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Appendix A
In this appendix, we collect relevant information on the
Wasserstein metric and Wasserstein barycenter problem,
which were introduced in Section 2 in the paper. For any
Borel map g : Θ → Θ and probability measure G on
Θ, the push-forward measure of G through g, denoted by
g#G, is defined by the condition that

´
Θ

f(y)d(g#G)(y) =
´
Θ

f(g(x))dG(x) for every continuous bounded function f

on Θ.

Wasserstein metric When G =
k∑
i=1

piδθi and G′ =

k′∑
i=1

p′iδθ′i are discrete measures with finite support, i.e., k

and k′ are finite, the Wasserstein distance of order r be-
tween G and G′ can be represented as

W r
r (G,G′) = min

T∈Π(G,G′)
〈T,MG,G′〉 (1)

where we have

Π(G,G′) =
{
T ∈ Rk×k

′

+ : T1k′ = p, T1k = p′
}

such that p = (p1, . . . , pk)T and p′ = (p′1, . . . , p
′
k′)

T ,
MG,G′ =

{
‖θi − θ′j‖

}
i,j
∈ Rk×k

′

+ is the cost matrix, i.e.
matrix of pairwise distances of elements betweenG andG′,
and 〈A,B〉 = tr(ATB) is the Frobenius dot-product of ma-
trices. The optimal T ∈ Π(G,G′) in optimization problem
(1) is called the optimal coupling ofG andG′, representing
the optimal transport between these two measures. When
k = k′, the complexity of best algorithms for finding the
optimal transport is O(k3 log k). Currently, (Cuturi, 2013)
proposed a regularized version of (1) based on Sinkhorn
distance where the complexity of finding an approximation
of the optimal transport is O(k2). Due to its favorably fast
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computation, throughout the paper we shall utilize Cuturi’s
algorithm to compute the Wasserstein distance between G
and G′ as well as their optimal transport in (1).

Wasserstein barycenter As introduced in Section 2.2 in
the paper, for any probability measures P1, P2, . . . , PN ∈
P2(Θ), their Wasserstein barycenter PN,λ is such that

PN,λ = arg min
P∈P2(Θ)

N∑
i=1

λiW
2
2 (P, Pi)

where λ ∈ ∆N denote weights associated with
P1, . . . , PN . According to (Agueh and Carlier, 2011),
PN,λ can be obtained as a solution to so-called multi-
marginal optimal transporation problem. In fact, if we de-
note T 1

k as the measure preseving map from P1 to Pk, i.e.,
Pk = T 1

k#P1, for any 1 ≤ k ≤ N , then

PN,λ =

( N∑
k=1

λkT
1
k

)
#P1.

Unfortunately, the forms of the maps T 1
k are analytically in-

tractable, especially if no special constraints onP1, . . . , PN
are imposed.

Recently, (Anderes et al., 2015) studied the Wasserstein
barycenters PN,λ when P1, P2, . . . , PN are finite discrete

measures and λ =

(
1/N, . . . , 1/N

)
. They demonstrate

the following sharp result (cf. Theorem 2 in (Anderes et al.,
2015)) regarding the number of atoms of PN,λ
Theorem A.1. There exists a Wasserstein barycenter PN,λ

such that supp(PN,λ) ≤
N∑
i=1

si −N + 1.

Therefore, when P1, . . . , PN are indeed finite discrete mea-
sures and the weights are uniform, the problem of find-
ing Wasserstein barycenter PN,λ over the (computationally
large) space P2(Θ) is reduced to a search over a smaller

space Ol(Θ) where l =
N∑
i=1

si −N + 1.

Appendix B
In this appendix, we provide proofs for the remaining re-
sults in the paper. We start by giving a proof for the tran-
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sition from multilevel Wasserstein means objective func-
tion to objective function (4) in Section 3.1 in the paper.
All the notations in this appendix are similar to those in
the main text. For each closed subset S ⊂ P2(Θ), denote
the Voronoi region generated by S on the space P2(Θ) by
the collection of subsets {VP }P∈S , where VP := {Q ∈
P2(Θ) : W 2

2 (Q,P ) = min
G∈S

W 2
2 (Q,G)}. We define the

projection mapping πS as: πS : P2(Θ) → S where
πS(Q) = P as Q ∈ VP . Note that, for any P1, P2 ∈ S
such that VP1

and VP2
share the boundary, the values of πS

at the elements in that boundary can be chosen to be either
P1 or P2. Now, we start with the following useful lemmas.

