Analysis and Optimization of Graph Decompositions by Lifted Multicuts (Supplement)

Andrea Horňáková^{*1} Jan-Hendrik Lange^{*1} Bjoern Andres¹

Appendix

A. Multicuts

Proof of Lemma 2 First, we show that for any $\Pi \in D_G$, the image $\phi_G(\Pi)$ is a multicut of G. Assume the contrary, i.e. there exists a cycle C of G such that $|C \cap \phi_G(\Pi)| = 1$. Let $\{u, v\} = e \in C \cap \phi_G(\Pi)$, then for all $U \in \Pi$ it holds that $u \notin U$ or $v \notin U$. However, $C \setminus \{e\}$ is a sequence of edges $\{w_1, w_2\}, \ldots, \{w_{k-1}, w_k\}$ such that $u = w_1, v = w_k$ and $\{w_i, w_{i+1}\} \notin \phi_G(\Pi)$ for all $1 \leq i \leq k - 1$. Consequently, since Π is a partition of V, there exists some $U \in \Pi$ such that

$$w_1 \in U \land w_2 \in U \land \ldots \land w_{k-1} \in U \land w_k \in U.$$

This contradicts $w_1 = u \notin U$ or $w_k = v \notin U$.

To show injectivity of ϕ_G , let $\Pi = \{U_1, \ldots, U_k\}$, $\Pi' = \{U'_1, \ldots, U'_\ell\}$ be two decompositions of G. Suppose $\Pi \neq \Pi'$. Then (w.l.o.g.) there exist some $u, v \in V$ with $\{u, v\} \in E$ and some $U_i \in \Pi$ such that $u, v \in U_i$ and for all $U'_j \in \Pi'$ it holds that $u \notin U'_j$ or $v \notin U'_j$. Thus, $\{u, v\} \in \phi_G(\Pi')$ but $\{u, v\} \notin \phi_G(\Pi)$, which means $\phi_G(\Pi) \neq \phi_G(\Pi')$.

For surjectivity, take some multicut $M \subseteq E$ of G. Let $\Pi = \{U_1, \ldots, U_k\}$ collect the node sets of the connected components of the graph $(V, E \setminus M)$. Apparently, Π defines a decomposition of G. We have $\{u, v\} \in \phi_G(\Pi)$ if and only if for all $U \in \Pi$ it holds that $v \notin U$ or $u \notin U$. The latter holds true if and only if $\{u, v\}$ is not contained in any connected component of $(V, E \setminus M)$, which is equivalent to $\{v, w\} \in M$. Hence, $\phi_G(\Pi) = M$.

Proof of Lemma 4 First, we show that for any $M \in M_{K_V}$ the image $\psi(M)$ is an equivalence relation on V. Since K_V is simple, we trivially have $\{v, v\} \notin M$ for any $v \in V$. Therefore, $(v, v) \in \psi(M)$, which means $\psi(M)$ is reflexive. Symmetry of $\psi(M)$ follows from $\{u, v\} =$ $\{v, u\}$ for all $u, v \in V$. Now, suppose $(u, v), (v, w) \in \psi(M)$. Then $\{u, v, \}, \{v, w\} \notin M$ and thus $\{u, w\} \notin M$ (otherwise $C = \{u, v, w\}$ would be a cycle contradicting the definition of a multicut). Hence, $(u, w) \in \psi(M)$, which gives transitivity of $\psi(M)$.

Let M, M' be two multicuts of K_V with $\psi(M) = \psi(M')$. Then

$$\{u, v\} \in M \iff (u, v) \notin \psi(M)$$
$$\iff (u, v) \notin \psi(M')$$
$$\iff \{u, v\} \in M'.$$

Hence M = M', so ψ is injective.

Let R be an equivalence relation on V and define M by

$$\{u,v\} \in M \iff (u,v) \notin R.$$

Transitivity of R implies that M is a multicut of K_V . Moreover, by definition, it holds that $\psi(M) = R$. Hence, ψ is also surjective.

B. Lifted Multicuts

Proof of Lemma 5 Let $x \in \{0, 1\}^{E'}$ be such that $M' = x^{-1}(1)$ is a multicut of G' lifted from G. Every cycle in G is a cycle in G'. Moreover, for any path $vw = f \in F_{GG'}$ and any vw-path P in G, it holds that $P \cup \{f\}$ is a cycle in G'. Therefore, x satisfies all inequalities (4) and (5). Assume x violates some inequality of (6). Then there is an edge $vw \in F_{GG'}$ and some vw-cut C in G such that $x_{vw} = 0$ and for all $e \in C$ we have $x_e = 1$. Let Π be the partition of V corresponding to M' according to Lemma 2. There exists some $U \in \Pi$ with $v \in U$ and $w \in U$. However, for any $uu' = e \in C$ it holds that $u \notin U$ or $u' \notin U$. This means the subgraph $(U, E \cap {U \choose 2})$ is not connected, as C is a *vw*-cut. Hence, Π is not a decomposition of G, which is a contradiction, because G is connected.

Now, suppose $x \in E'$ satisfies all inequalities (4)–(6). We show first that $M' = x^{-1}(1)$ is a multicut of G'. Assume the contrary, then there is a cycle C' in G' and some edge e' such that $C' \cap M' = \{e'\}$. For every $vw = f \in F_{GG'} \cap$ $C' \setminus \{e'\}$ there exists a vw-path P in G such that $x_e = 0$ for all $e \in P$. Otherwise there would be some vw-cut in G

^{*}Equal contribution ¹Max Planck Institute for Informatics, Saarbrücken, Germany. Correspondence to: Bjoern Andres <andres@mpi-inf.mpg.de>.

Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017 by the author(s).

Figure 1. To show that the consistency problem is NP-hard, we reduce 3-SAT to this problem. Shown above is the instance of the consistency problem constructed for the instance of 3-SAT given by the form $(a \lor b \lor \overline{c}) \land (a \lor c \lor \overline{d}) \land (\overline{a} \lor c \lor e) \land (\overline{a} \lor c \lor \overline{e})$. Solid and dashed lines depict edges in E and $E' \lor E$, respectively. Black means $\tilde{x}_e = 0$. Red means $\tilde{x}_e = 1$. Grey means $e \notin \text{dom } \tilde{x}$.

violating (6), as G is connected. If we replace every such f with its associated path P in G, then the resulting cycle violates either (4) (if $e' \in E$) or (5) (if $e' \in F_{GG'}$). Thus, M' is a multicut of G'. By connectivity of G, the partition $\phi_{G'}^{-1}(M')$ is a decomposition of both G' and G. Therefore, $M = \lambda_{GG'}^{-1}(M') = \phi_G(\phi_{G'}^{-1}(M'))$ is a multicut of G and hence $M' = x^{-1}(1)$ is indeed lifted from G.

C. Partial Lifted Multicuts

Proof of Theorem 1 Firstly, we show that the consistency problem is in NP. For that, we show that verifying, for any given $x \in \{0, 1\}^{E'}$, that x is a completion of \tilde{x} and a characteristic function of a multicut of G' lifted from G is a problem of polynomial time complexity. To verify that x is a completion of \tilde{x} , we verify for every $e \in \text{dom } \tilde{x}$ that $x_e = \tilde{x}_e$. This takes time O(|E|). To verify that $x^{-1}(1)$ is a multicut of G' lifted from G, we employ a disjoint set data structure initialized with singleton sets V. For any $\{v, w\} \in x^{-1}(0)$, we call union(v, w). Then, we verify for every $\{v, w\} \in x^{-1}(1)$ that $\text{find}(v) \neq \text{find}(w)$. This takes time $O(|E| + |V| \log |V|)$.

To show that the consistency problem is NP-hard, we reduce 3-SAT to this problem. For that, we consider any instance of 3-SAT defined by a propositional logic formula A in 3-SAT form. An example is shown in Fig. 1. Let m be the number of variables and n the number of clauses in A.

In order to define an instance of the consistency problem w.r.t. this instance of 3-SAT, we construct in polynomial time a connected graph G = (V, E), a graph G' = (V, E') with $E \subseteq E'$, and a partial characteristic function $\tilde{x} \in \{0, 1, *\}^{E'}$ as described below. An example of this construction is shown in Fig. 1.

