A. Supplementary materials

A.1. Notation and Lemmas

We provide some additional notations for the proof. First, for $X \in \mathcal{X}$, we denote an overlapped Schatten sup-norm as

$$
\|X\|_{s, \infty}:=\max _{k} \max _{r} \sigma_{r}\left(X_{(k)}\right)
$$

With the norm, we introduce a following Lemma.
Lemma 7. (Lemma 1 in Tomioka et al. (2011)) For $X \in \mathcal{X}$, consider the infimum of the maximum mode-k spectral norm for $\left|\left||\cdot| \|_{s^{*}}\right.\right.$ as

$$
\|X\|_{s^{*}}=\inf _{\frac{1}{K} \sum_{k=1}^{K} Y^{(k)}=X} \max _{k}\left\|Y_{(k)}^{(k)}\right\|_{s, \infty}
$$

where $Y^{(k)} \in \mathcal{X}$ and $Y_{(k)}^{(k)}$ is the mode-k unfolding of $Y^{(k)}$ for all k. Then, $\|\|\cdot\|\|_{s^{*}}$ is the dual norm of the overlapped Schatten 1-norm $\||\cdot|\|_{s}$. Moreover, the following inequality is valid:

$$
\||X|\|_{s^{*}} \leq\| \| X \|_{m}
$$

Proof is provided in Tomioka et al. (2011). By Lemma 7, we obtain the following Holder-type inequality as

$$
\begin{equation*}
\left|\left\langle X, X^{\prime}\right\rangle\right| \leq\| \| X\| \|_{s}\left\|X^{\prime}\right\|_{s^{*}} \leq\||X|\|_{s}\| \| X^{\prime}\| \|_{m} \tag{13}
\end{equation*}
$$

We also discuss a rank restriction for tensor and provide Lemma for the restriction.
We introduce another result to bound the the effect of the noise tensor such as $\left\|\left\|\mathfrak{X}^{*}(\mathcal{E})\right\|\right\|_{m}$.
Lemma 8. (Lemma 3 in Tomioka et al. (2011)) Let \mathfrak{X} and \mathcal{E} be as the defined above. Then, with high probability, we have

$$
\left\|\left\|\mathfrak{X}^{*}(\mathcal{E})\right\|\right\|_{m} \leq \frac{\sigma}{K} \sum_{k=1}^{K}\left(\sqrt{I_{k}}+\sqrt{I_{\backslash k}}\right) .
$$

A.2. Proof of Lemma 2

The notation \lesssim denotes that the left-hand side is bounded by the right-hand side up to a constant. Also, by the setting of the basis functions, we define a finite positive constant C_{P} satisfying $C_{P} \geq \mid\|W\|\left\|_{F} /\right\| X\| \|_{F}$.
By the definition of \hat{X}, we obtain the following basis inequality:

$$
\begin{aligned}
& \frac{1}{2 n}\|Y-\mathfrak{X}(\hat{X})\|^{2}+\lambda_{n}\| \| W_{\hat{X}}\| \|_{s}+\mu_{n}\| \| W_{\hat{X}} \|_{F} \\
& \leq \frac{1}{2 n}\left\|Y-\mathfrak{X}\left(X^{*}\right)\right\|^{2}+\lambda_{n}\| \| W_{X^{*}}\| \|_{s}+\mu_{n}\left\|W_{X^{*}}\right\|_{F}
\end{aligned}
$$

Let $\Delta_{X}:=X^{*}-\hat{X}$ and $\Delta_{W}:=W_{X^{*}}-W_{\hat{X}}$, and some calculation yields

$$
\begin{align*}
& \frac{1}{2 n}\left\|\mathfrak{X}\left(\Delta_{X}\right)\right\|^{2} \leq \frac{1}{n}\left\langle\mathcal{E}, \mathfrak{X}\left(\Delta_{X}\right)\right\rangle \tag{14}\\
& \quad+\lambda_{n}\left(\| \| W_{\hat{X}}+\Delta_{W}\| \|_{s}-\left\|W_{\hat{X}}\right\|_{s}\right) \\
& \quad+\mu_{n}\left(\| \| W_{\hat{X}}+\Delta_{W}\left\|_{F}^{2}-\right\| W_{\hat{X}} \|_{F}^{2}\right)
\end{align*}
$$