Lemma B.1. For any closed subset S on P2(Θ), if Q ∈
P2(P2(Θ)), then EX∼Q(d2

W2
(X,S)) = W 2

2 (Q, πS#Q)
where d2

W2
(X,S) = inf

P∈S
W 2

2 (X,P ).

Proof. For any element π ∈ Π(Q, πS#Q):

ˆ
W 2

2 (P,G)dπ(P,G) ≥
ˆ
d2
W2

(P,S)dπ(P,G)

=

ˆ
d2
W2

(P,S)dQ(P )

= EX∼Q(d2
W2

(X,S))

where the integrations in the first two terms range over
P2(Θ)× S while that in the final term ranges over P2(Θ).
Therefore, we obtain

W 2
2 (Q, πS#Q) = inf

ˆ

P2(Θ)×S

W 2
2 (P,G)dπ(P,G)

≥ EX∼Q(d2
W2

(X,S)) (2)

where the infimum in the first equality ranges over all π ∈
Π(Q, πS#Q).

On the other hand, let g : P2(Θ)→ P2(Θ)× S such that
g(P ) = (P, πS(P )) for all P ∈ P2(Θ). Additionally, let
µπS = g#Q, the push-forward measure of Q under map-
ping g. It is clear that µπS is a coupling between Q and
πS#Q. Under this construction, we obtain for any X ∼ Q
that

E
(
W 2

2 (X,πS(X))
)

=

ˆ
W 2

2 (P,G)dµπS (P,G)

≥ inf

ˆ
W 2

2 (P,G)dπ(P,G)

= W 2
2 (Q, πS#Q) (3)

where the infimum in the second inequality ranges over all
π ∈ Π(Q, πS#Q) and the integrations range overP2(Θ)×

S. Now, from the definition of πS

E(W 2
2 (X,πS(X))) =

ˆ
W 2

2 (P, πS(P ))dQ(P )

=

ˆ
d2
W2

(P,S)dQ(P )

= E(d2
W2

(X,S)) (4)

where the integrations in the above equations range over
P2(Θ). By combining (3) and (4), we would obtain that

EX∼Q(d2
W2

(X,S)) ≥W 2
2 (Q, πS#Q). (5)

From (2) and (5), it is straightforward that
EX∼Q(d(X,S)2) = W 2

2 (Q, πS#Q). Therefore, we
achieve the conclusion of the lemma.

Lemma B.2. For any closed subset S ⊂ P2(Θ) and µ ∈
P2(P2(Θ)) with supp(µ) ⊆ S, there holds W 2

2 (Q, µ) ≥
W 2

2 (Q, πS#Q) for any Q ∈ P2(P2(Θ)).

Proof. Since supp(µ) ⊆ S , it is clear that W 2
2 (Q, µ) =

inf
π∈Π(Q,µ)

ˆ

P2(Θ)×S

W 2
2 (P,G)dπ(P,G).

Additionally, we have

ˆ
W 2

2 (P,G)dπ(P,G) ≥
ˆ
d2
W2

(P,S)dπ(P,G)

=

ˆ
d2
W2

(P,S)dQ(P )

= EX∼Q(d2
W2

(X,S))

= W 2
2 (Q, πS#Q)

where the last inequality is due to Lemma B.1 and the inte-
grations in the first two terms range over P2(Θ)× S while
that in the final term ranges over P2(Θ). Therefore, we
achieve the conclusion of the lemma.

Equipped with Lemma B.1 and Lemma B.2, we are ready
to establish the equivalence between multilevel Wasserstein
means objective function (5) and objective function (4) in
Section 3.1 in the main text.

