## Simultaneous Learning of Trees and Representations for Extreme Classification with Application to Language Modeling (Supplementary material)

# 9. Geometric interpretation of probabilities $p_i^{(n)}$ and $p_{i|i}^{(n)}$



Figure 3. The comparison of discrete and continuous definitions of probabilities  $p_j^{(n)}$  and  $p_{j|i}^{(n)}$  on a simple example with K = 4 classes and binary tree (M = 2). n is an exemplary node, e.g. root.  $\sigma$  denotes sigmoid function. Color circles denote data points.

**Remark 3.** One could define  $p_j^{(n)}$  as the ratio of the number of examples that reach node n and are sent to its  $j^{th}$  child to the total the number of examples that reach node n and  $p_{j|i}^{(n)}$  as the ratio of the number of examples that reach node n, correspond to label i, and are sent to the  $j^{th}$  child of node n to the total the number of examples that reach node n and correspond to label i. We instead look at the continuous counter-parts of these discrete definitions as given by Equations 8 and 9 and illustrated in Figure 3 (note that continuous definitions have elegant geometric interpretation based on margins), which simplifies the optimization problem.

#### **10.** Theoretical proofs

Proof of Lemma 1. Recall the form of the objective defined in 6:

$$J_n = \frac{2}{M} \sum_{i=1}^{K} q_i^{(n)} \Big( \sum_{j=1}^{M} |p_j^{(n)} - p_{j|i}^{(n)}| \Big)$$
$$= \frac{2}{M} \mathbb{E}_{i \sim q^{(n)}} \Big[ f_n^J(i, p_{\cdot|\cdot}^{(n)}, q^{(n)}) \Big]$$

Where:

$$\begin{aligned} f_n^J(i, p_{\cdot|\cdot}^{(n)}, q^{(n)}) &= \sum_{j=1}^M \left| p_j^{(n)} - p_{j|i}^{(n)} \right| = \sum_{j=1}^M \left| p_{j|i}^{(n)} - \sum_{i'=1}^K q_{i'}^{(n)} p_{j|i'}^{(n)} \right| \\ &= \sum_{j=1}^M \left| \sum_{i'=1}^K (\mathbb{1}_{i=i'} - q_{i'}^{(n)}) p_{j|i'}^{(n)} \right| \end{aligned}$$

Hence:

$$\frac{\partial f_n^J(i, p_{||}^{(n)}, q^{(n)})}{\partial p_{j|i}^{(n)}} = (1 - q_i^{(n)})\operatorname{sign}(p_{j|i}^{(n)} - p_j^{(n)})$$

And:

$$\frac{\partial f_n^J(i, p_{\cdot|\cdot}^{(n)}, q^{(n)})}{\partial \log p_{j|i}^{(n)}} = (1 - q_i^{(n)}) \operatorname{sign}(p_{j|i}^{(n)} - p_j^{(n)}) \frac{\partial p_{j|i}^{(n)}}{\partial \log p_{j|i}^{(n)}} = (1 - q_i^{(n)}) \operatorname{sign}(p_{j|i}^{(n)} - p_j^{(n)}) p_{j|i}^{(n)}$$

By assigning each label j to a specific child i under the constraint that no child has more than L labels, we take a step in the direction  $\partial E \in \{0,1\}^{M \times K}$ , where:

$$\forall i \in [1, K], \quad \sum_{j=1}^{M} \partial E_{j,i} = 1$$
  
and  
$$\forall j \in [1, M], \quad \sum_{i=1}^{K} \partial E_{j,i} \le L$$

Thus:

$$\frac{\partial J_n}{\partial p_{\cdot|\cdot}^{(n)}} \partial E = \frac{2}{M} \frac{\mathbb{E}_{i \sim q^{(n)}} \left[ f_n^J(i, p_{\cdot|\cdot}^{(n)}, q^{(n)}) \right]}{\partial p_{\cdot|\cdot}^{(n)}} \partial E$$

$$= \frac{2}{M} \sum_{i=1}^K q_i^{(n)} (1 - q_i^{(n)}) \sum_{j=1}^M \left( \operatorname{sign}(p_{j|i}^{(n)} - p_j^{(n)}) \partial E_{j,i} \right) \tag{13}$$

And:

$$\frac{\partial J_n}{\partial \log p_{\cdot|\cdot}^{(n)}} \partial E = \frac{2}{M} \sum_{i=1}^K q_i^{(n)} (1 - q_i^{(n)}) \sum_{j=1}^M \left( \operatorname{sign}(p_{j|i}^{(n)} - p_j^{(n)}) p_{j|i}^{(n)} \partial E_{j,i} \right)$$
(14)