 There are 3n + 2 nodes in V. Two nodes are denoted by s and t. Additional nodes are organized in n layers. For j ∈ {1,...,n}, the j-th layer corresponds to the *j*-th clause in A, containing one node for each of the three literals¹ in the clause. Every node is labeled with its corresponding literal. Layer 0 contains only the node s. Layer n + 1 contains only the node t.

- Any two consecutive layers are connected such that their nodes together induce a complete bipartite subgraph of G. Additionally, any nodes v and w labeled with conflicting literals, a and ā, that are not already connected in G are connected in G' by an edge {v, w} ∈ E' \ E.
- For any edge {v, w} ∈ E' whose nodes v and w are labeled with conflicting literals, we set x̃_{vw} = 1. In addition, we introduce the edge {s,t} ∈ E' \ E and define x̃_{st} = 0. No other edges are in the domain of x̃.

Observe that \tilde{x} is consistent iff there exists an *st*-path *P* in *G* such that no edge or chord $\{v, w\}$ of *P* is such that $\tilde{x}_{vw} = 1$. Any such path is called feasible. All other *st*-paths in *G* are called infeasible.

Now, we show firstly that the existence of a feasible path implies the existence of a solution to the given instance of 3-SAT. Secondly, we show that the existence of a solution to the given instance of 3-SAT implies the existence of a feasible path. That suffices.

- 1. Let P be a feasible path and let V_P its node set. An assignment χ to the variables of the instance of 3-SAT is constructed as follows: For any node $v \in V_P$ whose label is a variable a, we define $\chi(a) :=$ true. For any node $v \in V_P$ whose label is a negated variable \bar{a} , we define $\chi(a) :=$ false. All remaining variables are assigned arbitrary truth values. By the properties of P, χ is well-defined and $A[\chi]$ is true.
- 2. Let χ be a solution to the given instance of 3-SAT. As every clause of A contains one literal that is true, and by construction of G, we can choose an *st*-path in G along which all nodes are labeled with literals that are true for the assignment χ . By virtue of χ being a solution to the instance of 3-SAT, any pair of literals that are both true are non-conflicting. Thus, P has no edge or chord $\{v, w\}$ such that $\tilde{x}_{vw} = 1$.

Proof of Lemma 6 Firstly, suppose that $E \subseteq \operatorname{dom} \tilde{x}$. In this case, it is clear that \tilde{x} is consistent iff \tilde{x} satisfies all cycle inequalities (4) w.r.t. the graph $(V, E \cap \operatorname{dom} \tilde{x})$. This can be checked in time O(|V| + |E'|) as follows: Label the maximal components of the subgraph $G_{\tilde{x}}$ of G induced by the edge set $\{e \in E : \tilde{x}_e = 0\}$. Then, for every $\{v, w\} \in E'$ with $\tilde{x}_{vw} = 1$, check if v and w are in distinct maximal

¹A literal is either a variable a or a negated variable \bar{a} .

components of $G_{\tilde{x}}$. If so, \tilde{x} is consistent, otherwise \tilde{x} is inconsistent.

Now, suppose $\tilde{x} \in \{0, 1, *\}^{E'}$ satisfies (10). We show that, similar to the first case, \tilde{x} is consistent iff all inequalities (4) and (5) are satisfied w.r.t. the graph $(V, E' \cap \operatorname{dom} \tilde{x})$. This can be checked analogously to the first case.

Necessity of this condition is clear. To show sufficiency, assume this condition holds true. We construct some $x \in X_{GG'}[\tilde{x}]$ as follows. For all $e \in \text{dom } \tilde{x}$, set $x_e := \tilde{x}_e$. For all $\{v, w\} = f \in E' \setminus E$ such that $f \notin \text{dom } \tilde{x}$ and such that there is a *vw*-path *P* in *G* with $\tilde{x}_e = 0$ for all $e \in P$, set $x_f := 0$. For all remaining edges *e*, set $x_e := 1$. By construction, *x* satisfies (4), (5) and (6).

Proof of Theorem 2 To show that the maximal specificity problem is NP-hard, we reduce 3-SAT to this problem: For any given instance of 3-SAT we construct in polynomial time a connected graph G = (V, E), a graph G' = (V, E') with $E \subseteq E'$, and a partial characteristic function $\tilde{x} \in \{0, 1, *\}^{E'}$ as in the proof of Thm. 1, except that now, we let $st \notin \text{dom } \tilde{x}$.

We know that \tilde{x} is consistent because $\mathbb{1} \in X_{GG'}[\tilde{x}]$. We show that \tilde{x} is maximally specific iff the given instance of 3-SAT has a solution:

Firstly, every $e \in E' \setminus (\operatorname{dom} \tilde{x} \cup \{st\})$ is undecided, by the following argument: (i) There exists an $x \in X_{GG'}[\tilde{x}]$ with $x_e = 1$, namely 1. (ii) There exists an $x \in X_{GG'}[\tilde{x}]$ with $x_e = 0$, namely the $x \in \{0, 1\}^{E'}$ with $x_e = 0$ and $\forall f \in E' \setminus \{e\} : x_f = 1$. To see that $x \in X_{GG'}[\tilde{x}]$, observe that $e \in E$ and $\tilde{x}^{-1}(0) = \emptyset$. Thus, st is the only edge in $E' \setminus \operatorname{dom} \tilde{x}$ that is possibly decided. That is:

$$E'[\tilde{x}] \subseteq \{st\} \cup \operatorname{dom} \tilde{x} \tag{42}$$

Thus, \tilde{x} is maximally specific iff \tilde{x} is undecided. More specifically, \tilde{x} is maximally specific iff there exists an $x \in X_{GG'}[\tilde{x}]$ with $x_{st} = 0$, as we know of the existence of $\mathbb{1} \in X_{GG'}[\tilde{x}]$. Thus, \tilde{x} is maximally specific iff the given instance of 3-SAT has a solution, by the arguments made in the proof of Thm. 1.

Proof of Lemma 7 Observe that \tilde{x} is maximally specific iff $cl_{GG'} \tilde{x} = \tilde{x}$. Thus, Lemma 7 follows from Lemma 11.

Proof of Lemma 8 Reflexivity is obvious. Antisymmetry: $(\tilde{x} \leq \tilde{x}' \land \tilde{x}' \leq \tilde{x}) \Rightarrow (\operatorname{dom} \tilde{x} = \operatorname{dom} \tilde{x}' \land \forall e \in \operatorname{dom} \tilde{x} : \tilde{x}_e = \tilde{x}'_e)$. Transitivity: Let $\tilde{x} \leq \tilde{x}' \leq \tilde{x}''$. Then $\operatorname{dom} \tilde{x} \subseteq \operatorname{dom} \tilde{x}' \subseteq \operatorname{dom} \tilde{x}''$ and $\forall e \in \operatorname{dom} \tilde{x} : \tilde{x}_e = \tilde{x}'_e = \tilde{x}''_e$.

Proof of Lemma 9 We show first that \tilde{x}' is maximal w.r.t. \leq in $\tilde{X}_{GG'}[\tilde{x}]$ iff it is maximally specific. This implies

existence and uniqueness of the maximum of $\tilde{X}_{GG'}[\tilde{x}]$ by construction via dom $\tilde{x}' = E'[\tilde{x}]$.

Let $\tilde{x}' \in \tilde{X}_{GG'}[\tilde{x}]$ be maximally specific and suppose $\tilde{x}' \leq \tilde{x}''$ for some $\tilde{x}'' \in \tilde{X}_{GG'}[\tilde{x}]$. Then dom $\tilde{x}'' = \text{dom } \tilde{x}'$, since $X_{GG'}[\tilde{x}'] \neq X_{GG'}[\tilde{x}'']$ if dom $\tilde{x}'' \setminus E'[\tilde{x}] \neq \emptyset$. Thus, $\tilde{x}' = \tilde{x}''$, which means \tilde{x}' is maximal w.r.t. $\leq \text{in } \tilde{X}_{GG'}[\tilde{x}]$.

Conversely, any maximal element \tilde{x}' of $X_{GG'}[\tilde{x}]$ w.r.t. \leq must satisfy $E'[\tilde{x}] \subseteq \operatorname{dom} \tilde{x}'$, which means it is maximally specific.

Hence, the unique maximum $\tilde{x}' \in \tilde{X}_{GG'}[\tilde{x}]$ is obtained as follows. For an arbitrary $x \in X_{GG'}[\tilde{x}]$ define \tilde{x}' via $\tilde{x}'_e := x_e$ for all decided edges $e \in E'[\tilde{x}]$.