Lemma B.3. For any given positive integersm andM , we
have

A := inf
H∈EM (P2(Θ))

W 2
2 (H, 1

m

m∑
j=1

δGj )

=
1

m
inf

H=(H1,...,HM )

m∑
j=1

d2
W2

(Gj ,H) := B.
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Proof. Write Q =
1

m

m∑
j=1

δGj
. From the definition of B,

for any ε > 0, we can find H such that

B ≥ 1

m

m∑
j=1

d2
W2

(Gj ,H)− ε

= EX∼Q(d2
W2

(X,H))− ε
= W 2

2 (Q, πH#Q)− ε
≥ A− ε

where the second equality in the above display is due to
Lemma B.1 while the last inequality is from the fact that
πH#Q is a discrete probability measure in P2(P2(Θ))
with exactly M support points. Since the inequality in the
above display holds for any ε, it implies that B ≥ A. On
the other hand, from the formation of A, for any ε > 0, we
also can findH′ ∈ EM (P2(Θ)) such that

A ≥ W 2
2 (H′,Q)− ε

≥ W 2
2 (Q, πH′#Q)− ε

=
1

m

m∑
j=1

d2
W2

(Gj ,H
′)− ε

≥ B − ε

where H ′ = supp(H′), the second inequality is due to
Lemma B.2, and the third equality is due to Lemma B.1.
Therefore, it means that A ≥ B. We achieve the conclu-
sion of the lemma.

Proposition B.4. For any positive integer numbers m,M
and kj as 1 ≤ j ≤ m, we denote

C := inf
Gj∈Okj

(Θ) ∀1≤j≤m,
H∈EM (P2(Θ))

m∑
i=1

W 2
2 (Gj , P

j
nj

)

+ W 2
2 (H, 1

m

m∑
i=1

δGi
)

D := inf
Gj∈Okj

(Θ) ∀1≤j≤m,
H=(H1,...,HM )

m∑
j=1

W 2
2 (Gj , P

j
nj

)

+
d2
W2

(Gj ,H)

m
.

Then, we have C = D.

Proof. The proof of this proposition is a straightfor-
ward application of Lemma B.3. Indeed, for each fixed
(G1, . . . , Gm) the infimum w.r.t to H in C leads to the
same infimum w.r.t to H in D, according to Lemma B.3.
Now, by taking the infimum w.r.t to (G1, . . . , Gm) on both
sides, we achieve the conclusion of the proposition.

In the remainder of the Supplement, we present the proofs
for all remaining theorems stated in the main text.

PROOF OF THEOREM 3.1 The proof of this theorem
is straightforward from the formulation of Algorithm 1. In
fact, for any Gj ∈ Ekj (Θ) and H = (H1, . . . ,HM ), we
denote the function

f(G,H) =

m∑
j=1

W 2
2 (Gj , P

j
n) +

d2
W2

(Gj ,H)

m

where G = (G1, . . . , Gm). To obtain the conclusion of
this theorem, it is sufficient to demonstrate for any t ≥ 0
that

f(G(t+1),H(t+1)) ≤ f(G(t),H(t)).

This inequality comes directly from f(G(t+1),H(t)) ≤
f(G(t),H(t)), which is due to the Wasserstein barycen-
ter problems to obtain G

(t+1)
j for 1 ≤ j ≤ m, and

f(G(t+1),H(t+1)) ≤ f(G(t+1),H(t)), which is due
to the optimization steps to achieve elements H(t+1)

u of
H(t+1) as 1 ≤ u ≤ M . As a consequence, we achieve
the conclusion of the theorem.

PROOF OF THEOREM 4.1 To simplify notation, write

Ln = inf
Gj∈Okj

(Θ),

H∈EM (P2(Θ))

fn(G,H),

L0 = inf
Gj∈Okj

(Θ),

H∈EM (P2(Θ))

f(G,H).

For any ε > 0, from the definition of L0, we can find Gj ∈
Okj (Θ) andH ∈ EM (P(Θ)) such that

f(G,H)1/2 ≤ L1/2
0 + ε.

Therefore, we would have

L1/2
n − L1/2

0 ≤ L1/2
n − f(G,H)1/2 + ε

≤ fn(G,H)1/2 − f(G,H)1/2 + ε

=
fn(G,H)− f(G,H)

fn(G,H)1/2 + f(G,H)1/2
+ ε

≤
m∑
j=1

|W 2
2 (Gj , P

j
nj

)−W 2
2 (Gj , P

j)|
W2(Gj , P

j
nj ) +W2(Gj , P j)

+ ε

≤
m∑
j=1

W2(P jnj
, P j) + ε.

