoc interpretation
of feed-forward networks. Examples include the use of
linear probes in Alain & Bengio (2016), and a variety of
techniques (most driven by back-propagation) to assign
credit for activations to specific inputs or input patterns in
feed-forward networks (Zeiler et al., 2010; Le et al., 2012;
Mordvintsev et al., 2015).

1.3. Building interpretability into the architecture

A second approach is to build a neural network where inter-
pretability is an explicit design constraint. In this approach,
a typical outcome is a system that can be better understood,
but at the cost of reduced performance. Model classes whose
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decisions are naturally interpretable include logistic regres-
sion (Freedman, 2009), decision trees (Quinlan, 1987), and
support vector machines with simple (e.g. linear) kernels
(Andrew, 2013).

In this work we follow this second approach and build in-
terpretability into our network model, while maintaining
good, though not always state-of-the-art, performance for
the tasks we study. We focus on the commonly studied
task of character based language modeling. We develop
and analyze a model trained on a one-step-ahead predic-
tion task of the Text8 dataset, which is 10 million char-
acters of Wikipedia text (Mahoney, 2011), on the Billion
Word Benchmark (Chelba et al., 2013), and finally on a toy
multiple parentheses counting task which we fully reverse
engineer.

1.4. Switched affine systems

The model we introduce is an Input Switched Affine Net-
work (ISAN), where the input determines the switching
behavior by selecting a transition matrix and bias as a func-
tion of that input, and there is no nonlinearity. Linear time-
varying systems are standard material in undergraduate elec-
trical engineering text books, and are closely related to our
technique.

Although the ISAN is deterministic, probabilistic versions of
switching linear models with discrete latent variables have
a history in the context of probabilistic graphical models. A
recent example is the switched linear dynamical system in
(Linderman et al., 2016). Focusing on language modeling,
(Belanger & Kakade, 2015) defined a probabilistic linear
dynamical system (LDS) as a generative language model
for creating context-dependent token embeddings and then
used steady-state Kalman filtering for inference over token
sequences. They used singular value decomposition and
discovered that the right and left singular vectors were se-
mantically and syntactically related. A critical difference
between the ISAN and the LDS is that the ISAN weight
matrices are input token dependent (while the biases of both
models are input dependent).

Multiplicative neural networks (MRNNs) were proposed
precisely for character based language modeling in
(Sutskever et al., 2011; Martens & Sutskever, 2011). The
MRNN architecture is similar to our own, in that the dy-
namics matrix switches as a function of the input character.
However, the MRNN relied on a tanh nonlinearity, while
the ISAN is explicitly linear. It is this property of our model
which makes it both amenable to analysis, and computation-
ally efficient.

The Observable Operator Model (OOM) (Jaeger, 2000) is
similar to the ISAN in that the OOM updates a latent state
using a separate transition matrix for each input symbol

and performs probabilistic sequence modeling. Unlike the
ISAN, the OOM requires that a linear projection of the hid-
den state corresponds to a normalized sequence probability.
This imposes strong constraints on both the model param-
eters and the model dynamics, and restricts the choice of
training algorithms. In contrast, the ISAN applies an affine
readout to the hidden state to obtain logits, which are then
pushed through the softmax function to obtain probabilities.
Therefore no constraints need to be imposed on the ISAN’s
parameters and training is easy using backprop. Lastly, the
ISAN is formulated as an affine, rather than linear model.
While this doesn’t change the class of processes that can be
modeled, it stabilizes training and greatly enhances inter-
pretability, facilitating the analysis in Section 3.3.

1.5. Paper structure

In what follows, we define the ISAN architecture, demon-
strate its performance on the one-step-ahead prediction task,
and then analyze the model in a multitude of ways, most of
which would be currently difficult or impossible to accom-
plish with modern nonlinear recurrent architectures.

2. Methods
2.1. Model definition

In what follows Wx and bx respectively denote a transition
matrix and a bias vector for a specific input x, the symbol
xt is the input at time t, and ht is the hidden state at time t.
Our ISAN model is defined as

ht = Wxt ht−1 + bxt . (1)

The network also learns an initial hidden state h0. We em-
phasize the intentional absence of any nonlinear activation
function.

