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8. Appendix

For the entirety of this section, assume W =T and Z = Is.

8.1. Derivation of gradient of the loss with respect to prototypes

In this subsection, we will derive the gradient of the expected loss function with respect to B under the general mixture of
Gaussian model. That is, x ~ 2N (4, 30) + SN (p—, 2_).
The loss function with 2 prototypes and rbf-kernel (2 = %) is the following:
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In the infinite sample case (n — o0), with points being draw from mixture of Gaussian, we have
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Notice that the loss function decomposes into independent terms with respect to b and b_. Given this observation, we
constrain our focus on the analysis with respect to only b_. All theorems follow analogously for b_.

We introduce some notation that we will use in the rest of the section.

o Ay = (b —py), A= (by —p_), o= (g — p—).

For p.s.d. matrix M, vector v, ||VHM =vIMv.
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Theorem 3 (Gradient of the loss). In the infinite sample case:
Vi, R = (SIS 1) — SLISYL6L) Ay — (S1[S2]6") A

Proof. The loss function decomposes as a sum over datapoints. Hence, using the fact that the expectation and gradient
operators both distribute over sums, we can write down the gradient as,
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The last equality follows by completing the square and separating out constants with respect to x. We thus have Gaussians

with the following means,

The following constants come out as factors,

po= 2 (by + 37 ), plf =By B (2by + 2 y), g =2 2 (2by + 27 ),

2 2 2
gy =exp{-31al5, |, of =exo {-IA4l5, |, o =exp {-IA I3 }.

Then, the expression for the gradient can be re-written as:
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Using expectation of Gaussians, we get:
Vb, R = [(by —
( |E |g+

To establish the last equality, we claim that (b, — z//, ) =
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consequence of their deﬁnitions We show the first of these three equalities and the other two proofs are similar. Note that
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commute, when X is non-singular. Therefore
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Corollary 1. Let x be sampled from a mixture of 2 spherical Gaussians, i.e., 3, = 3_ =l and x ~ %N(u+, I+

%N(u_, I). Then, the gradient of the loss is given by,
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where,
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For the rest of this section, unless otherwise stated, assume >, =3_ =1.

8.2. Lemmas

Lemma 1. Let assumptions of Theorem 1 hold. In particular, let A+Tﬂ > —

then:
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2 for some small constant § > 0,
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Proof.
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Here, (; follows by replacing A T i with its lower bound — ||12]|? as specified in the assumption. O

Lemma 2. Let assumptions of Theorem 1 hold. In particular, if for some fixed § > 0, A+Tﬁ > — =952
IAL]] > 8] exp {f%ﬁuz}fOr some fixed o > 0. Also, let d > 8(cv — 8)||fi||?. Then we have:
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where where g" := exp {,w}, g, = exp {7%}.

Proof. Using A_ = A, + [ and triangle inequality, we have:
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The above quantity is monotonically increasing in A . Hence, for all ||A || > 8||i| exp {—a”%“ }, we have:
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Using Lemma 1 and the fact that g/, > ¢/, we have
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where (; follows from (3) and the last inequality follows by simple calculations.

Lemma now follows by using d > 8(a — 6)||jz||? and d > 1.
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8.3. Proof of Theorem 1

Proof. Note that Vi,, R = c1Ay — cA_, where ¢; = W%Hexp(—%HAJer) . Bd/%exp(—%HAJrHQ), co =
gz exp(—3llA—]?).

Let b+l = b+ — HVb+R. Then, b+/ — Uy = A+ — HVb+R.
by = g2 = 1AL + 72V, R|? — 20A, TV, R. )

Note that A 7'V}, . R > 0. Hence, setting n appropriately, we get:
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Using Lemma 2, we have:
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Using A = A+ and 24, i > —(1 - )i, we have: [|A_ |2 = [ Ay + a2 = A4 + |l + 24,75 >
|AL||? + 6||]|?. Using monotonicity of the above function wrt || A _||, and using ||A_| > ||distp||, we have:
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Using Lemma 1, we have: 3 < ¢}. Moreover, using (¢ )%(3)%"? > 4c?, we get:
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That is, ||by" — 1 || decreases geometrically until ||by || < 8exp {f%w}. O
8.4. Proof of Theorem 2

Proof. We wish to analyze the Hessian Vi+7€. The loss function decomposes as a sum over datapoints. Hence, using the
fact that the expectation and Hessian operators both distribute over sums, we can write down the Hessian as,
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From lemma 1, g” < ¢/, exp {*M} Also, let ¢ := £ = (%)d/QH. It can be seen that if d > 1, ¢ < 0.6. Thus,
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Figure 5. Iteration vs. Test Accuracy plot on mnist binary dataset. The legend shows the variables that are optimized (e.g., Z and W
corresponds to case where we fix B and optimize over Z, W).
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S 4
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A 2
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For ||A||? < 0.5, the following facts can be seen by simple one-dimensional arguments:

AL 2o 1
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[A,|?> is the only eigen value of A;A,”, and all eigen values of the scaled identity matrix are
0.9 — 0.6exp {—%H Thus the ratio of the largest eigen value to the smallest eigen value of V%+R is smaller
than 20. Thus the condition number is bounded by 20, and the theorem follows. O

9. Experiments
9.1. Joint training of 7, B, and W

A major reason ProtoNN achieves state-of-the-art performance is because of the joint optimization problem over Z, B, W
that ProtoNN solves. Instead of limiting ourselves to a projection matrix that’s fixed beforehand on the basis of some
unknown objective function (LMNN, SLEEC), we incorporate it into our objective and learn it along with the prototypes
and the label vectors. To show that this joint optimization in fact helps improve the accuracy of ProtoNN, we conducted
the following experiment, where we don’t optimize one or more of Z, B, W in our algorithm and instead fix them to their
initial values. We use the following hyper parameters for ProtoNN: d = 10, syy = 0.1, sz = sp = 1.0 and m = 20.
We initialize ProtoNN using LMNN. If W is not begin trained, then we sparsify it immediately at the beginning of the
experiment.

Figure 5 shows the results from this experiment on mnist binary dataset. The X-axis denotes iterations of alternating
minimization. One iteration denotes 20 epochs each over each of the e parameters W, B, Z. From the plots, we can see
that if W is fixed to its initial value, then the performance of ProtoNN drops significantly.

9.2. Datasets
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Dataset n d L Links
cifar 50000 | 400 2 http://manikvarma.org/
character recognition | 4397 | 400 2 https://www.kaggle.com/
eye 456 | 8192 2 https://rd.springer.com/chapter/10.1007/978-3-540-25976-3_23
mnist 60000 | 784 2 http://manikvarma.org/
usps 7291 256 2 http://manikvarma.org/
ward 4503 | 1000 2 https://www.kaggle.com/
letter-26 19500 16 26 https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
mnist-10 4397 | 784 10 https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
usps-10 7291 256 10 https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
curet-61 4209 | 610 61 http://www.manikvarma.org/
aloi 97200 | 128 | 1000 | https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/multiclass.html
mediamill 30993 | 101 120 http://manikvarma.org/downloads/XC/XMLRepository.html
delicious 12920 | 500 | 983 http://manikvarma.org/downloads/XC/XMLRepository.html
eurlex 15539 | 5000 | 3993 http://manikvarma.org/downloads/XC/XMLRepository.html

Table 3. Dataset statistics and links