By reversing the direction, we also obtain the inequality

L
1/2
n − L

1/2
0 ≥

m∑
j=1

W2(P jnj
, P j) − ε. Hence, |L1/2

n −

L
1/2
0 −

m∑
j=1

W2(P jnj
, P j)| ≤ ε for any ε > 0. Since P j ∈

P2(Θ) for all 1 ≤ j ≤ m, we obtain that W2(P jnj
, P j) →

0 almost surely as nj → ∞ (see for example Theorem
6.9 in (Villani, 2009)). As a consequence, we obtain the
conclusion of the theorem.
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PROOF OF THEOREM 4.2 For any ε > 0, we denote

A(ε) =

{
Gi ∈ Oki(Θ),H ∈ EM (P(Θ)) :

d(G,H,F) ≥ ε
}
.

Since Θ is a compact set, we also have Okj (Θ) and
EM (P2(Θ)) are compact for any 1 ≤ i ≤ m. As a con-
sequence, A(ε) is also a compact set. For any (G,H) ∈
A(ε), by the definition of F we would have f(G,H) >
f(G0,H0) for any (G0,H0) ∈ F . Since A(ε) is compact,
it leads to

inf
(G,H)∈A(ε)

f(G,H) > f(G0,H0).

for any (G0,H0) ∈ F . From the formulation of fn
as in the proof of Theorem 4.1, we can verify that
lim

n→∞
fn(Ĝ

n
, Ĥn) = lim

n→∞
f(Ĝ

n
, Ĥn) almost surely as

n → ∞. Combining this result with that of Theorem 4.1,
we obtain f(Ĝ

n
, Ĥn) → f(G0,H0) as n → ∞ for any

(G0,H0) ∈ F . Therefore, for any ε > 0, as n is large
enough, we have d(Ĝ

n
, Ĥn,F) < ε. As a consequence,

we achieve the conclusion regarding the consistency of the
mixing measures.

Appendix C
In this appendix, we provide details on the algorithm for
the Multilevel Wasserstein means with sharing (MWMS)
formulation (Algorithm 2). Recall the MWMS objective
function as follows

inf
SK ,Gj ,H∈BM,SK

m∑
j=1

W 2
2 (Gj , P

j
nj

) +
d2
W2

(Gj ,H)

m

where BM,SK =

{
Gj ∈ OK(Θ), H = (H1, . . . ,HM ) :

supp(Gj) ⊆ SK ∀1 ≤ j ≤ m
}

.

We make the following remarks regarding the initializa-
tions and updates of Algorithm 2:

(i) An efficient way to initialize global set S(0)
K ={

a
(0)
1 , . . . , a

(0)
K

}
∈ Rd×K is to perform K-means on

the whole data set Xj,i for 1 ≤ j ≤ m, 1 ≤ i ≤ nj ;

(ii) The updates a(t+1)
j are indeed the solutions of the fol-

lowing optimization problems

inf
a
(t)
j

{ m∑
l=1

W 2
2 (G

(t)
l , P ln) +

m∑
l=1

W 2
2 (G

(t)
l , H

(t)
il

)

m

}
,

Algorithm 2 Multilevel Wasserstein Means with Sharing
(MWMS)

Input: Data Xj,i, K, M .
Output: global set SK , local measuresGj , and elements
Hi of H .
Initialize S

(0)
K =

{
a

(0)
1 , . . . , a

(0)
K

}
, elements H(0)

i of

H(0), and t = 0.
while S(t)

K , G
(t)
j , H

(t)
i have not converged do

1. Update global set S(t)
K :

for j = 1 to m do
ij ← arg min

1≤u≤M
W 2

2 (G
(t)
j , H

(t)
u ).