If there exists such an assignment for which 13 is positive, then the greedy method proposed in 2 finds it. Indeed, suppose that Algorithm 2 assigns label *i* to child *j* and *i'* to *j'*. Suppose now that another assignment  $\partial E'$  sends *i* to *j'* and *i* to *j'*. Then:

$$\frac{\partial J_n}{\partial p_{\cdot|\cdot}^{(n)}} \Big(\partial E - \partial E'\Big) = \Big(\frac{\partial J_n}{\partial p_{j|i}^{(n)}} + \frac{\partial J_n}{\partial p_{j'|i'}^{(n)}}\Big) - \Big(\frac{\partial J_n}{\partial p_{j|i'}^{(n)}} + \frac{\partial J_n}{\partial p_{j'|i}^{(n)}}\Big)$$
(15)

Since the algorithm assigns children by descending order of  $\frac{\partial J_n}{\partial p_{j|i}^{(n)}}$  until a child j is full, we have:

$$\frac{\partial J_n}{\partial p_{j|i}^{(n)}} \geq \frac{\partial J_n}{\partial p_{j|i'}^{(n)}} \quad \text{ and } \quad \frac{\partial J_n}{\partial p_{j|i'}^{(n)}} \geq \frac{\partial J_n}{\partial p_{j'|i}^{(n)}}$$

Hence:

$$\frac{\partial J_n}{\partial p_{...}^{(n)}} \Big( \partial E - \partial E' \Big) \ge 0$$

Thus, the greedy algorithm finds the assignment that most increases  $J_n$  most under the children size constraints. Moreover,  $\frac{\partial J_n}{\partial p_{\lfloor n \rfloor}^{(n)}}$  is always positive for  $L \leq M$  or  $L \geq 2M(M-2)$ .

*Proof of Lemma 2.* Both  $J_n$  and  $J_T$  are defined as the sum of non-negative values which gives the lower-bound. We next derive the upper-bound on  $J_n$ . Recall:

$$J_n = \frac{2}{M} \sum_{j=1}^M \sum_{i=1}^K q_i^{(n)} |p_j^{(n)} - p_{j|i}^{(n)}| = \frac{2}{M} \sum_{j=1}^M \sum_{i=1}^K q_i^{(n)} \left| \sum_{l=1}^K q_l^{(n)} p_{j|l}^{(n)} - p_{j|i}^{(n)} \right|$$

since  $p_j^{(n)} = \sum_{l=1}^{K} q_l^{(n)} p_{j|l}^{(n)}$ . The objective  $J_n$  is maximized on the extremes of the [0,1] interval. Thus, define the following two sets of indices:

$$O_j = \{i : i \in \{1, 2, \dots, K\}, p_{j|i}^{(n)} = 1\}$$
 and  $Z_j = \{i : i \in \{1, 2, \dots, K\}, p_{j|i}^{(n)} = 0\}.$ 

We omit indexing these sets with n for the ease of notation. We continue as follows

$$J_{n} \leq \frac{2}{M} \sum_{j=1}^{M} \left[ \sum_{i \in O_{j}} q_{i}^{(n)} \left( 1 - \sum_{l \in O_{j}} q_{l}^{(n)} \right) + \sum_{i \in Z_{j}} q_{i}^{(n)} \sum_{l \in O_{j}} q_{l}^{(n)} \right]$$
  
$$= \frac{4}{M} \sum_{j=1}^{M} \left[ \sum_{i \in O_{j}} q_{i}^{(n)} - \left( \sum_{i \in O_{j}} q_{i}^{(n)} \right)^{2} \right]$$
  
$$= \frac{4}{M} \left[ 1 - \sum_{j=1}^{M} \left( \sum_{i \in O_{j}} q_{i}^{(n)} \right)^{2} \right],$$

where the last inequality is the consequence of the following:  $\sum_{j=1}^{M} p_j^{(n)} = 1$  and  $p_j^{(n)} = \sum_{l=1}^{K} q_l^{(n)} p_{j|l}^{(n)} = \sum_{i \in O_j} q_i^{(n)}$ , thus  $\sum_{j=1}^{M} \sum_{i \in O_j} q_i^{(n)} = 1$ . Applying Jensen's inequality to the last inequality obtained gives

$$J_n \leq \frac{4}{M} - 4 \left[ \sum_{j=1}^M \left( \frac{1}{M} \sum_{i \in O_j} q_i^{(n)} \right) \right]^2$$
$$= \frac{4}{M} \left( 1 - \frac{1}{M} \right)$$

That ends the proof.

