
Fairness in Reinforcement Learning

A. Omitted Proofs
A.1. Omitted Proofs for Section 2

Proof of Lemma 1. Let µ̂⇡
T denote the distribution of ⇡ on

states of M after following ⇡ for T steps starting from s.
Then we know
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The last inequality is due to the following observations:
(i) V ⇡

M (si)  1

1�� as rewards are in [0, 1] and (ii)
⌃

n
i=1

|µ⇡
(si)� µ̂⇡

T (si)|  ✏ since T is at least the ✏-mixing
time of ⇡.

A.2. Omitted Proofs for Section 3

We first state the following useful Lemma about M .

Lemma 11. Let M be the MDP in Definition 6. Then for
any i 2 {1, . . . , n}, V ⇤
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via two applications of the summation formula for geomet-
ric series.

Proof of Theorem 3. We prove Theorem 3 for the special
case of k = 2 first. Consider coupling the run of a fair
algorithm L on both M(0.5) and M(1). To achieve this,
we can fix the randomness of L up front, and use the same
randomness on both MDPs. The set of observations and

hence the actions taken on both MDPs are identical until
L reaches state sn. Until then, with probability at least
1� �, L must play L and R with equal probability in order
to satisfy fairness (since, for M(0.5), the only fair policy
is to play both actions with equal probability at each time
step). We will upper-bound the optimality of uniform play
and lower-bound the number of rounds before which sn is
visited by uniformly random play.

Let f� = d 1

1� 3

p
� e and T = 2

n�2f� for n � 100(f�)2.
First observe that the probability of reaching a fixed state si
for any i � n�f� from a random walk of length T is upper
bounded by the probability that the random walk takes i �
n � f� consecutive steps to the right in the first T steps.
This probability is at most p = 2

n�2f�
(

1

2

)

n�f�
= 2

�f�

for any fixed i. Since reaching any state i > i0 requires
reaching state i0, the probability that the T step random
walk arrives in any state si for i � n � f� is also upper
bounded by p.

Next, we observe that V ⇤
M (si) is a nondecreasing function

of i for both MDPs. Then the average V ⇤
M values of the vis-

ited states of any fair policy can be broken into two pieces:
the average conditioned on (the probability at least 1 � �
event) that the algorithm plays uniformly at random before
reaching state sn and never reaching a state beyond sn�f� ,
and the average conditioned on (the probability at most �
event) that the algorithm does not make uniformly random
choices or the uniform random walk of length T reaches a
state beyond sn�f� . So, we have that
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The first inequality follows from the fact that V ⇤
M (si) 

1

1�� for all i, and the second from Lemma 11 along with
V ⇤
M values being nondecreasing in i. Putting it all together,
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However, if ✏ < 1
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we get
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where the third inequality follows when � < 1

4

and � >
1

2

. This means ✏ < 1

8

makes ✏-optimality impossible, as
desired.

Throughout we considered the special case of k = 2 and
proved a lower bound of ⌦(2n) time steps for any fair al-
gorithm satisfying the ✏-optimality condition. However, it
is easy to see that MDP M in Definition 6 can be easily
modified in a way that k � 1 of the actions from state si
reach state s

1

and only one action in each state si reaches
states s

min{i+1,n}. Hence, a lower bound of ⌦(kn) time
steps can be similarly proved.

Proof of Theorem 4. We mimic the argument used to prove
Theorem 3 with the difference that, until visiting sn, L
may not play R with probability more than 1

2

+ ↵ (as
opposed to 1

2

in Theorem 3). Let f� = d 1

1� 3

p
� e and

T = (

2

1+2↵ )
n�2f� for n � 100(f�)2. By a similar pro-

cess as in Theorem 3, the probability of reaching state si
for any i � n � f� from a random walk of length T is
bounded by p = (

2

1+2↵ )
�f� , and so the probability that the

T steps random walk arrives in any state si for i � n� f�
is bounded by p. Carrying out the same process used to
prove Theorem 3 then once more implies that ✏-optimality
requires Equation 4 to hold when � < 1

4

, ↵ < 1

4

and � > 1

2

.
Hence, ✏ < 1

8

violates this condition as desired.