2.2. Character level language modeling with ISAN

We trained RNNs on the Text8 Wikipedia dataset and the bil-
lion word benchmark (BWB), for one-step-ahead character
prediction. The Text8 dataset consists only of the 27 char-
acters ‘a’-‘z’ and ‘_’ (space). The BWB dataset consist of
Unicode text and was modelled as a sequence of bytes (256
discrete tokens) that formed the UTF8-encoded data. Given
a character sequence of x1, ...,xt, the RNNs are trained to
minimize the cross-entropy between the true next character,
and the output prediction. We map from the hidden state,
ht, into a logit space via an affine map. The probabilities
are computed as

p (xt+1) = softmax (lt) (2)
lt = Wro ht + bro, (3)

where Wro and bro are the readout weights and biases,
and lt is the logit vector. For the Text8 dataset, we split
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Table 1. The ISAN has similar performance to other RNN archi-
tectures on the Text8 dataset. Performance of RNN architectures
on Text8 one-step-ahead prediction, measured as cross-entropy
loss on a held-out test set, in bits per character. The loss is shown
as a function of the maximum number of parameters a model is
allowed. The values reported for all other architectures are taken
from (Collins et al., 2016).

Parameter count 8e4 3.2e5 1.28e6

RNN 1.88 1.69 1.59
IRNN 1.89 1.71 1.58
GRU 1.83 1.66 1.59

LSTM 1.85 1.68 1.59
ISAN 1.92 1.71 1.58

the data into 90%, 5%, and 5% for train, validation, and
test respectively, in line with (Mikolov et al., 2012). The
network was trained with the same hyperparameter tuning
infrastructure as in (Collins et al., 2016). For the BWB
dataset, we used data splits and evaluation setup identical to
(Józefowicz et al., 2016). Due to long experiment running
times, we manually tuned the hyperparameters.

3. Results and analysis
3.1. ISAN performance on Text8 prediction

The results on Text8 are shown in Table 1. For the largest
parameter count, the ISAN matches almost exactly the per-
formance of all other nonlinear models with the same num-
ber of maximum parameters: RNN, IRNN, GRU, LSTM.
However, we note that for small numbers of parameters the
ISAN performs considerably worse than other architectures.
All analyses use ISAN trained with 1.28e6 maximum pa-
rameters (1.58 bpc cross entropy). Samples of generated
text from this model are relatively coherent. We show two
examples, after priming with "annual reve", at inverse tem-
perature of 1.5, and 2.0, respectively:

• “annual revenue and producer of the telecommunica-
tions and former communist action and saving its new
state house of replicas and many practical persons”

• “annual revenue seven five three million one nine nine
eight the rest of the country in the united states and
south africa new”.

As a preliminary, comparative analysis, we performed PCA
on the state sequence over a large set of sequences for the
vanilla RNN, GRU of varying sizes, and ISAN. This is
shown in Figure 1. The eigenvalue spectra, in log of variance
explained, was significantly flatter for the ISAN than the
other architectures.

We compared the ISAN performance to a fully linear RNN

Figure 1. The ISAN makes fuller and more uniform use of its latent
space than vanilla RNNs or GRUs. Figure shows explained vari-
ance ratio of the first 210 most significant PCA dimensions of the
hidden states across several architectures for the Text8 dataset. The
legend provides the number of latent units for each architecture.

without input switched dynamics. This achieves a cross-
entropy of 3.1 bits / char, independent of network size. This
perplexity is only slightly better than that of a Naive Bayes
model on the task, at 3.3 bits / char. The output probability
of the fully linear network is a product of contributions from
each previous character, as in Naive Bayes. Those factorial
contributions are learned however, giving the non-switched
affine network a slight advantage. We also trained a fully
linear network with a nonlinear readout. This achieves 2.15
bits / char, independent of network size. Both of these
comparisons illustrate the importance of the input switched
dynamics for achieving good results.

Lastly we also test to what extent the ISAN can deal with
large dictionaries by running it on a byte-pair encoding of
the text8 task, where the input dictionary consists of the 272

different possible character combinations. We find that in
this setup the LSTM consistently outperforms the ISAN for
the same number of parameters. At 1.3m parameters the
LSTM achieves a cross entropy of 3.4 bits / char-pair, while
ISAN achieves 3.55. One explanation for this finding is that
the matrices in ISAN are 27 times smaller than the matrices
of the LSTMs. For very large numbers of parameters the
performance of any architecture saturates in the number of
parameters, at which point the ISAN can ‘catch-up’ with
more parameter efficient architectures like LSTMs.