Proof of Lemma 3. We start from proving that if the split in node n is perfectly balanced, i.e.  $\forall_{j=\{1,2,\dots,M\}} p_j^{(n)} = \frac{1}{M}$ , and perfectly pure, i.e.  $\forall_{j=\{1,2,\dots,M\}} \min(p_{j|i}^{(n)}, 1-p_{j|i}^{(n)}) = 0$ , then  $J_n$  admits the highest value  $J_n = \frac{4}{M} (1-\frac{1}{M})$ . Since the split is maximally balanced we write:

$$J_n = \frac{2}{M} \sum_{j=1}^{M} \sum_{i=1}^{K} q_i^{(n)} \left| \frac{1}{M} - p_{j|i}^{(n)} \right|$$

Since the split is maximally pure, each  $p_{j|i}^{(n)}$  can only take value 0 or 1. As in the proof of previous lemma, define two sets of indices:

$$O_j = \{i : i \in \{1, 2, \dots, K\}, p_{j|i}^{(n)} = 1\}$$
 and  $Z_j = \{i : i \in \{1, 2, \dots, K\}, p_{j|i}^{(n)} = 0\}.$ 

We omit indexing these sets with n for the ease of notation. Thus

$$J_{n} = \frac{2}{M} \sum_{j=1}^{M} \left[ \sum_{i \in O_{j}} q_{i}^{(n)} \left( 1 - \frac{1}{M} \right) + \sum_{i \in Z_{j}} q_{i}^{(n)} \frac{1}{M} \right]$$
  
$$= \frac{2}{M} \sum_{j=1}^{M} \left[ \sum_{i \in O_{j}} q_{i}^{(n)} \left( 1 - \frac{1}{M} \right) + \frac{1}{M} \left( 1 - \sum_{i \in O_{j}} q_{i}^{(n)} \right) \right]$$
  
$$= \frac{2}{M} \left( 1 - \frac{2}{M} \right) \sum_{j=1}^{M} \sum_{i \in O_{j}} q_{i}^{(n)} + \frac{2}{M}$$
  
$$= \frac{4}{M} \left( 1 - \frac{1}{M} \right),$$

where the last equality comes from the fact that  $\sum_{j=1}^{M} p_j^{(n)} = 1$  and  $p_j^{(n)} = \sum_{l=1}^{K} q_l^{(n)} p_{j|l}^{(n)} = \sum_{i \in O_j} q_i^{(n)}$ , thus  $\sum_{j=1}^{M} \sum_{i \in O_j} q_i^{(n)} = 1$ .

Thus we are done with proving one induction direction. Next we prove that if  $J_n$  admits the highest value  $J_n = \frac{4}{M} \left(1 - \frac{1}{M}\right)$ , then the split in node n is perfectly balanced, i.e.  $\forall_{j=\{1,2,\dots,M\}} p_j^{(n)} = \frac{1}{M}$ , and perfectly pure, i.e.  $\forall_{j=\{1,2,\dots,M\}} \min(p_{j|i}^{(n)}, 1 - p_{j|i}^{(n)}) = 0$ .  $i=\{1,2,\dots,K\}$ 

Without loss of generality assume each  $q_i^{(n)} \in (0,1)$ . The objective  $J_n$  is certainly maximized in the extremes of the interval [0,1], where each  $p_{j|i}^{(n)}$  is either 0 or 1. Also, at maximum it cannot be that for any given j, all  $p_{j|i}^{(n)}$ 's are 0 or all  $p_{j|i}^{(n)}$ 's are 1. The function J(h) is differentiable in these extremes. Next, define three sets of indices:

$$\mathcal{A}_{j} = \{i : \sum_{l=1}^{K} q_{i}^{(n)} p_{j|l}^{(n)} \ge p_{j|i}^{(n)}\} \quad \text{and} \quad \mathcal{B}_{j} = \{i : \sum_{l=1}^{K} q_{i}^{(n)} p_{j|l}^{(n)} < p_{j|i}^{(n)}\} \quad \text{and} \quad \mathcal{C}_{j} = \{i : \sum_{l=1}^{K} q_{i}^{(n)} p_{j|l}^{(n)} > p_{j|i}^{(n)}\}\}$$

We omit indexing these sets with n for the ease of notation. Objective  $J_n$  can then be re-written as

$$J_n = \frac{2}{M} \sum_{j=1}^M \left[ \sum_{i \in \mathcal{A}_j} q_i^{(n)} \left( \sum_{l=1}^K q_i^{(n)} p_{j|l}^{(n)} - p_{j|i}^{(n)} \right) + 2 \sum_{i \in \mathcal{B}_j} q_i^{(n)} \left( p_{j|i}^{(n)} - \sum_{l=1}^K q_i^{(n)} p_{j|l}^{(n)} \right) \right],$$

We next compute the derivatives of  $J_n$  with respect to  $p_{j|z}^{(n)}$ , where  $z = \{1, 2, ..., K\}$ , everywhere where the function is differentiable and obtain

$$\frac{\partial J_n}{\partial p_{j|z}^{(n)}} = \begin{cases} 2q_z^{(n)}(\sum_{i \in \mathcal{C}_j} q_i^{(n)} - 1) & \text{if } z \in \mathcal{C}_j \\ 2q_z^{(n)}(1 - \sum_{i \in \mathcal{B}_j} q_i^{(n)}) & \text{if } z \in \mathcal{B}_j \end{cases},$$