Remind that \mathfrak{X} satisfies the linearity properties.
Here, we evaluate each of the terms on the right-hand side of (14). About the first term, we obtain

$$
\frac{1}{n}\left\langle\mathcal{E}, \mathfrak{X}\left(\Delta_{X}\right)\right\rangle=\frac{1}{n}\left\langle\mathfrak{X}^{*}(\mathcal{E}), \Delta\right\rangle
$$

$$
\leq \frac{1}{n}\| \| \mathfrak{X}^{*}(\mathcal{E})\| \|_{s^{*}} \left\lvert\,\left\|\Delta_{X}\right\|\left\|_{s} \leq \frac{1}{n}\right\|\left\|\mathfrak{X}^{*}(\mathcal{E})\right\|\left\|_{m}\right\|\left\|\Delta_{X}\right\|\right. \|_{s}
$$

by the definition of adjoint operators, the Holder's inequality, and Lemma 7. Let $\lambda^{*}=\frac{1}{n}\| \| \mathfrak{X}^{*}(\mathcal{E})\| \|_{m}$ for brevity. Here, we discuss the relation between $\Delta_{X,(k)}$ and $\Delta_{W,(k)}$.
Also, using the setting on Φ and the Holder's inequality, we have

$$
\begin{align*}
\left\|\left\|\Delta_{X}\right\|_{s}\right. & =\frac{1}{K} \sum_{k=1}^{K}\left\|\Delta_{X,(k)}\right\|_{s} \tag{15}\\
& \leq \frac{1}{K} \sum_{k=1}^{K}\left\|\Gamma_{(k)}\right\|\left\|\Delta_{W,(k)}\right\| \\
& \leq\left\|\Delta_{W}\right\|\left\|_{F} \frac{1}{K} \sum_{k=1}^{K}\right\| \Gamma_{(k)} \| \\
& =:\left\|\Delta_{W}\right\| \|_{F} C_{\Gamma} \tag{16}
\end{align*}
$$

About the third term in (14), since we have we have

$$
\lambda_{n}\left(\| \| W_{\hat{X}}+\Delta_{X}\| \|_{s}-\left\|W_{\hat{X}}\right\| \|_{s}\right) \leq \lambda_{n}\| \| \Delta_{W}\| \|_{s}
$$

by the triangle inequality. The third term in (14) is bounded as

$$
\begin{aligned}
& \mu_{n}\left(\| \| W_{X^{*}} \mid\left\|_{F}^{2}-\right\| W_{\hat{X}} \|_{F}^{2}\right) \\
& =\frac{\mu_{n}}{K}\left(\sum_{k=1}^{K} \sum_{m_{k}=1}^{\infty}\left(w_{m_{1} \ldots m_{K}}^{*}\right)^{2}-\sum_{k=1}^{K} \sum_{m_{k}=1}^{M^{(k)}} \hat{w}_{m_{1} \ldots m_{K}}^{2}\right) \\
& \left.=\frac{\mu_{n}}{K}\left(\sum_{k=1}^{K} \sum_{m=1}^{M^{(k)}}\left\{\left(w_{m_{1} \ldots m_{K}}^{*}\right)^{2}-\hat{w}_{m_{1} \ldots m_{K}}^{2}\right)\right\}+\sum_{k=1}^{K} \sum_{m_{k}>M^{(k)}}\left(w_{m_{1} \ldots m_{K}}^{*}\right)^{2}\right) .
\end{aligned}
$$

Here, we let $A \quad=\quad \frac{1}{K} \sum_{k=1}^{K} \sum_{m_{k}>M^{(k)}}\left(w_{m_{1} \ldots m_{K}}^{*}\right)^{2}$ for brevity. To bound the term $\left.\sum_{k=1}^{K} \sum_{m=1}^{M^{(k)}}\left\{\left(w_{m_{1} \ldots m_{K}}^{*}\right)^{2}-\hat{w}_{m_{1} \ldots m_{K}}^{2}\right)\right\}$, we define a projection $\Pi: \mathbb{R}^{M^{(1)} \times \cdots \times M^{(K)}} \rightarrow \Theta$ is smooth and low-rank, and let $\bar{\Delta}_{W}:=\Pi\left(W_{X^{*}}\right)-W_{\hat{X}}$. Then, we have