Proof of Theorem 3 Let us have $\tilde{x}, \tilde{x}' \in \tilde{X}_{GG'}$.

- The implication $X_{GG'}[\tilde{x}] = X_{GG'}[\tilde{x}'] \Rightarrow \tilde{X}_{GG'}[\tilde{x}] = \tilde{X}_{GG'}[\tilde{x}']$: follows from the definition of $\tilde{X}_{GG'}[\tilde{x}]$ in Lemma 9.
- The implication X
 _{GG'}[x̃] = X
 {GG'}[x̃'] ⇒ cl{GG'} x̃ = cl_{GG'} x̃' follows from the definition of the closure of x̃ as the maximum of X
 _{GG'}[x̃].
- The implication $\operatorname{cl}_{GG'} \tilde{x} = \operatorname{cl}_{GG'} \tilde{x}' \Rightarrow X_{GG'}[\tilde{x}] = X_{GG'}[\tilde{x}']$ follows from $\operatorname{cl}_{GG'} \tilde{x} = \operatorname{cl}_{GG'} \tilde{x}' \in \tilde{X}_{GG'}[\tilde{x}]$.

Proof of Lemma 10 Let $x \in X_G$ and define $y = cl_{GG'} x$. Since dom x = E, it holds that E'[x] = E', i.e. all edges are decided. Therefore, $y^{-1}(1)$ is a multicut of G' and for all $\{v, w\} = f \in E' \setminus E$ it holds that $y_f = 0$ iff there is a vw-path P in G such that $x_e = 0$ for all $e \in P$. By Lemma 5, this implies $y^{-1}(1) = \lambda_{GG'}(x^{-1}(1))$.

Proof of Theorem 4 Computing closures is at least as hard as deciding maximal specificity: To decide maximal specificity of $\tilde{x} \in \tilde{X}_{GG'}$, compute its closure $cl_{GG'}\tilde{x}$. Then \tilde{x} is maximally specific iff dom $\tilde{x} = dom cl_{GG'}\tilde{x}$, i.e., if $\tilde{x} = cl_{GG'}\tilde{x}$. By Theorem 2, this means computing closures is NP-hard.

Proof of Lemma 11 Let $\tilde{x} \in \tilde{X}_{GG'}$ and $\tilde{y} = \operatorname{cl}_{GG'} \tilde{x}$.

Suppose first that E = E'. We describe how to compute \tilde{y} efficiently. Obviously, we must set $\tilde{y}_e = \tilde{x}_e$ for all $e \in \text{dom } \tilde{x}$. Furthermore, we must set $\tilde{y}_{vw} = 0$ for all $\{v, w\} \in E \setminus \text{dom } \tilde{x}$ such that there is a vw-path P in G with $\tilde{x}_e = 0$ for all $e \in P$. Moreover, we must set $\tilde{y}_{vw} = 1$ for all $\{v, w\} \in E \setminus \text{dom } \tilde{x}$ that satisfy

$$\exists P \in vw\text{-paths}(G) \exists !e \in P :$$

$$\tilde{x}_e = 1 \land \forall e' \in P \setminus \{e\} : \tilde{x}_{e'} = 0 .$$
(43)

Therefore, initialize a disjoint-set data structure with singleton sets V. Apply the union operation on all edges $e \in \operatorname{dom} \tilde{x}$ where $\tilde{x}_e = 0$, i.e. *contract* all 0-labeled edges. Then, set $\tilde{y}_e = 0$ for all edges that connect nodes of the same component. If there is an edge e' between two components such that $\tilde{x}_{e'} = 1$, then for all edges are undecided by \tilde{x} . In case we only want to decide maximal specificity, we can stop upon finding the first edge $e \in \operatorname{dom} \tilde{y} \setminus \operatorname{dom} \tilde{x}$.

Now suppose that $E \subseteq \operatorname{dom} \tilde{x}$. In this case, all edges are decided, because $\tilde{x}|_E \in X_G$. According to Lemma 10, the closure \tilde{y} corresponds to the lifting of $\tilde{x}|_E$ to G'. Therefore, to obtain \tilde{y} , compute the decomposition of G associated to $\tilde{x}|_E$ using, e.g., a disjoint-set data structure. Set $\tilde{y}_e = 0$ if e is an edge within a component. Set $\tilde{y}_e = 1$ if e is an edge between components.

D. Metrics

Proof of Theorem 5 Symmetry and non-negativity follow directly from the definition, and so does $d_{E'}^{\mu}(x, x) = 0$ for all $x \in X_{GG''}$. For any $e \in E'$, the form d_e^1 on $E' \times E'$ is a Hamming metric on words of length 1 from the alphabet $\{0, 1\}$. Therefore, it satisfies the triangle inequality. Hence, for any $x, y, z \in X_{GG''}$:

$$d^{\mu}_{E'}(x,z) = \sum_{e \in E'} \mu_e d^1_e(x,z)$$
(44)

$$\leq \sum_{e \in E'} \mu_e(d_e^1(x, y) + d_e^1(y, z))$$
(45)

$$= \sum_{e \in E'} \mu_e d_e^1(x, y) + \sum_{e \in E'} \mu_e d_e^1(y, z) \quad (46)$$

$$= d^{\mu}_{E'}(x,y) + d^{\mu}_{E'}(y,z), \qquad (47)$$

Thus, $d_{E'}^{\mu}$ is a pseudo-metric on $X_{GG''}$.

If $E \subseteq E'$, then G' = G'' and thus, $X_{GG''} = X_{GG'} \subseteq X_{G'}$. For any two $x, x' \in X_{GG''} \subseteq X_{G'}$, it holds that $d_{E'}^{\mu}(x, x') = 0$ iff $d_e^1(x, x') = 0$ for all $e \in E'$, i.e. iff x = x'. Conversely, suppose there exists some $e \in E \setminus E'$. Define $x, x' \in X_{GG''}$ via $x_{e'} = x'_{e'} = 1$ for all $e' \in E'' \setminus \{e\}$ and $x_e = 1, x'_e = 0$. It holds that $x \neq x'$ but $d_{E'}^{\mu}(x, x') = 0$.

Proof of Theorem 6 We first prove that $\tilde{d}_{E'}^{\theta}$ is a metric on $\hat{X}_{GG'}$. For any $\tilde{x} \in \hat{X}_{GG'}$, we have $cl_{GG'} \tilde{x} = \tilde{x}$. Thus, for all $\tilde{x}, \tilde{x}' \in \hat{X}_{GG'}$, we have $\tilde{d}_{E'}^{\theta}(\tilde{x}, \tilde{x}') = d_{E'}^{\theta}(\tilde{x}, \tilde{x}')$. Therefore, positive definiteness and symmetry are obvious from the definition of $d_{E'}^{\theta}(\tilde{x}, \tilde{x}')$. To establish the triangle inequality for $d_{E'}^{\theta}$, we prove it for θd_e^1 and any edge $e \in E'$. Let $\tilde{x}, \tilde{y}, \tilde{z} \in \hat{X}_{GG'}$ and consider the inequality

$$\theta d_e^1(\tilde{x}, \tilde{z}) \le \theta d_e^1(\tilde{x}, \tilde{y}) + \theta d_e^1(\tilde{y}, \tilde{z}).$$
(48)

Table 1. The left- and right-hand side of the inequality $\theta d_e^1(\tilde{x}, \tilde{z}) \leq \theta d_e^1(\tilde{x}, \tilde{y}) + \theta d_e^1(\tilde{y}, \tilde{z})$ for all possible combinations of values $\tilde{x}_e, \tilde{y}_e, \tilde{z}_e$ where $\tilde{x}, \tilde{y}, \tilde{z} \in \hat{X}_{GG'}$. The right-hand side is always greater or equal the left-hand side iff $0.5 \leq \theta$.

\tilde{x}_e	\tilde{y}_e	\tilde{z}_e	lhs	rhs
0	0	0	0	0
1	1	1	0	0
*	*	*	0	0
0	*	1	1	2θ
0	1/0	1	1	1
0	0/*	*	θ	θ
1	1/*	*	θ	θ

In Tab. 1, the left-hand side and right-hand side of (48) are evaluated for all possible assignments of values to $\tilde{x}_e, \tilde{y}_e, \tilde{z}_e$. It is apparent form this table that (48) holds iff $\theta \ge 0.5$.