T j ← optimal coupling of G(t)
j , P jn (cf. Appendix

A).
U j ← optimal coupling of G(t)

j , H(t)
ij

.
end for
for i = 1 to M do
h

(t)
i ← atoms of H(t)

i with h(t)
i,v as v-th column.

end for
for i = 1 to K do
mD ← m

m∑
u=1

ni∑
v=1

Tui,v +
m∑
u=1

∑
v 6=i

Uui,v .

a
(t+1)
i ←

(
m

m∑
u=1

ni∑
v=1

Tui,vXu,v+

m∑
u=1

∑
v
Uui,vh

(t)
ju,v

)
/mD.

end for
2. Update G(t)

j for 1 ≤ j ≤ m:
for j = 1 to m do
G

(t+1)
j ← arg min

Gj :supp(Gj)≡S(t+1)
K

W 2
2 (Gj , P

j
nj

)

+W 2
2 (Gj , H

(t)
ij

)/m.
end for
3. Update H(t)

i for 1 ≤ i ≤M as Algorithm 1.
4. t← t+ 1.

end while
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which is equivalent to find a(t)
j to optimize

m

m∑
u=1

nj∑
v=1

Tuj,v‖a
(t)
j −Xu,v‖2

+

m∑
u=1

∑
v

Uuj,v‖a
(t)
j − h

(t)
ij ,v
||2.

where T j is an optimal coupling of G(t)
j , P jn and U j

is an optimal coupling of G(t)
j , H(t)

ij
. By taking the

first order derivative of the above function with respect
to a(t)

j , we quickly achieve a(t+1)
j as the closed form

minimum of that function;

(iii) Updating the local weights of G(t+1)
j is equivalent to

updating G(t+1)
j as the atoms of G(t+1)

j are known to

stem from S
(t+1)
K .

Now, similar to Theorem 3.1 in the main text, we also have
the following theoretical guarantee regarding the behavior
of Algorithm 2 as follows

Theorem C.1. Algorithm 2 monotonically decreases the
objective function of the MWMS formulation.

Proof. The proof is quite similar to the proof of Theorem
3.1. In fact, recall from the proof of Theorem 3.1 that for
any Gj ∈ Ekj (Θ) and H = (H1, . . . ,HM ) we denote the
function

f(G,H) =

m∑
j=1

W 2
2 (Gj , P

j
n) +

d2
W2

(Gj ,H)

m

where G = (G1, . . . , Gm). Now it is sufficient to demon-
strate for any t ≥ 0 that

f(G(t+1),H(t+1)) ≤ f(G(t),H(t)).

where the formulation of f is similar as in the proof of
Theorem 3.1. Indeed, by the definition of Wasserstein dis-
tances, we have

E = mf(G(t),H(t)) =
m∑
u=1

∑
j,v

mTuj,v‖a
(t)
j −Xu,v‖2 + Uuj,v‖a

(t)
j − h

(t)
iu,v
‖2.

Therefore, the update of a(t+1)
i from Algorithm 2 leads to

E ≥
m∑
u=1

∑
j,v

mTuj,v‖a
(t+1)
j −Xu,v‖2

+ Uuj,v‖a
(t+1)
j − h(t)

iu,v
‖2

≥ m

m∑
j=1

W 2
2 (G

(t)′

j , P jn) +

m∑
j=1

W 2
2 (G

(t)′

j , H
(t)
ij

)

≥ m

m∑
j=1

W 2
2 (G

(t)′

j , P jn) +

m∑
j=1

d2
W2

(G
(t)′

j ,H(t))

= mf(G′(t),H(t))

where G′(t) = (G
(t)′

1 , . . . , G
(t)′

m ), G(t)′

j are formed by re-

placing the atoms ofG(t)
j by the elements of S(t+1)

K , noting

that supp(G
(t)′

j ) ⊆ S(t+1)
K as 1 ≤ j ≤ m, and the second

inequality comes directly from the definition of Wasser-
stein distance. Hence, we obtain

f(G(t),H(t)) ≥ f(G′(t),H(t)). (6)

From the formation of G(t+1)
j as 1 ≤ j ≤ m, we get

m∑
j=1

d2
W2

(G
(t+1)
j ,H(t)) ≤

m∑
j=1

d2
W2

(G
(t)′

j ,H(t)).

Thus, it leads to

f(G′(t),H(t)) ≥ f(G(t+1),H(t)). (7)

Finally, from the definition of H(t+1)
1 , . . . ,H

(t+1)
M , we

have

f(G(t+1),H(t)) ≥ f(G(t+1),H(t+1)). (8)

By combining (6), (7), and (8), we arrive at the conclusion
of the theorem.