3.2. ISAN performance on Billion Word Benchmark
prediction

We trained ISAN and LSTM models on the BWB dataset.
All networks were trained using asynchronous gradient de-
scent using the Adagrad learning rule. Our best LSTM
model reached 1.1 bits per character, which matches pub-
lished results (Hwang & Sung, 2016). The LSTM model
had one layer of 8192 LSTM units whose outputs were
projected onto 1024 dimensions (44e6 parameters). Our
best ISAN models reached 1.4 bits per character and used
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Figure 2. Using the linearity of the hidden state dynamics, predictions at step t can be broken out into contributions, κt
s, from previous

steps. Accordingly, each row of the top panel corresponds to the propagated contribution (κt
s) of the input character at time s, to the

prediction at time t (summed to create the logit at time t). The penultimate row contains the output bias vector replicated at every time
step. The last row contains the logits of the predicted next character, which is the sum of all rows above. The bottom panel contains the
corresponding softmax probabilities at each time t for all characters (time is separated by gray lines). Labeled is the character with the
maximum predicted probability. The time step boxed in red is examined in more detail in Figure 3.

512 hidden units, a reduced set of most common 70 input
tokens and 256 output tokens (18e6 parameters). Increasing
ISAN’s hidden layer size to 768 units (41e6 parameters)
yielded a perplexity improvement to 1.36 bits/char. Investi-
gation of generated samples shows that the ISAN learned
the distinction between lower- and upper-cased letters and is
able to generate text which is coherent over short segments.
To demonstrate sample variability we show continuations
of the prompt "The [Pp]ol" generated using the ISAN:

• The Pol|ish pilgrims are as angry over the holiday trip
• The Pol|ice Department subsequently slipped toward
• The Pol|ice Federation has sought Helix also investors
• The Pol|itico is in a tight crowd ever to moderated the
• The pol|itical scientist in the Red Shirt Romance cannot
• The pol|icy for all Balanchine had formed when it set a
• The pol|l conducted when a suspected among Hispanic
• The pol|itical frenzy sparked primary care programs

3.3. Decomposition of current predictions based on
previous time steps

Analysis in this paper is carried out on the best-performing
Text8 ISAN model, which has 1, 271, 619 parameters, cor-
responding to 216 hidden units, and 27 dynamics matrices
Wx and biases bx.

With ISAN we can analyze which factors were important
in the past for determining the current character prediction.
Taking advantage of the linearity of the hidden state dynam-
ics for any sequence of inputs, we decompose the current
latent state ht into contributions originating from different

time points s in the history of the input:

ht =

t∑
s=0

(
t∏

s′=s+1

Wxs′

)
bxs

, (4)

where the empty product when s+1 > t is 1 by convention,
and bx0

= h0 is the learned initial hidden state.

Using this decomposition and the fact that matrix multi-
plication is a linear transformation we can also write the
unnormalized logit-vector, lt, as a sum of terms linear in the
biases,

lt = bro +

t∑
s=0

κt
s (5)

κt
s = Wro

(
t∏

s′=s+1

Wxs′

)
bxs

, (6)

where κt
s is the contribution from time step s to the logits at

time step t, and κt
t = bxt

. For notational convenience we
will sometimes replace the subscript s with the correspond-
ing input character xs at step s when referring to κt

s. For
example, κt

‘q’ refers to the contribution from the character
‘q’ in a string. Similarly, when discussing the summed con-
tributions from a word or substring we will sometimes write
κt
word to mean the summed contributions of all the κt

s from
that source word. For example,

∑
s∈word κ

t
s – κt

‘the’ refers
to the total contribution from the word ‘the’ to the logit.

