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A. Relation to Denoising and Contractive Auto-encoders
Our method is related to denoising auto-encoders (Vincent et al., 2008). Auto-encoders maximize a lower bound of mu-
tual information (Cover & Thomas, 2012) between inputs and their hidden representations (Vincent et al., 2008), while the
denoising mechanism regularizes the auto-encoders to be locally invariant. However, such a regularization does not nec-
essarily impose the invariance on the hidden representations because the decoder network also has the flexibility to model
the invariance to data perturbations. SAT is more direct in imposing the intended invariance on hidden representations
predicted by the encoder network.

Contractive auto-encoders (Rifai et al., 2011) directly impose the local invariance on the encoder network by minimizing
the Frobenius norm of the Jacobian with respect to the weight matrices. However, it is empirically shown that such regular-
ization attained lower generalization performance in supervised and semi-supervised settings than VAT, which regularizes
neural networks in an end-to-end fashion (Miyato et al., 2016). Hence, we adopted the end-to-end regularization in our
unsupervised learning. In addition, our regularization, SAT, has the flexibility of modeling other types invariance such
as invariance to affine distortion, which cannot be modeled with the contractive regularization. Finally, compared with
the auto-encoders approaches, our method does not require learning the decoder network; thus, is computationally more
efficient.

B. Penalty Method and its Implementation
Our goal is to optimize the constrained objective of Eq. (10):

min
θ

RSAT(θ;T ) + λH(Y |X),

subject to KL[pθ(y)|| q(y)] ≤ δ.

We use the penalty method (Bertsekas, 1999) to solve the optimization. We introduce a scalar parameter µ and consider
minimizing the following unconstrained objective:

RSAT(θ;T ) + λH(Y |X) + µmax{KL[pθ(y)|| q(y)]− δ, 0}. (19)

We gradually increase µ and solve the optimization of Eq. (19) for a fixed µ. Let µ∗ be the smallest value for which the
solution of Eq. (19) satisfies the constraint of Eq. (10). The penalty method ensures that the solution obtained by solving
Eq. (19) with µ = µ∗ is the same as that of the constrained optimization of Eq. (10).

In experiments in Section 4.2, we increased µ in the order of λ, 2λ, 4λ, 6λ, . . . until the solution of Eq. (19) satisfied the
constraint of Eq. (10).

C. On the Mini-batch Approximation of theMmarginal Distribution
The mini-batch approximation can be validated for the clustering scenario in Eq. (10) as follows. By the convexity of the
KL divergence (Cover & Thomas, 2012) and Jensen’s inequality, we have

EB[KL[p̂θ
(B)(y)||q(y)]] ≥ KL[pθ(y)||q(y)] ≥ 0, (20)

where the first expectation is taken with respect to the randomness of the mini-batch selection. Therefore, in the penalty
method, the constraint on the exact KL divergence, i.e., KL[pθ(y)|| q(y)] ≤ δ can be satisfied by minimizing its upper
bound, which is the approximated KL divergence EB[KL[p̂θ

(B)(y)||q(y)]]. Obviously, the approximated KL divergence is
amenable to the mini-batch setting; thus, can be minimized with SGD.

D. Implementation Detail
We set the size of mini-batch to 250, and ran 50 epochs for each dataset. We initialized weights following He et al. (2015):
each element of the weight is initialized by the value drawn independently from Gaussian distribution whose mean is 0, and
standard deviation is scale×

√
2/fanin, where fanin is the number of input units. We set the scale to be 0.1-0.1-0.0001

for weight matrices from the input to the output. The bias terms were all initialized with 0.
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E. Datasets Description
• MNIST: A dataset of hand-written digit classification (LeCun et al., 1998). The value of each pixel was transformed

linearly into an interval [-1, 1].

• Omniglot: A dataset of hand-written character recognition (Lake et al., 2011), containing examples from 50 alphabets
ranging from well-established international languages. We sampled 100 types of characters from four alphabets, Magi,
Anglo-Saxon Futhorc, Arcadian, and Armenian. Each character contains 20 data points. Since the original data have
high resolution (105-by-105 pixels), each data point was down-sampled to 21-by-21 pixels. We also augmented each
data point 20 times by thestochastic affine distortion explained in Appendix F.

• STL: A dataset of 96-by-96 color images acquired from labeled examples on ImageNet (Coates et al., 2010). Features
were extracted using 50-layer pre-trained deep residual networks (He et al., 2016) available online as a caffe model.
Note that since the residual network is also trained on ImageNet, we expect that each class is separated well in the
feature space.

• CIFAR10: A dataset of 32-by-32 color images with ten object classes, which are from the Tiny image dataset
(Torralba et al., 2008). Features were extracted using the 50-layer pre-trained deep residual networks (He et al., 2016).

• CIFAR100: A dataset 32-by-32 color images with 100 refined object classes, which are from the Tiny image dataset
(Torralba et al., 2008). Features were extracted using the 50-layer pre-trained deep residual networks (He et al., 2016).

• SVHN: A dataset with street view house numbers (Netzer et al., 2011). Training and test images were both used.
Each image was represented as a 960-dimensional GIST feature (Oliva & Torralba, 2001).

• Reuters: A dataset with English news stories labeled with a category tree (Lewis et al., 2004). Following DEC
(Xie et al., 2016), we used four categories: corporate/industrial, government/social, markets, and economics as labels.
The preprocessing was the same as that used by Xie et al. (2016), except that we removed stop words. As Xie et al.
(2016) did, 10000 documents were randomly sampled, and tf-idf features were used.

• 20news: A dataset of newsgroup documents, partitioned nearly evenly across 20 different newsgroups2. As Reuters
dataset, stop words were removed, and the 2000 most frequent words were retained. Documents with less than ten
words were then removed, and tf-idf features were used.