We now show that $\tilde{d}^{\theta}_{E'}$ is a pseudo-metric on $\tilde{X}_{GG'}$. Symmetry and non-negativity are obvious from the definition. For all $\tilde{x} \in \tilde{X}_{GG'}$, we have $\tilde{d}^{\theta}_{E'}(\tilde{x}, \tilde{x}) = 0$. Since $\tilde{d}^{\theta}_{E'}(\tilde{x}, \tilde{x}') = \tilde{d}^{\theta}_{E'}(\operatorname{cl}_{GG'} \tilde{x}, \operatorname{cl}_{GG'} \tilde{x}')$ and $\operatorname{cl}_{GG'} \tilde{x} \in \hat{X}_{GG'}$ for any $\tilde{x} \in \tilde{X}_{GG'}$, the triangle inequality follows from the fact that $\tilde{d}^{\theta}_{E'}$ is a metric on $\hat{X}_{GG'}$.

Finally, it holds that $\tilde{d}_{E'}^{\theta}(\tilde{x}, \tilde{x}') = 0$ iff $cl_{GG'}\tilde{x} = cl_{GG'}\tilde{x}'$, which in turn is equivalent to $\tilde{X}_{GG'}[\tilde{x}] = \tilde{X}_{GG'}[\tilde{x}']$, by Theorem 3. This proves property (24).

E. Polyhedral Optimization

Proof of Theorem 7 The all-one vector $\mathbb{1} \in \{0,1\}^{E'}$ is such that $\mathbb{1} \in X_{GG'}$.

For any $e \in E$, $x^e \in \{0,1\}^{E'}$ such that $x^e_e = 0$ and $x^e_{E \setminus \{e\}} = 1$ and $x^e_{F_{GG'}} = 1$ holds $x^e \in X_{GG'}$.

For any $f \in F_{GG'}$, any f-feasible $x^f \in \{0,1\}^{E'}$ is such that $x^f \in X_{GG'}$. Moreover, x^f can be chosen such that one shortest path connecting the two nodes in f is the only component containing more than one node.

For any $e \in E$, let $y^e \in \mathbb{R}^{E'}$ such that

$$y^e = \mathbb{1} - x^e \quad . \tag{49}$$

For any $f \in F_1$, choose an f-feasible x^f and let $y^f \in \mathbb{R}^{E'}$ such that

$$y^{f} = \mathbb{1} - x^{f} - \sum_{\{e \in E \mid x_{e}^{f} = 0\}} y^{e} .$$
(50)

For any $n \in \mathbb{N}$ such that n > 1 and any $f \in F_n$, choose an f-feasible x^f and let $y^f \in \mathbb{R}^{E'}$ such that

$$y^{f} = \mathbb{1} - x^{f} - \sum_{\{f' \in F_{GG'} | f' \neq f \land x^{f}_{f'} = 0\}} y^{f'} - \sum_{\{e \in E | x^{f}_{e} = 0\}} y^{e} .$$
(51)

Here, $\ell(f') < \ell(f) \le n$, by definition of *f*-feasibility. Thus, all $y^{f'}$ are well-defined by induction (over *n*).

Observe that $\{y^e \mid e \in E'\}$ is the unit basis in $\mathbb{R}^{E'}$. Moreover, each of its elements is a linear combination of $\{\mathbb{1} - x^e \mid e \in E'\}$ which is therefore linearly independent.

Thus, $\{1\} \cup \{x^e \mid e \in E'\}$ is affine independent. It is also a subset of $X_{GG'}$ and, therefore, a subset of $\Xi_{GG'}$. Thus, $\dim \Xi_{GG'} = |E'|$.

Proof of Lemma 12 Let $\{v, w\} = f \in F_{GG'}$ and let d(v, w) the length of a shortest vw-path in G. Then, d(v, w) > 1 because $F_{GG'} \cap E = \emptyset$.

If d(v, w) = 2, there exists a $u \in V$ such that $\{v, u\} \in E$ and $\{u, w\} \in E$. Moreover, $\{v, u\} \notin F_{GG'}$ and $\{u, w\} \notin F_{GG'}$, as $F_{GG'} \cap E = \emptyset$. Thus, $f \in F_1$.

If d(v, w) = m with m > 2, consider any shortest vw-path P in G. Moreover, let $F' \subseteq F_{GG'}$ such that, for any $\{v', w'\} = f' \in F_{GG'}, f' \in F'$ iff $v' \in P$ and $w' \in P$ and $f' \neq f$. If $F' = \emptyset$ then $f \in F_1$. Otherwise:

$$\forall \{v', w'\} \in F': \quad d(v', w') < m \tag{52}$$

and thus:

$$\forall f' \in F' \ \exists n_{f'} \in \mathbb{N} : \quad f' \in F_{n_{f'}} \tag{53}$$

by induction (over m). Let

$$n = \max_{f' \in F'} n_{f'} \quad . \tag{54}$$

Then, $f \in F_{n+1}$.

Proof of Lemma 13 For any $\{v, w\} = f \in F_{GG'}$, let P be a shortest vw-path in G and let

$$F'_{GG'} := \{\{v', w'\} \in F_{GG'} \mid v' \in P \land w' \in P\}$$
(55)

$$F_{GG'}' := F_{GG'} \setminus F_{GG'}' \quad . \tag{56}$$

Moreover, let $x \in \{0,1\}^{E'}$ with $x_P = 0$ and $x_{E \setminus P} = 1$ and $x_{F'_{GG'}} = 0$ and $x_{F''_{GG'}} = 1$. *P* has no chord in *E*, because it is a shortest path. Thus, $x \in X_{GG'}$.

Proof of Theorem 8 Let $S = \{x \in X_{GG'} \mid x_e = 1\}$ and put $\Sigma = \text{conv } S$.

To show necessity, suppose there is some $vw = f \in F_{GG'}$ such that e connects a pair of v-w-cut-vertices. Then, for any vw-path P in G, either $e \in P$ or e is a chord of P. We claim that we have $x_f = 1$ for any $x \in S$. This gives $\dim \Sigma \leq |E'| - 2$, so the inequality $x_e \leq 1$ cannot define a facet of $\Xi_{GG'}$. If there are no vw-paths that have e as a chord, then $\{e\}$ is a vw-cut and the claim follows from the corresponding inequality of (6). Otherwise, every vw-path *P* that has *e* as a chord contains a subpath *P'* such that $P' \cup \{e\}$ is a cycle. Thus, for any $x \in S$, the inequalities (4) or (5) (for $e \in E$ or $e \in F_{GG'}$, respectively) imply the existence of some $e_{P'} \in P'$ such that $x_{e_{P'}} = 1$. Let \mathcal{P} denote the set of all such paths *P'*. Apparently, the collection $\bigcup_{P' \in \mathcal{P}} \{e_{P'}\} \cup \{e\}$ is a *v*-*w*-separating set of edges. Therefore, it contains some subset *C* that is a *vw*-cut. This gives $x_f = 1$ via the inequality of (6) corresponding to *C*.

We turn to the proof of sufficiency. Assume there is no $vw = f \in F_{GG'}$ such that e connects a pair of v-w-cut-vertices in G. The construction of an affine independent |E'|-element-subset of $S \subset X_{GG'}$ is analogous to the proof of Theorem 7. The assumption guarantees for any $f \in F_{GG'}$ with $f \neq e$ the existence of an f-feasible $x \in S$ such that there is a vw-path P with $x_P = 0$. In particular, the hierarchy on $F_{GG'}$ defined by the level function ℓ remains unchanged (if $e \in F_{GG'}$, then $\ell(e) \geq \ell(f)$ for all $f \in F_{GG'}$). Hence, dim $\Sigma = |E'| - 1$, which means Σ is a facet of $\Xi_{GG'}$.

Proof of Theorem 9 Let $S = \{x \in X_{GG'} \mid x_e = 0\}$ and put $\Sigma = \operatorname{conv} S$.

Consider the case that $e \in E$. Let $G_{[e]}$ and $G'_{[e]}$ be the graphs obtained from G and G', respectively, by contracting the edge e. The lifted multicuts $x^{-1}(1)$ for $x \in S$ correspond bijectively to the multicuts of $G'_{[e]}$ lifted from $G_{[e]}$. This implies dim $\Sigma = \dim \Xi_{G_{[e]}G'_{[e]}}$. The claim follows from Theorem 7 and the fact that $G'_{[e]}$ has |E'| - 1 many edges if and only if e is not contained in any triangle in G'.