While in standard RNNs the nonlinearity causes interde-
pendence of the bias terms across time steps, in the ISAN
the bias terms contribute to the state as independent linear
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Figure 3. Detailed view of the prediction stack for the final ‘n’ in
‘_annual_revenue’. In a) all κt

s are shown, in b) only the contri-
butions to the ‘n’ logit and ‘r’ logits are shown, in orange and red
respectively, from each earlier character in the string. This corre-
sponds to a zoom in view of the columns highlighted in orange and
red in a). In c) we show how the sum of the contributions from the
string ‘_annual’, κt

‘_annual’, pushes the prediction at ‘_annual_reve’
from ‘r’ to ‘n’. Without this contribution the model decodes based
only on κt

‘_reve’, leading to a MAP prediction of ‘reverse’. With
the contribution from κt

‘_annual’ it instead predicts ‘revenue’. The
contribution of κt

‘_annual’ to the ‘n’ and ‘r’ logits is linear and exact.

terms that are propagated and transformed through time. We
emphasize that κt

s includes the multiplicative contributions
from the Wxs′ for s < s′ ≤ t. It is however independent
of prior inputs, xs′ for s′ < s. This is the main difference
between the analysis we can carry out with the ISAN com-
pared to a nonlinear RNN. In a general recurrent network
the contribution of a specific character sequence will depend
on the hidden state at the start of the sequence. Due to the
linearity of the dynamics, this dependency does not exist in
the ISAN.

In Figure 2 we show an example of how this decomposi-
tion allows us to understand why a particular prediction is
made at a given point in time, and how previous characters
influence the decoding. For example, the sequence ‘_an-
nual_revenue_’ is processed by the ISAN: Starting with an
all-zero hidden state, we use equation (6) to accumulate
a sequence of κt

‘_′ ,κ
t
‘a′ ,κt

‘n′ ,κt
‘n′ , .... We then used these

values to understand the prediction of the network at some
time t, by simple addition across the s index.

We provide a detailed view of how past characters contribute
to the logits predicting the next character in Figure 3. There
are two competing options for the next letter in the word
stem ‘reve’: either ‘revenue’ or ‘reverse’. We show that
without the contributions from ‘_annual’ the most likely
decoding of the character after the second ‘e’ is ‘r’ (to form
‘reverse’), while the contributions from ‘_annual’ tip the
balance in favor of ‘n’, decoding to ‘revenue’.

Using ISAN, we can investigate information timescales in
the network. For example, we investigated how quickly the
contributions of κt

s decay as a function of t− s on average.
Figure 4a shows that this contribution decays on two dif-
ferent exponential timescales. We hypothesize that the first
time scale corresponds to the decay within a word, while the

Figure 4. The time decay of the contributions from each char-
acter to prediction. a) Average norm of κt

s across training text,
E
[∣∣∣∣κt

s

∣∣∣∣
2

]
, plotted as a function of t − s, and averaged across

all source characters. The norm appears to decay exponentially at
two rates, a faster rate for the first ten or so characters, and then
a slower rate for more long term contributions. b) The median
cross entropy as a function of the position in the word under three
different circumstances: the red line uses all of the κt

s (baseline),
the green line sets all κt

s apart from κt
‘_’ to zero, while the blue line

only sets κt
‘_’ to zero. The results from panel b demonstrate the

disproportionately large importance of ‘_’ in decoding, especially
at the onset of a word. c) The cross-entropy as a function of history
when artificially limiting the number of characters available for
prediction. This corresponds to only considering the most recent
n of the κ, where n is the length of the history.

next corresponds to the decay of information across words
and sentences. We also show the relevance of the κt

s contri-
butions to the decoding of characters at different positions
in the word (Figure 4b). For example, we observe that κt

‘_’
makes important contributions to the prediction of the next
character at time t. We show that using only the κt

‘_’, the
model can achieve a cross entropy of less than 1 bit / char
when the position of the character is more than 3 letters from
the beginning of the word. Finally, we link the norm-decay
of κt

s to the importance of past characters for the decoding
quality ( Figure 4c). By artificially limiting the number of
past κ available for prediction we show that the prediction
quality improves rapidly when extending the history from 0
to 10 characters and then saturates. This rapid improvement
aligns with the range of faster decay in Figure 4a.