For the STL, CIFAR10 and CIFAR100 datasets, each image was first resized into a 224-by-224 image before its feature
was extracted using the deep residual network.

F. Affine Distortion for the Omniglot Dataset
We applied stochastic affine distortion to data points in Omniglot. The affine distortion is similar to the one used by Koch
(2015), except that we applied the affine distortion on down-sampled images in our experiments. The followings are the
stochastic components of the affine distortion used in our experiments. Our implementation of the affine distortion is based
on scikit-image3.

• Random scaling along x and y-axis by a factor of (sx, sy), where sx and sy are drawn uniformly from interval
[0.8, 1.2].

• Random translation along x and y-axis by (tx, ty), where tx and ty are drawn uniformly from interval [−0.4, 0.4].

• Random rotation by θ, where θ is drawn uniformly from interval [−10◦, 10◦].

• Random shearing along x and y-axis by (ρx, ρy), where ρx and ρy are drawn uniformly from interval [−0.3, 0.3].

Figure. 3 shows examples of the random affine distortion.
2http://qwone.com/˜jason/20Newsgroups/
3http://scikit-image.org/
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Figure 3. Examples of the random affine distortion used in our experiments. Images in the top left side are stochastically transformed
using the affine distortion.

Table 6. Comparison of hash performance for 32-bit hash codes (%). Averages and standard deviations over ten trials were reported.
Experimental results of Deep Hash and the previous methods are excerpted from Erin Liong et al. (2015).

Method Hamming ranking (mAP) precision @ sample = 500 precision @ r = 2
(Network dimensionality) MNIST CIFAR10 MNIST CIFAR10 MNIST CIFAR10
Spectral hash (Weiss et al., 2009) 25.7 12.4 61.3 19.7 65.3 20.6
PCA-ITQ (Gong et al., 2013) 43.8 16.2 74.0 25.3 73.1 15.0
Deep Hash (80-50) 45.0 16.6 74.7 26.0 73.3 15.8
Linear RIM 29.7 (0.4) 21.2 (3.0) 68.9 (0.9) 16.7 (0.8) 60.9 (2.2) 15.2 (0.9)
Deep RIM (80-50) 34.8 (0.7) 14.2 (0.3) 72.7 (2.2) 24.0 (0.9) 72.6 (2.1) 23.5 (1.0)
Deep RIM (200-200) 36.5 (0.8 14.1 (0.2) 76.2 (1.7) 23.7 (0.7) 75.9 (1.6) 23.3 (0.7)
Deep RIM (400-400) 37.0 (1.2) 14.2 (0.4) 76.1 (2.2) 23.9 (1.3) 75.7 (2.3) 23.7 (1.2)
IMSAT (VAT) (80-50) 55.4 (1.4) 20.0 (5.5) 87.6 (1.3) 23.5 (3.4) 88.8 (1.3) 22.4 (3.2)
IMSAT (VAT) (200-200) 62.9 (1.1) 18.9 (0.7) 96.1 (0.6) 29.8 (1.6) 95.8 (0.4) 29.1 (1.4)
IMSAT (VAT) (400-400) 64.8 (0.8) 18.9 (0.5) 97.3 (0.4) 30.8 (1.2) 96.7 (0.6) 29.2 (1.2)

G. Hyper-parameter Selection
In Figure 4 we report the experimental results for different hyper-parameter settings. We used Eq. (21) as a criterion to
select hyper-parameter, β∗, which performed well across the datasets.

β∗ = argmax
β

∑

dataset

ACC(β, dataset)

ACC(β∗
dataset, dataset)

, (21)

where β∗
dataset is the best hyper-parameter for the dataset, and ACC(β, dataset) is the clustering accuracy when hyper-

parameter β is used for the dataset. According to the criterion, we set 0.005 for decay rates in both Linear RIM and Deep
RIM. Also, we set λ = 1.6, 0.05 and 0.1 for Linear IMSAT (VAT), IMSAT (RPT) and IMSAT (VAT), respectively.

H. Experimental Results on Hash Learning with 32-bit Hash Codes
Table 6 lists the results on hash learning when 32-bit hash codes were used. We observe that IMSAT with the largest
network sizes (400-400) exhibited competitive performance in both datasets. The performance of IMSAT improved signif-
icantly when we used slightly larger networks (200-200), while the performance of Deep RIM did not improve much with
the larger networks.
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Figure 4. Relationship between hyper-parameters and clustering accuracy for 8 benchmark datasets with different methods: (a) Linear
RIM, (b) Deep RIM, (c) Linear IMSAT (VAT), (d) IMSAT (RPT), and (e) IMSAT (VAT).

I. Comparisons of Hash Learning with Different Regularizations and Network Sizes Using Toy
Dataset

We used a toy dataset to illustrate that IMSAT can benefit from larger networks sizes by better modeling the local invariance.
We also illustrate that weight-decay does not benefit much from the increased flexibility of neural networks.

For the experiments, we generated a spiral-shaped dataset, each arc containing 300 data points. For IMSAT, we used
VAT regularization and set ϵ = 0.3 for all the data points. We compared IMSAT with Deep RIM, which also uses neural
networks but with weight-decay regularization. We set the decay rate to 0.0005. We varied three settings for the network
dimensionality of the hidden layers: 5-5, 10-10, and 20-20.

Figure 5 shows the experimental results. We see that IMSAT (VAT) was able to model the complicated decision boundaries
by using the increased network dimensionality. On the contrary, the decision boundaries of Deep RIM did not adapt to
the non-linearity of data even when the network dimensionality was increased. This observation may suggest why IMSAT
(VAT) benefited from the large networks in the benchmark datasets, while Deep RIM did not.
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Figure 5. Comparisons of hash learning with the different regularizations and network sizes using toy datasets.