Now, suppose $uv = e \in F_{GG'}$. We show necessity of Conditions (a)-(c) by proving that if any of them is violated, then all $x \in S$ satisfy some additional, orthogonal equality and thus, dim $\Sigma \leq |E'| - 2$.

First, assume that (a) is violated. Hence, there are edges $e', e'' \in E'$ such that $T = \{e, e', e''\}$ is a triangle in G'. Every $x \in S$ satisfies the cycle inequalities

$$x_{e'} \le x_e + x_{e''} \tag{57}$$

$$c_{e^{\prime\prime}} \le x_e + x_{e^{\prime}} \tag{58}$$

by Lemma 3 applied to the multicut $x^{-1}(1)$ of G'. Every $x \in S$ satisfies $x_{e'} = x_{e''}$, by (57) and (58) and $x_e = 0$.

л

Next, assume that (b) is violated. Consider a violating pair $\{u', v'\} \neq \{u, v\}, u' \neq v'$ of *u*-*v*-cut-vertices. For every $x \in S$, there exists a *uv*-path *P* in *G* with $x_P = 0$, as $x_e = 0$. Any such path *P* has a sub-path *P'* from *u'* to *v'* because *u'* and *v'* are *u*-*v*-cut-vertices.

 If the distance of u' and v' in G' is 1, then u'v' ∈ E'. If u'v' ∈ P, then x_{u'v'} = 0 because x_P = 0. Otherwise, $x_{u'v'} = 0$ by $x_{P'} = 0$ and the cycle/path inequality

$$x_{u'v'} \le \sum_{\hat{e} \in P'} x_{\hat{e}} \quad . \tag{59}$$

Thus $x_{u'v'} = 0$ for all $x \in S$.

- If the distance of u' and v' in G' is 2, there is a u'v'path in G' consisting of two distinct edges $e', e'' \in E'$. We show that all $x \in S$ satisfy $x_{e'} = x_{e''}$:
 - If $e' \in P$ and $e'' \in P$ then $x_{e'} = x_{e''} = 0$ because $x_P = 0$.
 - If $e' \in P$ and $e'' \notin P$ then $x_{e'} = x_{e''} = 0$ by $x_P = 0$ and the cycle/path inequality

$$x_{e''} \le \sum_{\hat{e} \in P' \setminus \{e'\}} x_{\hat{e}}$$
 . (60)

- If $e' \notin P$ and $e'' \notin P$ then $x_{e'} = x_{e''}$ by $x_P = 0$ and the cycle/path inequalities

$$x_{e^{\prime\prime}} \le x_{e^{\prime}} + \sum_{\hat{e} \in P^{\prime}} x_{\hat{e}} \tag{61}$$

$$x_{e'} \le x_{e''} + \sum_{\hat{e} \in P'} x_{\hat{e}}$$
 . (62)

Now, assume that (c) is violated. Hence, there exists a uv-cut-vertex t and a u-v-separating set of vertices $\{s, s'\}$ such that $\{ts, ts', ss'\}$ is a triangle in G'. We have that all $x \in S$ satisfy $x_{ss'} = x_{ts} + x_{ts'}$ as follows. At most one of x_{ts} and $x_{ts'}$ is 1, because t is a u-v-cut-vertex and $\{s, s'\}$ is *u*-*v*-separating as well. Moreover, $x_{ts} + x_{ts'} = 0$ if and only if $x_{ss'} = 0$.

Proof of Theorem 10 Note that both *C* and $P \cup \{f\}$ are cycles in G'. We show that, for any chordal cycle C' of G'and any $e \in C'$, the inequality

$$x_e \le \sum_{e' \in C' \setminus \{e\}} x_{e'} \tag{63}$$

is not facet-defining for $\Xi_{G'}$. This implies that (63) cannot be facet-defining for $\Xi_{GG'}$ either, as $\Xi_{GG'} \subseteq \Xi_{G'}$ and dim $\Xi_{GG'}$ = dim $\Xi_{G'}$. Hence, for facet-definingness of (4) and (5), it is necessary that C and $P \cup \{f\}$ be chordless in G'.

For this purpose, consider some cycle C' of G' with a chord $uv = e' \in E'$. We may write $C' = P_1 \cup P_2$ where P_1 and P_2 are edge-disjoint uv-paths such that $C_1 = P_1 \cup \{e'\}$ and $C_2 = P_2 \cup \{e'\}$ are cycles in G'. Let $e \in C'$, then either $e \in P_1$ or $e \in P_2$. W.l.o.g. we may assume $e \in P_1$. The inequalities

$$x_e \le \sum_{e'' \in C_1 \setminus \{e\}} x_{e''},\tag{64}$$

$$x_{e'} \le \sum_{e'' \in C_2 \setminus \{e'\}} x_{e''} \tag{65}$$

are both valid for $\Xi_{G'}$. Moreover, since $e' \in C_1$, (64) and (65) imply (63) via

$$x_{e} \leq \sum_{e'' \in C_{1} \setminus \{e\}} x_{e''} = \sum_{e'' \in C_{1} \setminus \{e,e'\}} x_{e''} + x_{e'}$$
$$\leq \sum_{e'' \in C_{1} \setminus \{e,e'\}} x_{e''} + \sum_{e'' \in C_{2} \setminus \{e'\}} x_{e''}$$
$$= \sum_{e'' \in C' \setminus \{e\}} x_{e''}.$$
(66)

Thus, (63) is not facet-defining for $\Xi_{G'}$.

For the proof of sufficiency, suppose the cycle C of G is chordless in G' and let $e \in C$. Let Σ be a facet of $\Xi_{GG'}$ such that $\Sigma_{GG'}(e, C) \subseteq \Sigma$ and suppose it is induced by the inequality

$$\sum_{e'\in E'} a_{e'} x_{e'} \le \alpha \tag{67}$$

with $a \in \mathbb{R}^{E'}$ and $\alpha \in \mathbb{R}$, i.e., $\Sigma = \operatorname{conv} S$, where

$$S := \left\{ x \in X_{GG'} \left| \sum_{e' \in E'} a_{e'} x_{e'} = \alpha \right\} \right\}.$$
(68)

For convenience, we also define the linear space

$$L := \left\{ x \in \mathbb{R}^{E'} \left| \sum_{e' \in E'} a_{e'} x_{e'} = \alpha \right\} \right\}.$$
(69)

As $0 \in S_{GG'}(e, C) \subseteq S$, we have $\alpha = 0$. We show that (67) is a scalar multiple of (4) and thus $\Sigma_{GG'}(e, C) = \Sigma$. Let $y \in \{0,1\}^{E'}$ be defined by

$$y_C = 0, \quad y_{E' \setminus C} = 1, \tag{70}$$

i.e. all edges except C are cut. Then $y \in S_{GG'}(e, C) \subseteq S$, since C is chordless.

For any $e' \in C \setminus \{e\}$, the vector $x \in \{0, 1\}^{E'}$ with

$$x_{C \setminus \{e,e'\}} = 0, \quad x_{E' \setminus C \cup \{e,e'\}} = 1$$
 (71)

holds $x \in S_{GG'}(e, C) \subseteq S$. Therefore, $y - x \in L$. Thus,

$$\forall e' \in C \setminus \{e\}: \quad a_{e'} = -a_e \quad . \tag{72}$$

It remains to show that $a_{e'} = 0$ for all edges $e' \in E' \setminus C$. We proceed by considering edges from E and $F_{GG'}$ separately. We consider the nodes $u, v \in V$ such that uv = e'. W.l.o.g., we assume that v does not belong to C. This is possible because C does not have a chord in G'.

Firstly, consider $e' \in E$ and distinguish the following cases:

(i) If e' connects two nodes not contained in C or it is the only edge connecting some node in C to v, then for x ∈ {0,1}^{E'}, defined by

$$x_C = 0, \quad x_{e'} = 0, \quad x_{E' \setminus (C \cup \{e'\})} = 1,$$
 (73)

it holds that $x \in S_{GG'}(e, C) \subseteq S$. Therefore, $y - x \in L$, which evaluates to $a_{e'} = 0$.