3.4. From characters to words

The ISAN provides a natural means of moving from char-
acter level representation to word level. Using the linearity
of the hidden state dynamics we can aggregate all of the
κt
s belonging to a given word and visualize them as a sin-

gle contribution to the prediction of the letters in the next
word. This allows us to understand how each preceding
word impacts the decoding for the letters of later words. In
Figure 5 we show that the words ‘was’ and ‘higher’ make
large contributions to the prediction of the characters in
‘than’ as measured by the norm of the κt

‘_was’ and κt
‘_higher’.
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Figure 5. The ISAN architecture can be used to precisely char-
acterize the relationship between words and characters. The top
panel shows how exploiting the linearity of the network’s operation
we can combine the κt

s1 ..κ
t
sn in a word to a single contribution,

κt
word, for each word. Shown is the norm of κt

word, a measure of
the magnitude of the effect of the previous word on the selection
of the current character (red corresponds to a norm of 10, blue
to 0). The bottom panel shows the probabilities assigned by the
network to the next sequence character. Lighter lines show pre-
dictions conditioned on a decreasing number of preceding words.
For example, when predicting the characters of ‘than’ there is a
large contribution from both κt

‘was’ and κt
‘higher’, as shown in the

top pane. The effect on the log probabilities can be seen in the
bottom panel as the model becomes less confident when excluding
κt

‘was’ and significantly less confident when excluding both κt
‘was’

and κt
‘higher’. This word based representation clearly shows that the

system leverages contextual information across multiple words.

3.5. Change of basis

We are free to perform a change of basis on the hidden state,
and then to run the affine ISAN dynamics in that new basis.
Note that this change of basis is not possible for other RNN
architectures, since the action of the nonlinearity depends
on the choice of basis.

In particular we can construct a ‘readout basis’ that explicitly
divides the latent space into a subspace Pro

‖ spanned by
the rows of the readout matrix Wro, and its orthogonal
complement Pro

⊥ . This representation explicitly divides
the hidden state dynamics into a 27-dimensional ‘readout’
subspace that is accessed by the readout matrix to make
predictions, and a ‘computational’ subspace comprising the
remaining 216− 27 dimensions that are orthogonal to the
readout matrix.

We apply this change of basis to analyze an intriguing ob-
servation about the hidden offsets bx. As shown in Fig-
ure 6, the norm of the bx is strongly correlated to the
log-probability of the unigram x in the training data. Re-
expressing network parameters using the ‘readout basis’
shows that this correlation is not related to reading out the
next-step prediction. This is because the norm of the pro-
jection of bx into Pro

⊥ remains strongly correlated with
character frequency, while the projection into Pro

‖ shows
little correlation. This indicates that the information content
or ’surprise’ of a letter is encoded through the norm of the

Figure 6. By transforming the ISAN dynamics into a new basis, we
can better understand the action of the input-dependent biases. a)
We observe a strong correlation between the norms of the input de-
pendent biases, bx, and the log-probability of the unigram x in the
training data. We can begin to understand this correlation structure
using a basis transform into the ‘readout basis’. Breaking out the
norm into its components in Pro

‖ and Pro
⊥ in b) and c) respectively,

shows that the correlation is due to the component orthogonal to
Wro. This implies a connection between information or ‘surprise’
and distance in the ’computational’ subspace of state space.

Figure 7. By transforming ISAN dynamics into a new basis, we
can better interpret structure in the input-dependent biases. In a) we
show the cosine distance between the input dependent bias vectors,
split between vowels and consonants (‘ ’ is first). In b) we show
the correlation only considering the components in the subspace
Pro

‖ spanned by the rows of the readout matrix Wro. c) shows the
correlation of the components in the orthogonal complement Pro

⊥ .
In all plots white corresponds to 0 (aligned) and black to 2.

component of bx in the computational space, rather than in
the readout space.

Similarly, in Figure 7 we illustrate that the structure in the
correlations between the biases bx (across all x) is due to
their components in Pro

‖ , while the correlation in Pro
⊥ is

relatively uniform. We can clearly see two blocks of high
correlations between the vowels and consonants respectively,
while b‘_’ is uncorrelated to either.