$$
\begin{aligned}
& \left.\frac{1}{K} \sum_{k=1}^{K} \sum_{m=1}^{M^{(k)}}\left\{\left(w_{m_{1} \ldots m_{K}}^{*}\right)^{2}-\hat{w}_{m_{1} \ldots m_{K}}^{2}\right)\right\} \\
& =\left\|\Pi\left(W_{X^{*}}\right)\right\|\left\|^{2}-\right\|\left\|W_{\hat{X}}\right\|^{2} \\
& =\left\|W_{\hat{X}}^{2}+\bar{\Delta}_{W}\right\|\left\|^{2}-\right\| W_{\hat{X}}\left\|_{F}^{2} \leq\right\| \bar{\Delta}_{W} \|_{F}^{2}
\end{aligned}
$$

Then we have

$$
\mu_{n}\left(\| \| W_{X^{*}}\left\|_{F}^{2}-\right\| W_{\hat{X}} \|_{F}^{2}\right) \leq \mu_{n}\left(\left\|\bar{\Delta}_{W}\right\| \|_{F}^{2}+A\right)
$$

About the second term in (14), we obtain

$$
\begin{aligned}
& \left\|\Delta_{W} \mid\right\|_{s} \\
& \leq \frac{1}{K} \sum_{k=1}^{K}\left\|\Delta_{W,(k)}^{\prime}\right\|_{s}+\frac{1}{K} \sum_{k=1}^{K}\left\|\Delta_{W,(k)}^{\prime \prime}\right\|_{s} \\
& \leq 4 \frac{1}{K} \sum_{k=1}^{K}\left\|\Delta_{W,(k)}^{\prime}\right\|_{s}+\frac{1}{K} \sum_{k=1}^{K} \sum_{r_{k}>R_{k}^{W}} \sigma_{r_{k}}\left(W_{(k)}^{*}\right),
\end{aligned}
$$

where the inequalities follow the same discussion with Lemma 2 in Tomioka et al. (2011) and Lemma 1 in Negahban \& Wainwright (2011). Let $B:=\frac{1}{K} \sum_{k=1}^{K} \sum_{r_{k}>R_{k}^{W}} \sigma_{r_{k}}\left(W_{X^{*},(k)}\right)$ for brevity. Then, by the Holder-type inequality, we have following inequalities as

$$
\begin{aligned}
\left\|\left\|\Delta_{W}^{\prime}\right\|_{s}\right. & \leq \frac{1}{K} \sum_{k=1}^{K} \sqrt{2 R_{k}^{W}}\left\|\Delta_{W,(k)}\right\|_{F} \\
& \leq\| \| \Delta_{W} \|_{F} \frac{1}{K} \sum_{k=1}^{K} \sqrt{2 R_{k}^{W}}
\end{aligned}
$$

Combining the results, we evaluate the inequality (14) as

$$
\begin{aligned}
& \frac{1}{2 n}\left\|\mathfrak{X}\left(\Delta_{X}\right)\right\|^{2} \\
& \leq \frac{1}{n}\left\|\mathfrak{X}^{*}(\mathcal{E})\right\|\left\|_{m}\right\| \Delta_{X}\left\|_{s}+\lambda_{n}\right\|\left\|\Delta_{W}\right\|_{s}+\mu_{n}\left(\| \| \overline{\Delta_{W}} \|_{F}^{2}+A\right) \\
& \leq \lambda^{*} C_{\Gamma}\| \| \Delta_{W} \|_{F} \\
& \quad+\lambda_{n}\left(\left\|\Delta_{W}\right\| \|_{F} \frac{1}{K} \sum_{k=1}^{K} \sqrt{2 R_{k}^{W}}+B\right) \\
& \quad+\mu_{n}\left(\left\|\bar{\Delta}_{W}\right\| \|_{F}^{2}+A\right)
\end{aligned}
$$