(ii) Otherwise, let $E'_{C,v} := \{\{u', v\} \in E' \mid u' \text{ belongs to } C\}$ denote the set of edges in E' that connect v to some node in C. By assumption, we have that $|E'_{C,v}| \ge 2$. Now, pick some direction on C and traverse C from one endpoint of e to the other endpoint of e. We may order the edges $E'_{C,v} = \{e_1, \ldots, e_k\}$ such that the endpoint of e_i appears before the endpoint of e_{i+1} in the traversal of C. We show that $a_{e_i} = 0$ for all $1 \le i \le k$:

For the vector $x \in \{0,1\}^{E'}$ defined by

$$x_{e''} = \begin{cases} 0 & \text{if } e'' \in C \\ 0 & \text{if } e'' \in E'_{C,v} \\ 1 & \text{else,} \end{cases}$$
(74)

it holds that $x \in S_{GG'}(e, C) \subseteq S$. Therefore, $y - x \in L$. Thus:

$$\sum_{1 \le i \le k} a_{e_i} = 0. \tag{75}$$

Consider the $m \in \{1, ..., k\}$ such that $e' = e_m$. For any *i* with $1 \le i \le m - 1$, consider the following construction that is illustrated also in Fig. 2: Let $e'' \in$ *C* be some edge between the endpoints of e_i and e_{i+1} . If $e_i \in E$, define $x \in \{0, 1\}^{E'}$ via

$$x_e = x_{e''} = 1$$
 (76)

$$x_{C \setminus \{a, a''\}} = 0$$
 (77)

$$\forall i < i: \quad x_{\alpha} = 0 \tag{78}$$

$$\forall i > i: \quad x_{a_i} = 1 \tag{79}$$

If $e_i \in F_{GG'}$, define $x \in \{0, 1\}^{E'}$ via

$$x_e = x_{e''} = 1 \tag{80}$$

$$x_{C\setminus\{e,e''\}} = 0 \tag{81}$$

$$\forall j \le i: \quad x_{e_i} = 1 \tag{82}$$

$$\forall j > i: \quad x_{e_i} = 0 \tag{83}$$

Either way, it holds that $x \in S_{GG'}(e, C) \subseteq S$ and thus, $y - x \in L$. If $e_i \in E$, this yields

$$0 = \sum_{1 \le j \le i} a_{e_j} - a_e - a_{e''} = \sum_{1 \le j \le i} a_{e_j}$$
(84)

Figure 2. The figure illustrates the argument from case (ii) in the proof of Theorem 10 for the cycle $C = \{e, e'', e'''\}$. In this example, $e_3 = e'$, $e_1 \in F_{GG'}$ and $e_2 \in E$. The left multicut is chosen for i = 1 and the right one for i = 2.

by (72). If $e_i \in F_{GG'}$, we similarly obtain

$$0 = \sum_{i+1 \le j \le k} a_{e_j} - a_e - a_{e''} = \sum_{i+1 \le j \le k} a_{e_j}.$$
 (85)

Together with (75), this yields $\sum_{1 \le j \le i} a_{e_j} = 0$ as well. Applying this argument repeatedly from i = 1 to i = m - 1, we conclude that $a_{e_1} = \ldots = a_{e_{m-1}} = 0$. By reversing the order of the edges in $E'_{C,v}$, it can be shown analogously that $a_{e_k} = a_{e_{k-1}} = \ldots = a_{e_{m+1}} = 0$. Thus, by (75), $a_{e'} = a_{e_m} = 0$.

Next, consider $e' \in F_{GG'}$ and distinguish the following additional cases:

(iii) Suppose there is a uv-path P' in G that does not contain any node from C. Define $x \in \{0, 1\}^{E'}$ via

$$x_{e''} = \begin{cases} 0 & \text{if } e'' \in C \\ 0 & \text{if } e'' = e' \\ 0 & \text{if } e'' \in P' \text{ or } e'' \text{ is a chord of } P' \\ 1 & \text{else.} \end{cases}$$
(86)

Then $x \in S_{GG'}(e, C) \subseteq S$ and thus $y - x \in L$. This gives

$$a_{e'} + \sum_{e'' \in P'} a_{e''} + \sum_{\substack{e'' \text{ chord} \\ \text{ of } P'}} a_{e''} = 0.$$
(87)

We argue that all terms except $a_{e'}$ vanish by induction over the level function $\ell(e')$. If $\ell(e') = 1$, then P'does not have any chords from $F_{GG'}$, thus $a_{e'} = 0$, because $a_{e''} = 0$ for all $e'' \in E$ as shown previously in the cases (i) and (ii). If $\ell(e') > 1$, then for any chord $e'' \in F_{GG'}$ of P' it holds that $\ell(e'') < \ell(e')$. The induction hypothesis provides $a_{e''} = 0$ and hence we conclude $a_{e'} = 0$.

(iv) Suppose u is contained in C. Pick a shortest uv-path P' in G. We argue inductively over the length of P',

which we denote by d(P'). If d(P') = 1, then P'consists of only one edge from E. This situation is in fact already covered by case (ii). If d(P') > 1, then we employ an argument similar to (ii) as follows. Let $F_{C,v} := \{\{u', v\} \in F_{GG'} \mid u' \text{ belongs to } C\} = \{f_1, \ldots, f_k\}$ be the set of edges $f_i \in F_{GG'}$ that connect v to some node in C. Again, assume they are ordered such that the endpoint of f_i appears before the endpoint of f_{i+1} on C in a traversal from e to itself. For the vector $x \in \{0, 1\}^{E'}$ defined by

$$x_{e''} = \begin{cases} 0 & \text{if } e'' \in C \\ 0 & \text{if } e'' \in P' \text{ or } e'' \text{ is a chord of } P' \\ 0 & \text{if } e'' = u'v' \text{ where } u' \text{ belongs to } C, \\ & v' \neq v \text{ belongs to } P' \\ 0 & \text{if } e'' \in F_{C,v} \\ 1 & \text{else}, \end{cases}$$
(88)

it holds that $x \in S_{GG'}(e, C) \subseteq S$ and thus $y - x \in L$. This yields

$$\sum_{\substack{e'' \in P' \\ \text{of } P'}} a_{e''} + \sum_{\substack{e'' \text{ chord} \\ \text{of } P'}} a_{e''} + \sum_{\substack{e'' = u'v': \\ u' \text{ belongs to } C, \\ v' \neq v \text{ belongs to } P'}} a_{e''} + \sum_{\substack{e'' \in F_{C,v} \\ e'' \in F_{C,v}}} a_{e''} = 0$$
(89)

and thus

$$\sum_{1 \le i \le k} a_{f_i} = \sum_{e'' \in F_{C,v}} a_{e''} = 0, \tag{90}$$

as all other terms vanish (apply the induction hypothesis to all $u'v' \in F_{GG'}$ where u' belongs to C and $v' \neq v$ belongs to P'). Let m be the highest index such that the endpoint of f_m appears before the endpoint of P' on C. Now, for any i with $1 \leq i \leq m$, pick an edge $e'' \in C$ between the endpoint of f_i and the endpoint of f_{i+1} and before the endpoint of P' on C. Define $x \in \{0, 1\}^{E'}$ by

$$x_{g} = \begin{cases} 0 & \text{if } g \in C \setminus \{e, e''\} \\ 0 & \text{if } g \in P' \text{ or } g \text{ is a chord of } P' \\ 0 & \text{if } g = u'v' \text{ where} \\ u' \text{ appears before endpoint of } P' \text{ on } C, \\ v' \neq v \text{ belongs to } P' \\ 0 & \text{if } g = f_{j} \forall j > i \\ 1 & \text{else.} \end{cases}$$
(91)

Then, it holds that $x \in S_{GG'}(e, C) \subseteq S$ and thus $y - x \in L$. This yields, after removing all zero terms

(apply the induction hypothesis once more),

$$\sum_{i+1 \le j \le k} a_{f_j} = 0. \tag{92}$$

Together with (90), we obtain

$$\sum_{1 \le j \le i} a_{f_i} = 0. \tag{93}$$

Applying this argument repeatedly for i = 1 to i = m, we conclude $a_{f_1} = \ldots = a_{f_m} = 0$. Similarly, we obtain $a_{f_k} = a_{f_{k-1}} = \ldots = a_{f_m} = 0$, by reversing the direction of traversal of C and employing the same reasoning.