Finally, throughout we considered the special case of k =

2. The same trick as in the proof of Theorem 3 can be used
to prove the lower bound of ⌦(( k

1+k↵ )
n
) time steps for any

fair algorithm satisfying the ✏-optimality condition.

Proof of Theorem 5. We also prove Theorem 5 for the spe-
cial case of k = 2 first, again considering the MDP in
Definition 6. We set the size of the state space in M to

be n = d log(

1

2↵ )

1�� e. Then given the parameter ranges, for
any i, Q⇤

M (si, R) � Q⇤
M (si, L) > ↵ in M(1). Therefore,

any approximate-action fair algorithm should play actions
R and L with equal probability.

Let T = 2

cn
= ⌦((2

1/(1��)
)

c
). First observe that the

probability of reaching a fixed state si for any i � (c +
1)n/2 from a random walk of length T is upper bounded by
the probability that the random walk takes i � (c+ 1)n/2
consecutive steps to the right in the first T steps. This prob-
ability is at most p = 2

cn
2

�(c+1)n/2
= 2

(c�1)n/2 for any
fixed i. Then the probability that the T steps random walk

arrives in any state si for i � (c + 1)n/2 is also upper
bounded by p.

Next, we observe that V ⇤
M (si) is a nondecreasing function

of i, for both MDPs. Then the average V ⇤
M values of the vis-

ited states of any fair policy can be broken into two pieces:
the average conditioned on the 1 � � fairness and never
reaching a state beyond s

(c+1)n/2, and the average when
fairness might be violated or the uniform random walk of
length T reaches a state beyond s

(c+1)n/2. So, we have
that
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The first inequality follows from the fact that V ⇤
M (si) 

1

1�� for all i, and the second from (the line before the last
in) Lemma 11 along with V ⇤

M values being nondecreasing
in i. Putting it all together,
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Rearranging and using � < 1

4

, we get that ✏-optimality re-
quires
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Noting that x is minimized when 2

(c�1) log(
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2(1��) is maxi-
mized, and that this quantity is maximized when log(
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minimized (as c � 1 is negative), we get that ✏-optimality
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Conversely, 1�(2��1)�
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so as
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Finally, the same trick as in the proof of Theorem 3 can be
used to prove the ⌦((k1/(1��)

)

c
) lower bound for k > 2

actions.

A.3. Omitted Proofs for Section 4

Proof of Lemma 8. We first show that either

• there exists an exploitation policy ⇡ in M
�

such that
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where the random variables ⇡t
(s) and ⇡̄t

(s) denote the
states reached from s after following ⇡ and ⇡̄ for t steps,
respectively, or

• there exists an exploration policy ⇡ in M
�

such that the
probability that a walk of 2T steps from s following ⇡
will terminate in s

0
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T .

Let ⇡ be a policy in M satisfying
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For any state s0, let p(s0) denote all the paths of length T
in M that start in s0, q(s0) denote all the paths of length T
in M that start in s0 such that all the states in every path of
length T in q(s0) are in � and r(s0) all the paths of length
T in M that start in s0 such that at least one state in every
path of length T in r(s0) is not in �. Suppose
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Otherwise, ⇡ already witnesses the claim. We show that a
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0

with probability of at least �
T . First,

E
TX

t=1

V ⇡
M (⇡t

(s), T ) = E
TX

t=1

X

p(⇡t
(s))

P[p(⇡t
(s))]VM (p(⇡t

(s)))

= E
TX

t=1

X

q(⇡t
(s))

P[q(⇡t
(s))]VM (q(⇡t

(s)))

+ E
TX

t=1

X

r(⇡t
(s))

P[r(⇡t
(s))]VM (r(⇡t

(s)))

since p(⇡t
(s)) = q(⇡t

(s)) [ r(⇡t
(s)), which is a disjoint

union. Next,

E
TX

t=1

X

q(⇡t
(s))