By the RSC condition and the same result in (15), we have

$$
\begin{aligned}
& \left\|\Delta_{X}\right\|_{F}^{2} \leq \frac{1}{2 n}\left\|\mathfrak{X}\left(\Delta_{X}\right)\right\|^{2} \\
& \leq\left(\lambda^{*} C_{\Gamma}^{\prime}+\lambda_{n}\right)\left\|\Delta_{W}\right\|_{F} \frac{1}{K} \sum_{k=1}^{K} \sqrt{R_{k}^{W}}+\mu_{n}\| \| \Delta_{W} \|_{F}^{2}+\lambda_{n} B+\mu_{n} A \\
& \leq C_{P}\left(\lambda^{*} C_{\Gamma}^{\prime}+\lambda_{n}\right)\left\|\Delta_{X}\right\|_{F} \frac{1}{K} \sum_{k=1}^{K} \sqrt{R_{k}^{W}}+C_{P} \mu_{n}\left\|\Delta_{X}\right\|_{F}^{2}+\lambda_{n} B+\mu_{n} A
\end{aligned}
$$

where $C_{\Gamma}^{\prime}=C_{\Gamma}\left(\frac{1}{K} \sum_{k=1}^{K} \sqrt{R_{k}^{W}}\right)^{-1}$. When $A=0$ and $B=0$, using the condition of the constant, we have

$$
\begin{aligned}
& \left(1-C_{P} \mu_{n}\right)\left\|\Delta_{X}\right\|_{F}^{2} \\
& \leq \kappa_{n} \mid\left\|\Delta_{X}\right\| \|_{F} \frac{1}{K} \sum_{k=1}^{K} \sqrt{R_{k}^{W}}
\end{aligned}
$$

by the setting of κ_{n}. Then we have

$$
\begin{equation*}
\left\|\left\|\Delta_{X} \mid\right\|_{F} \lesssim \frac{\kappa_{n}}{K} \sum_{k=1}^{K} \sqrt{R_{k}^{W}}\right. \tag{17}
\end{equation*}
$$

Then the claim holds.

A.3. Proof of Lemma 4

Proof. This proof start from the inequality (17) used in the proof of Lemma 2. By the settings of Lemma 4, we have $A=0$ and $B=0$. Using the setting of the basis functions, we have

$$
\begin{equation*}
\left\|\Delta_{W}\right\|_{F}^{2} \leq C_{P}^{2}\| \| \Delta_{X} \|_{F}^{2} \tag{18}
\end{equation*}
$$

To evaluate the convergence, we bound the following term. For all $g \in[0,1]^{K}$, we have

$$
\begin{aligned}
&\left|f_{\hat{X}}(g)-f_{X^{*}}(g)\right| \\
&=\left|\sum_{k=1}^{K} \sum_{m_{k}=1}^{M^{(k)}}\left(\hat{w}_{m_{1} \ldots m_{K}}-w_{m_{1} \ldots m_{K}}^{*}\right) \phi_{m_{1}}^{(1)}\left(g_{1}\right) \cdots \phi_{m_{K}}^{(K)}\left(g_{K}\right)\right| \\
& \leq\left(\sum_{k=1}^{K} \sum_{m_{k}=1}^{M^{(k)}}\left(\hat{w}_{m_{1} \ldots m_{K}}-w_{m_{1} \ldots m_{K}}^{*}\right)^{2}\right)^{1 / 2} \\
& \times\left(\sum_{k=1}^{K} \sum_{m_{k}=1}^{M^{(k)}}\left(\phi_{m_{1}}^{(1)}\left(g_{1}\right) \cdots \phi_{m_{K}}^{(K)}\left(g_{K}\right)\right)^{2}\right)^{1 / 2},
\end{aligned}
$$

by the boundedness property of $\left\{\phi_{m}\right\}_{m}$.
Then, we obtain

$$
\sup _{g \in[0,1]^{K}}\left|f_{\hat{X}}(g)-f_{X^{*}}(g)\right| \leq C_{g}\left\|\Delta_{W}\right\|
$$

where C_{g} is a positive constant. Combining the result in (18), we obtain the claim.

A.4. Proof of Theorem 5 and Theorem 6

Proof. Using Lemma 8, we obtain the regularization parameter bounding $\left\|\left\|\mathfrak{X}^{*}(\mathcal{E}) \mid\right\|_{m}\right.$. Then, we substitute the parameter into the result of Lemma 2 and 6 , thus we obtain the claim.