3.6. Comparison with n-gram model with back-off

We compared the computation performed by n-gram lan-
guage models and those performed by the ISAN. An n-gram
model with back-off weights expresses the conditional prob-
ability p (xt|x1...xt−1) as a sum of smoothed count ratios of
n-grams of different lengths, with the contribution of shorter
n-grams down-weighted by back-off weights. On the other
hand, the computations performed by the ISAN start with
the contribution of bro to the logits, which as shown in Fig-
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ure 8a, corresponds to the unigram log-probabilities. The
logits are then additively updated with contributions from
longer n-grams, represented by κt

s. This additive contribu-
tion to the logits corresponds to a multiplicative modifica-
tion of the emission probabilities from histories of different
length. For long time lags, the additive correction to log-
probabilities becomes small (Figure 2), which corresponds
to multiplication by a uniform distribution. Despite these
differences in how n-gram history is incorporated, we nev-
ertheless observe an agreement between empirical models
estimated on the training set and model predictions for uni-
grams and bigrams. Figure 8 shows that the bias term bro

gives the unigram probabilities of letters, while the addition
of the offset terms bx accurately predict the bigram distri-
bution of P (xt+1|xt). Shown in panel b is an example,
P (x|‘_′), and in panel c, a summary plot for all 27 letters.

We further explore the n-gram comparison by artificially
limiting the length of the character history that is available
to the ISAN for making predictions, as shown in Figure 4c).

4. Analyses of a parentheses counting task
To show the possibility of complete interpretability of the
ISAN we train a model on a parenthesis counting task.
Bringing together ideas from section 3.5 we re-express the
transition dynamics in a new basis that fully reveals per-
formed computations.

We analyze the task of counting the nesting levels of multi-
ple parentheses types, a simplified version of a task defined
in (Collins et al., 2016). Briefly, a 35-unit ISAN is required
to keep track of the nesting level of 2 different types of
parentheses independently. The inputs are the one-hot en-
coding of the different opening and closing parentheses (e.g.
‘(’, ‘)’, ‘[’, ‘]’) as well as a noise character (‘a’). The output
is the one-hot encoding of the nesting level between (0-5),
one set of counts for each parenthesis type (so the complete
output vector is a 12 dimensional 2-hot vector). Further-
more, the target output is the nesting level at the previous
time step. This artificial delay requires the model to develop
a memory. One change from (Collins et al., 2016) is that
we exchange the cross-entropy error with an L2 error. This
leads to slightly cleaner figures, but does not qualitatively
change the results.

To elucidate the mechanism of ISAN’s operation we first re-
express the affine transitions ht+1 = Wht + b by their lin-
ear equivalents h′t+1 = W′h′t, where W′ = [W b;0T 1]
and h′t = [ht; 1]. Next, we used linear regression to find a
change of basis for which all augmented character matrices
and the hidden states are sparse. To do this we construct
the ‘readout’ (Pro

‖ ) and ‘computational’ ( Pro
⊥ ) subspace

decomposition as discussed in Section 3.5. We choose a
basis for Pro

⊥ which makes the projections of the hidden

Figure 8. The predictions of ISAN for one and two characters well
approximate the predictions of unigram and bigram models. In a)
we compare softmax(bro) to the empirical unigram distribution
P (x). In b) we compare softmax(Wrob‘_’ + bro) with the em-
pirical distribution P (xt+1|‘_’). In c) we show the correlation of
softmax(Wrobx + bro) with P (xt+1|xt) for all 27 characters
(y-axis), and compare this to the correlation between the empiri-
cal unigram probabilities P (x) to P (xt+1|xt) (x-axis). The plot
shows that the readout of the bias vector is a better predictor of the
conditional distribution than the unigram probability.

states into this computational subspace 2-hot vectors. With
this subspace decomposition, the hidden states and character
matrices have the form

W′
x =

Wrr
x Wrc

x br
x

Wcr
x Wcc

x bc
x

0T 0T 1

 h′t =

hr
t

hc
t

1

 (7)

and the update equation can be written as

h′t+1 = W′
xh
′
t =

Wrr
x hr

t +Wrc
x hc

t + br
x

Wcr
x hr

t +Wcc
x hc

t + bc
x

1

 . (8)

Here hr
t and hc

t denote the readout and computational por-
tions of ht, and Wrr

x ,Wcr
x ,Wrc

x ,Wcc
x denote the readout

to readout, readout to computation, computation to readout,
and computation to computation blocks of the character
matrix for character x, respectively.