(v) Finally, suppose neither u nor v belong to the cycle C, but every uv-path in G shares at least one node with C. Let P' be such a uv-path. Define the vector x ∈ {0,1}^{E'} by

$$x_{e''} = \begin{cases} 0 & \text{if } e'' \in C \\ 0 & \text{if } e'' = e' \\ 0 & \text{if } e'' \in P' \text{ or } e'' \text{ is a chord of } P' \\ 0 & \text{if } e'' = u'v' \text{ where } u' \text{ belongs to } C, \\ v' \text{ belongs to } P' \\ 1 & \text{else.} \end{cases}$$
(94)

It holds that $x \in S_{GG'}(e, C) \subseteq S$ and thus $y - x \in L$. This gives

$$a_{e'} + \sum_{e'' \in P'} a_{e''} + \sum_{\substack{e'' \text{ chord} \\ \text{ of } P'}} a_{e''} + \sum_{\substack{e'' = u'v': \\ u' \text{ belongs to } C, \\ v' \text{ belongs to } P'}} a_{e''} = 0.$$
(95)

We argue inductively over the level function $\ell(e')$. If $\ell(e') = 1$, then P' does not have any chords and our consideration in cases (i)–(iv) yield that all terms except $a_{e'}$ vanish. If $\ell(e') > 1$, then we additionally employ the induction hypothesis to achieve the same result. Hence, it holds that $a_{e'} = 0$ as well.

The proof of sufficiency in the second assertion is completely analogous (replace C by $P \cup \{f\}$ and e by f). The chosen multicuts remain valid, because e = f is the only edge in the cycle that is not contained in E.

Proposition 1 For every connected graph G = (V, E), every graph G' = (V, E') with $E \subseteq E'$, every $vw \in F_{GG'}$ and every $C \in vw$ -cuts(G), the following holds:

(a) Every $x \in S_{GG'}(vw, C)$ defines a decomposition of G into (vw, C)-connected components. That is, every maximal component of the graph $(V, \{e \in E | x_e = 0\})$ is (vw, C)-connected. At most one of these is properly (vw, C)-connected. It exists iff $x_{vw} = 0$.

(b) For every (vw, C)-connected component (V^*, E^*) of G, the $x \in \{0, 1\}^{E'}$ such that $\forall rs \in E'(x_{rs} = 0 \Leftrightarrow r \in V^* \land s \in V^*)$ is such that $x \in S_{GG'}(vw, C)$.

Proof of Proposition 1 a) Let $x \in S_{GG'}(vw, C)$ arbitrary. Let $E_0 := \{e \in E | x_e = 0\}$ and let $G_0 := (V, E_0)$.

If $x_{vw} = 1$ then $\forall e \in C : x_e = 1$, by (35). Thus, every component of G_0 is improperly (vw, C)-connected.

If $x_{vw} = 0$ then

$$\exists e \in C(x_e = 0 \land \forall e' \in C \setminus \{e\}(x_{e'} = 1))$$
(96)

by (35). Let (V^*, E^*) the maximal component of G_0 with

$$e \in E^* \quad . \tag{97}$$

Clearly:

$$\forall e' \in C \setminus \{e\}: \ e' \notin E^* \tag{98}$$

by (96) and definition of G_0 . There does not exist a $C' \in vw$ -cuts(G) with $x_{C'} = 1$, because this would imply $x_{vw} = 1$, by (6). Thus, there exists a $P \in vw$ -paths(G) with $x_P = 0$, as G is connected. Any such path P has $e \in P$, as $P \cap C \neq \emptyset$ and $C \cap E_0 = \{e\}$ and $P \subseteq E_0$. Thus:

$$v \in V^* \land w \in V^* \tag{99}$$

by (97). (V^*, E^*) is properly (vw, C)-connected, by (97), (98) and (99). Any other component of G_0 does not cross the cut, by (96), (97) and definition of G_0 , and is thus improperly (vw, C)-connected.

b) We have

$$\forall st \in E : \ x_{st} = 0 \Leftrightarrow st \in E^* \tag{100}$$

by the following argument:

- If st ∈ E*, then s ∈ V* ∧ t ∈ V*, as (V*, E*) is a graph. Thus, x_{st} = 0, by definition of x.
- If st ∉ E* then s ∉ V* ∨ t ∉ V*, as (V*, E*) is a component of G. Thus, x_{st} = 1, by definition of x.

Consider the decomposition of G into (V^*, E^*) and singleton components. $E_1 := \{e \in E | x_e = 1\}$ is the set of edges that straddle distinct components of this decomposition, by (100). Therefore, E_1 is a multicut of G, by Lemma 2. Thus, (4) holds, by Lemma 3.

For any $st \in F_{GG'}$ and any $P \in st$ -paths(G), distinguish two cases:

If P ⊆ E*, then s ∈ V* ∧ t ∈ V*, as (V*, E*) is a graph. Thus, x_{st} = 0, by definition of x. Moreover, x_P = 0, by (100). Hence, (5) evaluates to 0 = 0.

• Otherwise, there exists an $e \in P$ such that $e \notin E^*$. Therefore, $x_e = 1$, by (100). Thus, (5) holds, as the r.h.s. is at least 1.

For any $st \in F_{GG'}$ and any $C' \in st$ -cuts(G), distinguish two cases:

- If $C' \cap E^* = \emptyset$ then $s \notin V^* \lor t \notin V^*$. Therefore, $x_{st} = 1$, by definition of x. Moreover, $x_{C'} = 1$, by (100). Thus, (6) evaluates to 0 = 0.
- Otherwise, there exists an e ∈ C' such that e ∈ E*. Therefore, x_e = 0, by (100). Thus, (6) holds, as the r.h.s. is at least 1.

Proof of Theorem 11 Assume that C1 does not hold (as in Fig. 4a). Then, there exists an $e \in C$ such that no (vw, C)-connected component of G contains e. Thus, for all $x \in S_{GG'}(vw, C)$:

$$x_e = 1 \tag{101}$$

by Proposition 1. Now, dim $\Sigma_{GG'}(vw, C) \leq |E'| - 2$, by (35) and (101). Thus, $\Sigma_{GG'}(vw, C)$ is not a facet of $\Xi_{GG'}$, by Theorem 7.

Assume that C2 does not hold. Then, for any $e \in C$ there exists some number m such that for all (vw, C)-connected components (V^*, E^*) with $e \in E^*$ it holds that $|F \cap F_{V^*}| = m$. Thus, we can write

$$C = \bigcup_{m=0}^{|F|} C(F,m),$$
 (102)

where $C(F,m) := \{e \in C \mid |F \cap F_{V^*}| = m \forall (vw, C)$ connected (V^*, E^*) with $e \in E^*\}$. It follows that for all $x \in S_{GG'}(vw, C)$ we have the equality

$$\sum_{m=0}^{|F|} m \sum_{e \in C(F,m)} (1 - x_e) = \sum_{f' \in F} (1 - x_{f'})$$
(103)

by the following argument:

- If $x_e = 1$ for all $e \in C$, then $x_{f'} = 1$ for all $v'w' = f' \in F$, since C is also a v'w'-cut. Thus, (103) evaluates to 0 = 0.
- Otherwise there exists precisely one edge e ∈ C such that x_e = 0. Let m be such that e ∈ C(F, m). By definition of C(F, m), there are exactly m edges f' ∈ F with x_{f'} = 0. Thus, (103) evaluates to m = m.