Note that in the extremes of the interval [0, 1] where  $J_n$  is maximized, it cannot be that  $\sum_{i \in C_j} q_i^{(n)} = 1$  or  $\sum_{i \in B_j} q_i^{(n)} = 1$  thus the gradient is non-zero. This fact and the fact that  $J_n$  is convex imply that  $J_n$  can *only* be maximized at the extremes of the [0, 1] interval. Thus if  $J_n$  admits the highest value, then the node split is perfectly pure. We still need to show that if  $J_n$  admits the highest value, then the node split is also perfectly balanced. We give a proof by contradiction, thus we assume that at least for one value of j,  $p_j^{(n)} \neq \frac{1}{M}$ , or in other words if we decompose each  $p_j^{(n)}$  as  $p_j^{(n)} = \frac{1}{M} + x_j$ , then at least for one value of j,  $x_j \neq 0$ . Lets once again define two sets of indices (we omit indexing  $x_j$  and these sets with n for the ease of notation):

$$O_j = \{i : i \in \{1, 2, \dots, K\}, p_{j|i}^{(n)} = 1\} \text{ and } Z_j = \{i : i \in \{1, 2, \dots, K\}, p_{j|i}^{(n)} = 0\},$$

and recall that  $p_j^{(n)} = \sum_{l=1}^K q_l^{(n)} p_{j|l}^{(n)} = \sum_{i \in O_j} q_i^{(n)}$ . We proceed as follows

$$\begin{aligned} \frac{4}{M} \left( 1 - \frac{1}{M} \right) &= J_n \quad = \quad \frac{2}{M} \sum_{j=1}^M \left[ \sum_{i \in O_j} q_i^{(n)} (1 - p_j^{(n)}) + \sum_{i \in Z_j} q_i^{(n)} p_j^{(n)} \right] \\ &= \quad \frac{2}{M} \sum_{j=1}^M \left[ p_j^{(n)} (1 - p_j^{(n)}) + p_j^{(n)} (1 - p_j^{(n)}) \right] \\ &= \quad \frac{4}{M} \sum_{j=1}^M \left[ p_j^{(n)} - (p_j^{(n)})^2 \right] \\ &= \quad \frac{4}{M} \left[ 1 - \sum_{j=1}^M (p_j^{(n)})^2 \right] \\ &= \quad \frac{4}{M} \left[ 1 - \sum_{j=1}^M \left( \frac{1}{M} + x_j \right)^2 \right] \\ &= \quad \frac{4}{M} \left( 1 - \frac{1}{M} - \frac{2}{M} \sum_{j=1}^M x_j - \sum_{j=1}^M x_j^2 \right) \\ &< \quad \frac{4}{M} \left( 1 - \frac{1}{M} \right) \end{aligned}$$

Thus we obtain the contradiction which ends the proof.

*Proof of Lemma 4.* Since we node that the split is perfectly pure, then each  $p_{j|i}^{(n)}$  is either 0 or 1. Thus we define two sets

$$O_j = \{i : i \in \{1, 2, \dots, K\}, p_{j|i}^{(n)} = 1\}$$
 and  $Z_j = \{i : i \in \{1, 2, \dots, K\}, p_{j|i}^{(n)} = 0\}$ .

and thus

$$J_n = \frac{2}{M} \sum_{j=1}^{M} \left[ \sum_{i \in O_j} q_i^{(n)} \left(1 - p_j\right) + \sum_{i \in Z_j} q_i^{(n)} p_j \right]$$

Note that  $p_j = \sum_{i \in O_j} q_i^{(n)}$ . Then

$$J_n = \frac{2}{M} \sum_{j=1}^M \left[ p_j \left( 1 - p_j \right) + (1 - p_j) p_j \right] = \frac{4}{M} \sum_{j=1}^M p_j \left( 1 - p_j \right) = \frac{4}{M} \left( 1 - \sum_{j=1}^M p_j^2 \right)$$

and thus

$$\sum_{j=1}^{M} p_j^2 = 1 - \frac{MJ_n}{4}.$$
(16)

Lets express  $p_j$  as  $p_j = \frac{1}{M} + \epsilon_j$ , where  $\epsilon_j \in [-\frac{1}{M}, 1 - \frac{1}{M}]$ . Then

$$\sum_{j=1}^{M} p_j^2 = \sum_{j=1}^{M} \left(\frac{1}{M} + \epsilon_j\right)^2 = \frac{1}{M} + \frac{2}{M} \sum_{j=1}^{M} \epsilon_j + \sum_{j=1}^{M} \epsilon_j^2 = \frac{1}{M} + \sum_{j=1}^{M} \epsilon_j^2,$$
(17)

since  $\frac{2}{M} \sum_{j=1}^{M} \epsilon_j = 0$ . Thus combining Equation 16 and 17