P[q(⇡t
(s))]VM (q(⇡t

(s)))

= E
TX

t=1

X

q(⇡t
(s))

P⇡
M

�

[q(⇡t
(s))]VM

�

(q(⇡t
(s)))

 E
TX

t=1

V ⇡
M

�

(⇡t
(s), T ),

where the equality is due to Definition 9 and the definition
of q, and the inequality follows because V ⇡

M
�

(⇡t
(s), T ) is

the sum over all the T -paths in M
�

, not just those that avoid
the absorbing state s

0

. Therefore by our original assump-
tion on ⇡,

E
TX

t=1

X

q(⇡t
(s))

P[q(⇡t
(s))]VM (q(⇡t

(s)))

 E
TX

t=1

V ⇡
M

�

(⇡t
(s), T ) < T ˜V � T�.



Fairness in Reinforcement Learning

This implies
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if we let P⇡
2T denote the probability that a walk of 2T steps

following ⇡ terminates in s
0

, i.e. the probability that ⇡ es-
capes to an unknown state within 2T steps, then for each
t 2 [T ], E
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T�  T 2P⇡
2T

and rearranging yields P⇡
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Next, note that the exploitation policy (if it exists) can be
derived by computing the optimal policy in M

�

. Moreover,
the exploration policy (if it exists) in the exploitation MDP
M

�

can indeed be derived by computing the optimal policy
in the exploration MDP M

[n]\� as observed by (Kearns and
Singh, 2002). Finally, by Observation 5, any optimal policy
in ˆM↵

�

( ˆM↵
[n]\�) is an optimal policy in ˆM

�

( ˆM
[n]\�)

To prove Lemma 10, we need some useful background
adapted from Kearns and Singh (2002).
Definition 8 (Definition 7, Kearns and Singh (2002)). Let
M and ˆM be two MDPs with the same set of states and
actions. We say ˆM is a �-approximation of M if

• For any state s,

¯RM (s)� �  ¯R
ˆM (s)  ¯RM (s) + �.

• For any states s and s0 and action a,

PM (s, a, s0)� �  P
ˆM (s, a, s0)  PM (s, a, s0) + �.

Lemma 12 (Lemma 5, Kearns and Singh (2002)). Let M
be an MDP and � the set of known states of M . For any
s, s0 2 � and action a 2 A, let ˆPM (s, a, s0) denote the
empirical probability transition estimates obtained from
the visits to s. Moreover, for any state s 2 � let ¯

ˆR(s)
denote the empirical estimates of the average reward ob-
tained from visits to s. Then with probability at least 1� �,

| ˆPM (s, a, s0)� PM (s, a, s0)| = O
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Lemma 12 shows that ˆM
�

and ˆM
[n]\� are O(

min{✏,↵}2

n2H�
✏

4

)-
approximation MDPs for M

�

and M
[n]\�, respectively.

Lemma 13 (Lemma 4, Kearns and Singh (2002)). Let M
be an MDP and ˆM its O(

min{✏,↵}2

n2H�
✏

4

)-approximation. Then
for any policy ⇡ 2 ⇧ and any state s and action a
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Proof of Lemma 10. By Definition 7 and Lemma 12, ˆM
�

is
a O(

min{✏,↵}2

n2H�
✏

4

)-approximation of M
�

. Then the statement
directly follows by applying Lemma 13.

Rest of the Proof of Theorem 6. The only remaining part
of the proof of Theorem 6 is the analysis of the probability
of failure of Fair-E3. To do so, we break down the prob-
ability of failure of Fair-E3 by considering the following
(exhaustive) list of possible failures:

1. At some known state the algorithm has a poor ap-
proximation of the next step, causing ˆM

�

to not be a
O(

min{✏,↵}2

n2H�
✏

4

)-approximation of M
�

.
2. At some known state the algorithm has a poor approxi-

mation of the Q⇤
M values for one of the actions.