Assume that condition C3 does not hold. Then there exists an $f' \in F_{GG'}(vw, C)$, a set $\emptyset \neq F \subseteq F_{GG'}(vw, C)$ and

Figure 3. Depicted are the nodes (in black) and edges (in green) on a path (a) and on a cycle (b), respectively. Nodes in the set V' are are either in V^* (filled circle) or not in V^* (open circle). Consequently, pairs of consecutive edges are either cut (dotted lines) or not cut (solid lines).

some $k \in \mathbb{N}$ such that for all (vw, C) connected components (V^*, E^*) and (V^{**}, E^{**}) with $f' \in F_{V^*}$ and $f' \notin F_{V^{**}}$ it holds that

$$|F \cap F_{V^*}| = k \text{ and } |F \cap F_{V^{**}}| = 0.$$
 (104)

In other words, for all $x \in S_{GG'}(vw, C)$ it holds that $x_{f'} = 0$ iff there are exactly k edges $f'' \in F$ such that $x_{f''} = 0$. Similarly, it holds that $x_{f'} = 1$ iff for all $f'' \in F$ we have $x_{f''} = 1$. Therefore, all $x \in S_{GG'}(vw, C)$ satisfy the additional equality

$$k(1 - x_{f'}) = \sum_{f'' \in F} 1 - x_{f''}.$$
 (105)

Assume that C4 does not hold. Then, there exist $v' \in V(v, C)$ and $w' \in V(w, C)$ and a v'w'-path $P = (V_P, E_P)$ in G'(vw, C) such that every properly (vw, C)-connected component (V^*, E^*) of G holds:

$$(v' \in V^* \land V(w, C) \cap V_P \subseteq V^*) \tag{106}$$

$$\vee \quad (w' \in V^* \land V(v, C) \cap V_P \subseteq V^*) \quad . \tag{107}$$

Let $v_1 < \cdots < v_{|V_P|}$ the linear order of the nodes V_P and let $e_1 < \cdots < e_{|E_P|}$ the linear order of the edges E_P in the v'w'-path P. Now, for all $x \in S_{GG'}(vw, C)$:

$$x_{vw} = \sum_{j=1}^{|E_P|} (-1)^{j+1} x_{e_j}$$
(108)

by the following argument: $|E_P|$ is odd, as the path P alternates between the set V(v, C) where it begins and the set V(w, C) where it ends. Thus,

$$\sum_{j=1}^{|E_P|} (-1)^{j+1} x_{e_j} = x_{e_1} - \sum_{j=1}^{(|E_P|-1)/2} (x_{e_{2j}} - x_{e_{2j+1}}) \quad . \tag{109}$$

Distinguish two cases:

- If $x_{vw} = 1$, then $x_{E_P} = 1$, by (35) and (6). Thus, (108) evaluates to 1 = 1, by (109).
- If $x_{vw} = 0$, the decomposition of G defined by x contains precisely one properly (vw, C)-connected component (V^*, E^*) of G, by Proposition 1. Without loss of generality, (106) holds. Otherwise, that is, if (107) holds, exchange v and w.

Consider the nodes V_P as depicted in Fig. 3a: $v_1 = v' \in V^*$, by (106). For every even $j, v_j \in V(w, C)$, by definition of P. Thus:

$$\forall j \in \{1, \dots, (|E_P|+1)/2\}: v_{2j} \in V^*$$
 (110)

by (106).

Consider the edges E_P as depicted in Fig. 3a: $e_1 = v_1v_2 \in E^*$, as $v_1 \in V^*$ and $v_2 \in V^*$ and as (V^*, E^*) is a component of G. Thus,

$$x_{e_1} = 0$$
 (111)

by Proposition 1. For every $j \in \{1, ..., (|E_P|-1)/2\}$, distinguish two cases:

- If $v_{2j+1} \in V^*$, then $e_{2j} = v_{2j}v_{2j+1} \in E^*$ and $e_{2j+1} = v_{2j+1}v_{2j+2} \in E^*$, because $v_{2j} \in V^*$ and $v_{2j+2} \in V^*$, by (110), and because (V^*, E^*) is a component of *G*. Thus:

$$x_{e_{2j}} = 0 \land x_{e_{2j+1}} = 0$$
. (112)

- If $v_{2j+1} \notin V^*$, then $e_{2j} = v_{2j}v_{2j+1}$ and $e_{2j+1} = v_{2j+1}v_{2j+2}$ straddle distinct components of the decomposition of G defined by x, because $v_{2j} \in V^*$ and $v_{2j+2} \in V^*$, by (110). Thus:

$$x_{e_{2i}} = 1 \land x_{e_{2i+1}} = 1$$
. (113)

In any case:

$$\forall j \in \{1, \dots, (|E_P| - 1)/2\}: \ x_{e_{2j}} - x_{e_{2j+1}} = 0 \ . \tag{114}$$

Thus, (108) evaluates to 0 = 0, by (109), (111), (114).

Assume that C5 does not hold. Then, there exists a cycle $Y = (V_Y, E_Y)$ in G'(vw, C) such that every properly (vw, C)-connected component (V^*, E^*) of G holds:

$$V_Y \cap V(v, C) \subseteq V^* \tag{115}$$

$$\vee \quad V_Y \cap V(w, C) \subseteq V^* \quad . \tag{116}$$

Let $v_0 < \cdots < v_{|V_Y|-1}$ an order on V_Y such that $v_0 \in V(v, C)$ and, for all $j \in \{0, \ldots, |E_Y| - 1\}$:

$$e_j := \{v_j, v_{j+1 \mod |E_Y|}\} \in E_Y \quad . \tag{117}$$

Now, for all $x \in S_{GG'}(vw, C)$:

$$0 = \sum_{j=0}^{|E_Y|-1} (-1)^j x_{e_j}$$
(118)

by the following argument: $|E_Y|$ is even, as the cycle Y alternates between the sets V(v, C) and V(w, C). Thus,

$$\sum_{j=0}^{|E_Y|-1} (-1)^j x_{e_j} = \sum_{j=0}^{(|E_Y|-2)/2} (x_{e_{2j}} - x_{e_{2j+1}}) \quad . \tag{119}$$

Distinguish two cases:

- If $x_{vw} = 1$, then $x_{E_Y} = 1$, by (35) and (6). Thus, (118) evaluates to 0 = 0, by (119).
- If $x_{vw} = 0$, the decomposition of G defined by x contains precisely one properly (vw, C)-connected component (V^*, E^*) of G, by Proposition 1. Without loss of generality, (115) holds. Otherwise, that is, if (116) holds, exchange v and w.

Consider the nodes V_Y as depicted in Fig. 3b: For every even $j, v_j \in V(v, C)$, by definition of Y and the order. Thus:

$$\forall j \in \{0, \dots, (|E_Y| - 2)/2\}: v_{2j} \in V^*$$
 (120)

by (115).

Consider the edges E_Y as depicted in Fig. 3b: For every $j \in \{0, ..., (|E_Y| - 2)/2\}$, distinguish two cases:

- If $v_{2j+1} \in V^*$, then $e_{2j} = v_{2j}v_{2j+1} \in E^*$ and $e_{2j+1} = v_{2j+1}v_{2j+2 \mod |E_Y|} \in E^*$, because $v_{2j} \in V^*$ and $v_{2j+2 \mod |E_Y|} \in V^*$, by (120), and because (V^*, E^*) is a component of *G*. Thus:

$$x_{e_{2i}} = 0 \land x_{e_{2i+1}} = 0$$
. (121)

- If $v_{2j+1} \notin V^*$, then $e_{2j} = v_{2j}v_{2j+1}$ and $e_{2j+1} = v_{2j+1}v_{2j+2 \mod |E_Y|}$ straddle distinct components of the decomposition of *G* defined by x, because $v_{2j} \in V^*$ and $v_{2j+2 \mod |E_Y|} \in V^*$, by (120). Thus:

$$x_{e_{2j}} = 1 \land x_{e_{2j+1}} = 1$$
 . (122)

In any case:

$$\forall j \in \{0, \dots, (|E_Y| - 2)/2\} : x_{e_{2j}} - x_{e_{2j+1}} = 0$$
.
(123)

Thus, (118) evaluates to 0 = 0, by (119) and (123).

Acknowledgements

The examples depicted in Fig. 4h and 4j were proposed by Banafsheh Grochulla and Ashkan Mokarian, respectively.

Figure 4. Depicted above are graphs G = (V, E) (in black) and G' = (V, E') with $E \subseteq E'$ (E' in green), distinct nodes $v, w \in V$ and a vw-cut C of G (as dotted lines). In any of the above examples, one condition of Theorem 11 is violated and thus, $\Sigma_{GG'}(vw, C)$ is not a facet of the lifted multicut polytope $\Xi_{GG'}$. a) Condition C1 is violated for e. b) Condition C2 is violated as r and s are connected in any (vw, C)-connected component. c) Condition C2 is violated as r and s are not connected in any (vw, C)-connected component. d) Condition C2 is violated. Specifically, $C(\{f'\}, 1) = \{e_0\}$ and $C(\{f'\}, 0) = \{e_1\}$ in the proof of Theorem 11. e) Condition C2 is violated for $F = \{f_1, f_2\}$. f) Condition C3 is violated. g) Condition C3 is violated for $F = \{f_1, f_2\}$ and k = 1. h) Condition C4 is violated for the v'w'-path $f_1f_2f_3$. i) Condition C4 is violated for the v'w'-path ef_1f_2 . j) Condition C5 is violated for the cycle $f_1f_2f_3$.