$$\frac{1}{M} + \sum_{j=1}^{M} \epsilon_j^2 = 1 - \frac{MJ_n}{4}$$

and thus

$$\sum_{j=1}^{M} \epsilon_j^2 = 1 - \frac{1}{M} - \frac{MJ_n}{4}.$$

The last statement implies that

$$\max_{j=1,2,\dots,M} \epsilon_j \le \sqrt{1 - \frac{1}{M} - \frac{MJ_n}{4}},$$

which is equivalent to

$$\min_{j=1,2,\dots,M} p_j = \frac{1}{M} - \max_j \epsilon_j \ge \frac{1}{M} - \sqrt{1 - \frac{1}{M} - \frac{MJ_n}{4}} = \frac{1}{M} - \frac{\sqrt{M(J^* - J_n)}}{2}.$$

Proof of Lemma 5. Since the split is perfectly balanced we have the following:

$$J_n = \frac{2}{M} \sum_{j=1}^M \sum_{i=1}^K q_i^{(n)} \left| \frac{1}{M} - p_{j|i}^{(n)} \right| = \frac{2}{M} \sum_{i=1}^K \sum_{j=1}^M q_i^{(n)} \left| \frac{1}{M} - p_{j|i}^{(n)} \right|$$

Define two sets

$$\mathcal{A}_{i} = \{j : j \in \{1, 2, \dots, K\}, p_{j|i}^{(n)} < \frac{1}{M}\} \text{ and } \mathcal{B}_{i} = \{j : j \in \{1, 2, \dots, K\}, p_{j|i}^{(n)} \ge \frac{1}{M}\}$$

Then

$$J_{n} = \frac{2}{M} \sum_{i=1}^{K} \left[ \sum_{j \in \mathcal{A}_{i}} q_{i}^{(n)} \left( \frac{1}{M} - p_{j|i}^{(n)} \right) + \sum_{j \in \mathcal{B}_{i}} q_{i}^{(n)} \left( p_{j|i}^{(n)} - \frac{1}{M} \right) \right]$$
  
$$= \frac{2}{M} \sum_{i=1}^{K} q_{i}^{(n)} \left[ \sum_{j \in \mathcal{A}_{i}} \left( \frac{1}{M} - p_{j|i}^{(n)} \right) + \sum_{j \in \mathcal{B}_{i}} \left( p_{j|i}^{(n)} - \frac{1}{M} \right) \right]$$
  
$$= \frac{2}{M} \sum_{i=1}^{K} q_{i}^{(n)} \left[ \sum_{j \in \mathcal{A}_{i}} \left( \frac{1}{M} - p_{j|i}^{(n)} \right) + \sum_{j \in \mathcal{B}_{i}} \left( (1 - \frac{1}{M}) - (1 - p_{j|i}^{(n)}) \right) \right]$$

Recall that the optimal value of  $J_n$  is:

$$J^* = \frac{4}{M} \left( 1 - \frac{1}{M} \right) = \frac{2}{M} \sum_{i=1}^N q_i^{(n)} \left[ (M-1) \frac{1}{M} + \left( 1 - \frac{1}{M} \right) \right] = \frac{2}{M} \sum_{i=1}^N q_i^{(n)} \left[ \left( \sum_{j \in \mathcal{A}_i \cup \mathcal{B}_i} \frac{1}{M} \right) - \frac{1}{M} + \left( 1 - \frac{1}{M} \right) \right]$$

Note  $A_i$  can have at most M - 1 elements. Furthermore,  $\forall j \in A_i, p_{j|i}^{(n)} < 1 - p_{j|i}^{(n)}$ . Then, we have:

$$J^* - J^n = \frac{2}{M} \sum_{i=1}^K q_i^{(n)} \left[ \sum_{j \in \mathcal{A}_i} p_{j|i}^{(n)} + \sum_{j \in \mathcal{B}_i} \left( (1 - p_{j|i}^{(n)}) + \frac{1}{M} - (1 - \frac{1}{M}) \right) - \frac{1}{M} + \left( 1 - \frac{1}{M} \right) \right]$$

Hence, since  $\mathcal{B}_i$  has at least one element:

$$J^{*} - J^{n} \geq \frac{2}{M} \sum_{i=1}^{K} q_{i}^{(n)} \left[ \sum_{j \in \mathcal{A}_{i}} p_{j|i}^{(n)} + \sum_{j \in \mathcal{B}_{i}} \left( 1 - p_{j|i}^{(n)} \right) \right]$$
  
$$\geq \frac{2}{M} \sum_{i=1}^{K} q_{i}^{(n)} \left[ \sum_{j=1}^{M} \min(p_{j|i}^{(n)}, 1 - p_{j|i}^{(n)}) \right]$$
  