3. Following the exploration policy for 2T ⇤
✏ steps fails to

yield enough visits to unknown states.
4. At some known state, the approximation value of that

state in ˆM
�

is not an accurate estimate for the value of
the state in M

�

.

We allocate �
4

of our total probability of failure to each of
these sources:
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1. Set �0 = �
4n in Lemma 10.

2. Set �0 = �
4nk in Theorem 7.

3. By Lemma 8, each attempted exploration is a Bernoulli
trial with probability of success of at least ✏

4T⇤
✏

. In the
worst case we might need to make every state known
before exploiting, leading to the nmQ trajectories (mQ

as Equation 3 in Definition 7) of length H�
✏ . Therefore,

the probability of taking fewer than nmQ trajectories of
length H�

✏ would be bounded by �
4

if the number of 2T ⇤
✏

steps explorations is at least

mexp = O

✓
T ⇤
✏ nmQ

✏
log

⇣n
�

⌘◆
. (5)

4. Set �0 =

�
4mexp

(mexp as defined in Equation 5) in
Lemma 10, as Fair-E3 might make 2T ⇤

✏ steps explo-
rations up to mexp times.

A.4. Relaxing Assumption 2

Throughout Sections 4.3 and 4.4 we assumed that T ⇤
✏ , the

✏-mixing time of the optimal policy ⇡⇤, was known (see
Assumption 2). Although Fair-E3 uses the knowledge of
T ⇤
✏ to decide whether to follow the exploration or exploita-

tion policy, Lemma 8 continues to hold even without this
assumption. Note that Fair-E3 is parameterized by T ⇤

✏ and
for any input T ⇤

✏ runs in time poly(T ⇤
✏ ). Thus if T ⇤

✏ is
unknown, we can simply run Fair-E3 for T ⇤

✏ = 1, 2, . . .
sequentially and the running time and sample complexity
will still be poly(T ⇤

✏ ). Similar to the analysis of Fair-E3

when T ⇤
✏ is known we have to run the new algorithm for

sufficiently many steps so that the possibly low V ⇤
M values

of the visited states in the early stages are dominated by
the near-optimal V ⇤

M values of the visited states for large
enough guessed values of T ⇤

✏ .

B. Observations on Optimality and Fairness
Observation 1. For any MDP M , there exists an optimal
policy ⇡⇤ such that ⇡⇤ is fair.

Proof. In time t, let state st denote the state from which
⇡ chooses an action. Let a⇤ = argmaxa Q

⇤
M (st, a) and

A⇤
(st) = {a 2 A | Q⇤

M (st, a) = Q⇤
M (st, a⇤)}. The pol-

icy of playing an action uniformly at random from A⇤
(st)

in state st for all t, is fair and optimal.

Approximate-action fairness, conversely, can be satisfied
by any optimal policy, even a deterministic one.

Observation 2. Let ⇡⇤ be an optimal policy in MDP M .
Then ⇡⇤ is approximate-action fair.

Proof. Assume that ⇡⇤ is not approximate-action fair.
Given state s, the action that ⇡⇤ takes from s is uniquely
determined since ⇡⇤ is deterministic we may denote it by
a⇤. Then there exists a time step in which ⇡⇤ is in state
s and chooses action a⇤(s) such that there exists another
action a with

Q⇤
M (s, a) > Q⇤

M (s, a⇤(s)) + ↵,

a contradiction of the optimality of ⇡⇤.

Observations 1 and 2 state that policies with optimal per-
formance are fair; we now state that playing an action uni-
formly at random is also fair.

Observation 3. An algorithm that, in every state, plays
each action uniformly at random (regardless of the history)
is fair.

Proof. Let L denote an algorithm that in every state
plays uniformly at random between all available actions.
Then L(s, ht�1

)a = L(s, ht�1

)a0 regardless of state
s, (available) action a, or history ht�1

. Q⇤
M (s, a) >

Q⇤
M (s, a0) + ↵ ) L(s, ht�1

)a � L(s, ht�1

)a0 then
follows immediately, which guarantees both fairness and
approximate-action fairness.

