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A. Proof of Theorem 3
Theorem 3. The derivative @pk/@w for k � 1 is given by:
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Proof. By Induction:

pk is defined by the recursive formula

p
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and applying the chain rule to Eq. (13) yields a recursive

expression for the derivative as well:
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For k = 1 the derivative is given by
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which anchors the induction.

Assume Eq. (12) is true for a fixed k then for k + 1 the

derivative is
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This completes the induction and proves Theorem 3.

B. Generating the Node Features
There are two properties the feature generation has to ful-

fill. First the Sybil network is assumed to behave adversar-

ial and therefore tries to mimic the feature distribution of

the honest network such that a simple feature-based detec-

tion does not work. To simulate this behavior the same un-

derlying distribution is used to generate the features for the

honest and for the sybil nodes. This ensures that any clas-

sification algorithm that is only based on the features will

fail. Second the features should not be i. i. d., instead we

want homophily within the network. This means that the

features of two adjacent nodes to be more similar than the

features of two non-adjacent nodes. To achieve this kind

Figure 7. Comparison of feature similarity of adjacent nodes

(edge) and non adjacent nodes (no edge) before and after the cor-

relating random walk.

of feature distribution on the nodes the following two-step

generation process is used.

In the first step the initial feature vector x

(0)
v 2 Rd

for each

node v 2 V is chosen from the same multivariate random

distribution, e.g., Gaussian distribution x

(0)
v s Nd(µ,⌃).

In the second step the features in each dimension are corre-

lated along the edges which is done with a short lazy ran-

dom walk.

To get the transition matrix for the random walk, we first

define the matrix

Q

0
= ↵I +A(

˜

G) ,

where I is the identity Matrix and A(

˜

G) is the adjacency

matrix of the network graph

˜

G. The final transition ma-

trix Q of the random walk is the normalized version of Q

0

where the row Qv corresponding to the node v and is de-

fined by

Qv = Q

0
v
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.

With this transition matrix and the initial feature distribu-

tion x

(0)
the new correlated feature vector can be computed

by applying the random walk for a few (k) iterations:

xv := Q

k
x

(0)
v = x

(k)
v

Figure 7 shows the distribution of similarity between ad-

jacent nodes and non-adjacent nodes before and after the

correlating random walk. Similarity is measured as the L2-

distance between the features of the nodes.

The edge features function  u,v simply stacks together the

node features of the two adjacent nodes xu and xv .

C. Discussion on Fairness of Empirical
Evaluation

We see our method (TSR) as a logical successor to Integro

and SybilRank, as such, it was designed in a way to keep all

the positive attributes of its predecessors while addressing

their weak points to reflect more complex attacking scenar-

ios. The reason why the detection performance is superior
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is that TSR (a) utilizes more information (i.e., labels and

node features) and (b) it is more economical with the avail-

able information (solving an integrated optimization prob-

lem instead of a two step approach). We argue that the

experiments are . . .

• . . . fair because each method is presented the same

data. As in all comparisons, methods will use the

available information in different ways, or, neglecting

some parts of the available information (e.g. compar-

ing semi-supervised with supervised methods).

• . . . fair because each (state-of-the-art) method was de-

signed with the goal to detect Sybil accounts. As such,

they ought to be compared how well they solve this

problem.

• . . . unfair because we assume perfect victim detec-

tion performance for Integro. Hence, Integro looks

better than actually expected in practice. As Fig. 5

shows, the detection performance for Integro deterio-

rates quickly if the preceding victim detection is not

perfect (AUC of 0.9 instead 1.0). Also, to train a vic-

tim prediction, positive and negative labels are neces-

sary and hence, Integro uses the same kind of informa-

tion as TSR (P and N victim labels and node features).

• . . . unfair because, due to a general lack of real data

(i.e. labeled Sybil networks in real OSN), they were

designed with our assumptions in mind (cf. Assump-

tion 1) and our proposed method TSR was specifically

designed to succeed in such scenarios. Throughout

the paper, we argue that these assumption are actu-

ally more realistic than previous scenarios. However,

a final verification in a real production environment is

missing.

To sum up, we made sure that the empirical evaluation is as

fair as possible given the constraints.