$$\geq 2\alpha$$

*Proof of Theorem 1.* Let the weight of the tree leaf be defined as the probability that a randomly chosen data point x drawn from some fixed target distribution  $\mathcal{P}$  reaches this leaf. Suppose at time step t, n is the heaviest leaf and has weight w. Consider splitting this leaf to M children  $n_1, n_2, \ldots, n_M$ . Let the weight of the  $j^{\text{th}}$  child be denoted as  $w_j$ . Also for the ease of notation let  $p_j$  refer to  $p_j^{(n)}$  (recall that  $\sum_{j=1}^m p_j = 1$ ) and  $p_{j|i}$  refer to  $p_{j|i}^{(n)}$ , and furthermore let  $q_i$  be the shorthand for  $q_i^{(n)}$ . Recall that  $p_j = \sum_{i=1}^K q_i p_{j|i}$  and  $\sum_{i=1}^K q_i = 1$ . Notice that for any  $j = \{1, 2, \ldots, M\}$ ,  $w_j = wp_j$ . Let q be the k-element vector with  $i^{th}$  entry equal to  $q_i$ . Define the following function:  $\tilde{G}^e(q) = \sum_{i=1}^K q_i \ln\left(\frac{1}{q_i}\right)$ . Recall the expression for the entropy of tree leaves:  $G^e = \sum_{l \in \mathcal{L}} w_l \sum_{i=1}^K q_i^{(l)} \ln\left(\frac{1}{q_i^{(l)}}\right)$ , where  $\mathcal{L}$  is a set of all tree leaves. Before the split the contribution of node n to  $G^e$  was equal to  $w\tilde{G}^e(q)$ . Note that for any  $j = \{1, 2, \ldots, M\}$ ,  $q_i^{(n_j)} = \frac{q_i p_{j|i}}{p_j}$  is the probability that a randomly chosen x drawn from  $\mathcal{P}$  has label i given that x reaches node  $n_j$ . For brevity, let  $q_i^{n^j}$  be denoted as  $q_{j,i}$ . Let  $q_j$  be the k-element vector with  $i^{th}$  entry equal to  $y_{j,i}$ . Notice that  $q = \sum_{j=1}^M p_j q_j$ . After the split the contribution of the same, now internal, node n changes to  $w \sum_{j=1}^M p_j \tilde{G}^e(q_j)$ . We denote the difference between the contribution of node n to the entropy-based objectives in times t and t + 1 as

$$\Delta_t^e := G_t^e - G_{t+1}^e = w \left[ \tilde{G}^e(\boldsymbol{q}) - \sum_{j=1}^M p_j \tilde{G}^e(\boldsymbol{q}_j) \right].$$
(18)

The entropy function  $\tilde{G}^e$  is strongly concave with respect to  $l_1$ -norm with modulus 1, thus we extend the inequality given by Equation 7 in (Choromanska et al., 2016) by applying Theorem 5.2. from (Azocar et al., 2011) and obtain the following bound

$$\begin{split} \Delta_{t}^{e} &= w \left[ \tilde{G}^{e}(\boldsymbol{q}) - \sum_{j=1}^{M} p_{j} \tilde{G}^{e}(\boldsymbol{q}_{j}) \right] \\ &\geq w \frac{1}{2} \sum_{j=1}^{M} p_{j} \| q_{j} - \sum_{l=1}^{M} p_{l} q_{l} \|_{1}^{2} \\ &= w \frac{1}{2} \sum_{j=1}^{M} p_{j} \left( \sum_{i=1}^{K} \left| \frac{q_{i} p_{j|i}}{p_{j}} - \sum_{l=1}^{M} p_{l} \frac{q_{i} p_{l|i}}{p_{l}} \right| \right)^{2} \\ &= w \frac{1}{2} \sum_{j=1}^{M} p_{j} \left( \sum_{i=1}^{K} q_{i} \left| \frac{p_{j|i}}{p_{j}} - \sum_{l=1}^{M} p_{l|i} \right| \right)^{2} \\ &= w \frac{1}{2} \sum_{j=1}^{M} p_{j} \left( \sum_{i=1}^{K} q_{i} \left| \frac{p_{j|i}}{p_{j}} - 1 \right| \right)^{2} \\ &= w \frac{1}{2} \sum_{j=1}^{M} \frac{1}{p_{j}} \left( \sum_{i=1}^{K} q_{i} \left| p_{j|i} - p_{j} \right| \right)^{2}. \end{split}$$

Before proceeding, we will bound each  $p_i$ . Note that by the Weak Hypothesis Assumption we have

$$\gamma \in \left[\frac{M}{2} \min_{j=1,2,\dots,M} p_j, 1 - \frac{M}{2} \min_{j=1,2,\dots,M} p_j\right],$$

thus

$$\min_{j=1,2,\dots,M} p_j \ge \frac{2\gamma}{M},$$

thus all  $p_j$ s are such that  $p_j \geq \frac{2\gamma}{M}$ . Thus

$$\max_{j=1,2,\dots,M} p_j \le 1 - \frac{2\gamma}{M} (M-1) = \frac{M(1-2\gamma) + 2\gamma}{M}$$