Observation 4. Let M be an MDP and M↵ the ↵-
restricted MDP of M . Let ⇡ be a policy in M↵. Then ⇡
is ↵-action fair.

Proof. Assume ⇡ is not ↵-action fair. Then there must ex-
ist round t, state s, and action a such that Q⇤

M (s, a) >
Q⇤

M (s, a0) + ↵ and L(s, ht�1

)a < L(s, ht�1

)a0 . There-
fore L(s, ht�1

)a0 > 0, so M↵ must include action a0 from
state s. But this is a contradiction, as in state s M↵ only
includes actions a0 such that Q⇤

M (s, a0) + ↵ � Q⇤
M (s, a).

⇡ is therefore ↵-action fair.

Observation 5. Let M be an MDP and M↵ the ↵-
restricted MDP of M . Let ⇡⇤ be an optimal policy in M↵.
Then ⇡⇤ is also optimal in M .

Proof. If ⇡⇤ is not optimal in M , then there ex-
ists a state s and action a such that Q⇤

M (s, a) >
Ea⇤

(s)⇠⇡⇤
(s)Q

⇤
M (s, a⇤(s)) where a⇤(s) is drawn from

⇡⇤
(s) and the expectation is taken over choices of a⇤(s).

This is a contradiction because action a is available from
state s in M↵ by Definition 5.

C. Omitted Details of Fair-E3

We first formally define the exploitation MDP M
�

and the
exploration MDP M

[n]\�:



Fairness in Reinforcement Learning

Definition 9 (Definition 9, Kearns and Singh (2002)). Let
M = (SM ,AM , PM , RM , T, �) be an MDP with state
space SM and let � ⇢ SM . We define the exploration MDP
M

�

= (SM
�

,AM , PM
�

, RM
�

, T, �) on � where

• SM
�

= � [ {s
0

}.
• For any state s 2 �, ¯RM

�

(s) = ¯RM (s), rewards in M
�

are deterministic, and ¯RM
�

(s
0

) = 0.
• For any action a, PM

�

(s
0

, a, s
0

) = 1. Hence, s
0

is an
absorbing state.

• For any states s
1

, s
2

2 � and any action a,
PM

�

(s
1

, a, s
2

) = PM (s
1

, a, s
2

), i.e. transitions be-
tween states in � are preserved in M

�

.
• For any state s

1

2 � and any action a, PM
�

(s
1

, a, s
0

) =

⌃s
2

/2�

PM (s
1

, a, s
2

). Therefore, all the transitions be-
tween a state in � and states not in � are directed to s

0

in M
�

.

Definition 10 (Implicit, Kearns and Singh (2002)). Given
MDP M and set of known states �, the exploration MDP
M

[n]\� on � is identical to the exploitation MDP M
�

ex-
cept for its reward function. Specifically, rewards in M

[n]\�
are deterministic as in M

�

, but for any state s 2 �,
¯RM

[n]\�(s) = 0, and ¯RM
[n]\�(s0) = 1.

We next define the approximation MDPs ˆM
�

and ˆM
[n]\�

which are defined over the same set of states and actions as
in M

�

and M
[n]\�, respectively.

Let M be an MDP and � the set of known states of M . For
any s, s0 2 � and action a 2 A, let ˆPM

�

(s, a, s0) denote the
empirical probability transition estimates obtained from the
visits to s. Moreover, for any state s 2 � let ¯

ˆRM
�

(s) de-
note the empirical estimates of the average reward obtained
from visits to s. Then ˆM

�

is identical to M
�

except that:

• in any known state s 2 �, ˆR
ˆM
�

(s) = ¯

ˆRM
�

(s).
• for any s, s0 2 � and action a 2 A, P

ˆM
�

(s, a, s0) =

ˆPM
�

(s, a, s0).

Also ˆM
[n]\� is identical to M

[n]\� except that:

• for any s, s0 2 � and action a 2 A, P
ˆM
[n]\�

(s, a, s0) =

ˆPM
[n]\�(s, a, s

0
).