Appendix D
In this appendix, we offer details on the data generation
processes utilized in the simulation studies presented in
Section 5 in the main text. The notions of m,n, d,M are
given in the main text. Let Ki be the number of supporting
atoms of Hi and kj the number of atoms of Gj . For any
d ≥ 1, we denote 1d to be d dimensional vector with all
components to be 1. Furthermore, Id is an identity matrix
with d dimensions.

Comparison metric (Wasserstein distance to truth)

W :=
1

m

m∑
j=1

W2(Ĝj , Gj) + dM(Ĥ,H)



Supplementary Material for Multilevel Clustering via Wasserstein Means

where Ĥ := {Ĥ1, . . . , ĤM}, H := {H1, . . . ,HM} and
dM(Ĥ,H) is a minimum-matching distance (Tang et al.,
2014; Nguyen, 2015):

dM(Ĥ,H) := max{d(Ĥ,H), d(H, Ĥ)}

where

d(Ĥ,H) := max
1≤i≤M

min
1≤j≤M

W2(Hi, Ĥj).

Multilevel Wasserstein means setting The global clus-
ters are generated as follows:

means for atoms µi := 5(i− 1), i = 1, . . . ,M.

atoms of Hi : φij ∼ N (µi1d, Id), j = 1, . . . ,Ki.

weights of atoms: πi ∼ Dir(1Ki).

Let Hi :=

Ki∑
j=1

πijδφij
.

For each group j = 1, . . . ,m, generate local measures and
data as follows:

pick cluster label zj ∼ Unif({1, . . . ,M}).
mean for atoms : τji ∼ Hzj , i = 1, . . . , kj .

atoms of Gj : θji ∼ N (τji, Id), i = 1, . . . , kj .

weights of atoms pj ∼ Dir(1kj ).

Let Gj :=

kj∑
i=1

pjiδθji .

data mean µi ∼ Gj , i = 1, . . . , nj .

observation Xj,i ∼ N (µi, Id).

For the case of non-constrained variances, the variance to
generate atoms θji of Gj is set to be proportional to global
cluster label zj assigned to Gj .

Multilevel Wasserstein means with sharing setting
The global clusters are generated as follows:

means for atoms µi := 5(i− 1), i = 1, . . . ,M.

atoms of Hi : φij ∼ N (µi1d, Id), j = 1, . . . ,Ki.

weights of atoms πi ∼ Dir(1Ki
).

Let Hi :=

Ki∑
j=1

πijδφij
.

For each shared atom k = 1, . . . ,K:

pick cluster label zk ∼ Unif({1, . . . ,M}).
mean for atoms : τk ∼ Hzk .

atoms of SK : θk ∼ N (τk, Id).

For each group j = 1, . . . ,m generate local measures and
data as follows:

pick cluster label z̃j ∼ Unif({1, . . . ,M}).
select shared atoms sj = {k : zk = z̃j}.

weights of atoms psj ∼ Dir(1|sj |); Gj :=
∑
i∈sj

piδθi .

data mean µi ∼ Gj , i = 1, . . . , nj .

observation Xj,i ∼ N (µi, Id).

For the case of non-constrained variances, the variance to
generate atoms θi of Gj where i ∈ sj is set to be propor-
tional to global cluster label z̃j assigned to Gj .

Three-stage K-means First, we estimate Gj for each
group 1 ≤ j ≤ m by using K-means algorithm with kj
clusters. Then, we cluster labels using K-means algorithm
withM clusters based on the collection of all atoms ofGjs.
Finally, we estimate the atoms of each Hi via K-means
algorithm with exactly L clusters for each group of local
atoms. Here, L is some given threshold being used in Algo-
rithm 1 in Section 3.1 in the main text to speed up the com-
putation (see final remark regarding Algorithm 1 in Section
3.1). The three-stage K-means algorithm is summarized in
Algorithm 3.

Algorithm 3 Three-stage K-means

Input: Data Xj,i, kj , M , L.
Output: local measures Gj and global elements Hi of
H .
Stage 1
for j = 1 to m do
Gj ← kj clusters of group j with K-means (atoms as
centroids and weights as label frequencies).

end for
C ← collection of all atoms of Gj .
Stage 2
{D1, . . . , DM} ←M clusters from K-means on C.
Stage 3
for i = 1 to M do
Hi ← L clusters of Di with K-means (atoms as cen-
troids and weights as label frequencies).

end for
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