Thus all  $p_j$ s are such that  $p_j \leq \frac{M(1-2\gamma)+2\gamma}{M}$ .

$$\begin{split} \Delta_t^e &\geq w \frac{M^2}{2[(M(1-2\gamma)+2\gamma)]} \sum_{j=1}^M \frac{1}{M} \left( \sum_{i=1}^K q_i \left| p_j \right|_i - p_j \right| \right)^2 \\ &\geq w \frac{M^2}{2[(M(1-2\gamma)+2\gamma)]} \left( \sum_{j=1}^M \frac{1}{M} \sum_{i=1}^K q_i \left| p_j \right|_i - p_j \right| \right)^2 \\ &= w \frac{M^2}{8[(M(1-2\gamma)+2\gamma)]} \left( \frac{2}{M} \sum_{j=1}^M \sum_{i=1}^K q_i \left| p_j \right|_i - p_j \right| \right)^2 \\ &= \frac{M^2}{[(M(1-2\gamma)+2\gamma)]} \frac{w J_n^2}{8}, \end{split}$$

where the last inequality is a consequence of Jensen's inequality. w can further be lower-bounded by noticing the following

$$G_t^e = \sum_{l \in \mathcal{L}} w_l \sum_{i=1}^K q_i^{(l)} \ln\left(\frac{1}{q_i^{(l)}}\right) \le \sum_{l \in \mathcal{L}} w_l \ln K \le w \ln K \sum_{l \in \mathcal{L}} 1 = [t(M-1)+1] w \ln K \le (t+1)(M-1) w \ln K,$$

where the first inequality results from the fact that uniform distribution maximizes the entropy.

This gives the lower-bound on  $\Delta_t^e$  of the following form:

$$\Delta_t^e \ge \frac{M^2 G_t^e J_n^2}{8(t+1)[M(1-2\gamma)+2\gamma](M-1)\ln K}$$

and by using Weak Hypothesis Assumption we get

$$\Delta_t^e \ge \frac{M^2 G_t^e \gamma^2}{8(t+1)[M(1-2\gamma)+2\gamma](M-1)\ln K}$$

Following the recursion of the proof in Section 3.2 in (Choromanska et al., 2016) (note that in our case  $G_1^e \leq 2(M - 1) \ln K$ ), we obtain that under the *Weak Hypothesis Assumption*, for any  $\kappa \in [0, 2(M - 1) \ln K]$ , to obtain  $G_t^e \leq \kappa$  it suffices to make

$$t \ge \left(\frac{2(M-1)\ln K}{\kappa}\right)^{\frac{16[M(1-2\gamma)+2\gamma](M-1)\ln K}{M^2\log_2 e\gamma^2}}$$

splits. We next proceed to directly proving the error bound. Denote w(l) to be the probability that a data point x reached leaf l. Recall that  $q_i^{(l)}$  is the probability that the data point x corresponds to label i given that x reached l, i.e.  $q_i^{(l)} = P(y(x) = i | x \text{ reached } l)$ . Let the label assigned to the leaf be the majority label and thus lets assume that the leaf is assigned to label i if and only if the following is true  $\forall_{z=\{1,2,\dots,k\}}q_i^{(l)} \ge q_z^{(l)}$ . Therefore we can write that

$$\epsilon(\mathcal{T}) = \sum_{i=1}^{K} P(t(x) = i, y(x) \neq i)$$

$$= \sum_{l \in \mathcal{L}} w(l) \sum_{i=1}^{K} P(t(x) = i, y(x) \neq i | x \text{ reached } l)$$

$$= \sum_{l \in \mathcal{L}} w(l) \sum_{i=1}^{K} P(y(x) \neq i | t(x) = i, x \text{ reached } l) P(t(x) = i | x \text{ reached } l)$$

$$= \sum_{l \in \mathcal{L}} w(l) (1 - \max(q_1^{(l)}, q_2^{(l)}, \dots, q_K^{(l)})) \sum_{i=1}^{K} P(t(x) = i | x \text{ reached } l)$$

$$= \sum_{l \in \mathcal{L}} w(l) (1 - \max(q_1^{(l)}, q_2^{(l)}, \dots, q_K^{(l)}))$$
(20)

Consider again the Shannon entropy  $G(\mathcal{T})$  of the leaves of tree  $\mathcal{T}$  that is defined as

$$G^{e}(\mathcal{T}) = \sum_{l \in \mathcal{L}} w(l) \sum_{i=1}^{K} q_{i}^{(l)} \log_{2} \frac{1}{q_{i}^{(l)}}.$$
(21)