In Figure 9d we show the hidden states in the rotated basis as
a sequence of column vectors. The 35 dimensional hidden
states are all 4-hot. We can treat them as a concatenation of a
readout hr

t and a computation hc
t part. The 12-dimensional

readout hr
t corresponds to network’s output at time step

t and encodes the counts from time step t − 1 as a 2-hot
vector (one count per parenthesis type). The computational
space hc

t is 35 − 12 = 23 dimensional, and encodes the
current counts as another 2-hot vector. Note that in this
basis the ISAN effectively uses only 24 dimensions and the
remaining 11 dimensions have no noticeable effect on the
computation. In Figure 9c we show W′

[ in the rotated basis.
We see from the leftmost 12 columns that Wrr

[ and Wcr
[ are

both nearly 0. This means that hr
t has no influence on ht+1.

Furthermore, the computation to readout block, Wrc
[ , is
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identity on the first 12 dimensions, effectively implementing
the lagging output hr

t = hc
t−1. The current counts are

implemented as delay lines and identity sub-matrices in
Wcc

[ , which respectively has the effect of incrementing the
count of ‘[’ by one, saturating at 5, and leaving the count of
’()’ parentheses fixed. The matrices W],W(,W) behave
analogously. It is clear that this solution is general, in that
retraining for increased numbers of parentheses types or an
increased counting maximum, would have the analogous
solution.

5. Discussion
In this paper we motivated an input-switched affine recurrent
network for the purpose of interpretability. We showed that a
switched affine architecture achieves the same performance
as LSTMs on the Text8 dataset for the same number of
maximum parameters, and reasonable performance on the
BWB. We performed a series of analyses, demonstrating
the ability to understand how inputs at one point in the input
sequence affect the outputs later in the output sequence. We
showed further in the multiple parentheses counting task that
the ISAN dynamics can be completely reverse engineered.
In summary, this work provides evidence that the ISAN is
able to express complex dynamical systems, yet its operation
can in principle be fully understood, a prospect that remains
out of reach for many popular recurrent architectures.

5.1. Computational benefits

Switched affine networks hold the potential to be massively
more computationally and memory efficient for text process-
ing than other recurrent architectures. First, input-dependent
affine transitions reduce the number of parameters used at
every step. For K possible inputs and N parameters, the
computational cost per update step is O

(
N
K

)
, a factor of

K speedup over non-switched architectures. Similarly, the

number of hidden units is O
(√

N
K

)
, a factor of K

1
2 mem-

ory improvement for storage of the latent state.

Furthermore, the ISAN is unique in its ability to pre-
compute affine transformations corresponding to input
strings. This is possible because the composition of affine
transformations is also an affine transformation. This prop-
erty is used in Section 3.4 to evaluate the linear contributions
of words, rather than characters. This means that the hidden
state update corresponding to an entire input sequence can
be computed with identical cost to the update for a single
character (plus the dictionary look-up cost for the com-
posed transformation). ISAN can therefore achieve very
large speedups on input processing, at the cost of increased
memory use, by accumulating large look-up tables of the
Wx and bx corresponding to common input sequences. Of
course, practical implementations will have to incorporate
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Figure 9. A visualization of the dynamics of an ISAN for the two
parentheses counting task with 1 time lag (count either ’()’ or ’[]’
nesting levels with a one-step readout delay). In a) the weight
matrix for ‘[’ is shown in the original basis. In c) it is shown trans-
formed to highlight the delay-line dynamics. The activations of the
hidden units are shown b) in the original basis, and d) rotated to the
same basis as in c), to highlight the delay-line dynamics in a more
intelligible way. The white line delineates the transition matrix
elements and hidden state dimensions that directly contribute to
the output. All matrices for parentheses types appear similarly,
with closing parentheses, e.g. ‘]’, changing the direction of the
delay line.

complexities of memory management, batching, etc.

5.2. Future work

There are some obvious future directions to this work. Cur-
rently, we define switching behavior using an input set with
finite and manageable cardinality. Studying word-level lan-
guage models with enormous vocabularies may require
some additional logic to scale. Another idea is to build
a language model that switches on bigrams or trigrams,
rather than characters or words, targeting an intermediate
number of affine transformations. Adapting this model
to continuous-valued inputs is another important direction.
One approach is to use a tensor factorization similar to that
employed by the MRNN (Sutskever et al., 2014) or defining
weights via additional networks, as in HyperNetworks (Ha
et al., 2016). Finally, we expect that automated methods
for changing bases to enable sparse representations in the
hidden state and dynamics matrices will be a particularly
fruitful direction to pursue.
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