Let  $i_l = \arg \max_{i=\{1,2,\dots,K\}} q_i^{(l)}$ . Note that

$$\begin{aligned}
G^{e}(\mathcal{T}) &= \sum_{l \in \mathcal{L}} w(l) \sum_{i=1}^{K} q_{i}^{(l)} \log_{2} \frac{1}{q_{i}^{(l)}} \\
&\geq \sum_{l \in \mathcal{L}} w(l) \sum_{\substack{i=1\\i \neq i_{l}}}^{K} q_{i}^{(l)} \log_{2} \frac{1}{q_{i}^{(l)}} \\
&\geq \sum_{l \in \mathcal{L}} w(l) \sum_{\substack{i=1\\i \neq i_{l}}}^{K} q_{i}^{(l)} \\
&= \sum_{l \in \mathcal{L}} w(l) (1 - \max(q_{1}^{(l)}, q_{2}^{(l)}, \dots, q_{K}^{(l)})) \\
&= \epsilon(\mathcal{T}),
\end{aligned}$$
(22)

where the last inequality comes from the fact that  $\forall_{i=\{1,2,\ldots,K\}}q_i^{(l)} \leq 0.5$  and thus  $\forall_{i=\{1,2,\ldots,K\}}\frac{1}{q_i^{(l)}} \in [2;+\infty]$  and consequently  $\forall_{i=\{1,2,\ldots,K\}}\log_2\frac{1}{q_i^{(l)}} \in [1;+\infty]$ .

We next use the proof of Theorem 6 in (Choromanska et al., 2016). The proof modifies only slightly for our purposes and thus we only list these modifications below.

- Since we define the Shannon entropy through logarithm with base 2 instead of the natural logarithm, the right hand side of inequality (2.6) in (Shalev-Shwartz, 2012) should have an additional multiplicative factor equal to  $\frac{1}{\ln 2}$  and thus the right-hand side of the inequality stated in Lemma 14 has to have the same multiplicative factor.
- For the same reason as above, the right-hand side of the inequality in Lemma 9 should take logarithm with base 2 of *k* instead of the natural logarithm of *k*.

Propagating these changes in the proof of Theorem 6 results in the statement of Theorem 1.

*Proof of Corollary 1.* Note that the lower-bound on  $\Delta_t^e$  from the previous prove could be made tighter as follows:

$$\begin{split} \Delta_{t}^{e} &\geq w \frac{1}{2} \sum_{j=1}^{M} \frac{1}{p_{j}} \left( \sum_{i=1}^{K} q_{i} \left| p_{j|i} - p_{j} \right| \right)^{2} \\ &= w \frac{M^{2}}{2} \sum_{j=1}^{M} \frac{1}{M} \left( \sum_{i=1}^{K} q_{i} \left| p_{j|i} - p_{j} \right| \right)^{2} \\ &\geq w \frac{M^{2}}{2} \left( \sum_{j=1}^{M} \frac{1}{M} \sum_{i=1}^{K} q_{i} \left| p_{j|i} - p_{j} \right| \right)^{2} \\ &= w \frac{M^{2}}{8} \left( \frac{2}{M} \sum_{j=1}^{M} \sum_{i=1}^{K} q_{i} \left| p_{j|i} - p_{j} \right| \right)^{2} \\ &= \frac{M^{2} w J_{n}^{2}}{8}, \end{split}$$

| d   | Model        | Arity   | Prec                | Rec                 | Train            | Test            |
|-----|--------------|---------|---------------------|---------------------|------------------|-----------------|
| 50  | TagSpace     | -       | 30.1                | -                   | 3h8              | 6h              |
|     | FastText     | 2       | 27.2                | 4.17                | 8m               | 1m              |
|     | Huffman Tree | 5<br>20 | 28.3<br>29.9        | 4.33<br>4.58        | <b>8m</b><br>10m | <b>1m</b><br>3m |
|     | Learned Tree | 5<br>20 | 31.6<br><b>32.1</b> | 4.85<br><b>4.92</b> | 18m<br>30m       | <b>1m</b><br>3m |
| 200 | TagSpace     | -       | 35.6                | -                   | 5h32             | 15h             |
|     | FastText     | 2       | 35.2                | 5.4                 | 12m              | 1m              |
|     | Huffman Tree | 5<br>20 | 35.8<br>36.4        | 5.5<br>5.59         | 13m<br>18m       | 2m<br>3m        |
|     | Learned Tree | 5<br>20 | 36.1<br><b>36.6</b> | 5.53<br><b>5.61</b> | 35m<br>45m       | 3m<br>8m        |

Table 3. Classification performance on the YFCC100M dataset.

| Model         | perp. | train ms/batch | test ms/batch |
|---------------|-------|----------------|---------------|
| Random Tree   | 172   | 5.1            | 2.7           |
| Flat soft-max | 151   | 11.5           | 5.1           |
| Learned Tree  | 159   | 6.3            | 2.6           |

Table 4. Comparison of a flat soft-max to a 25-ary hierarchical soft-max (learned, random and heuristic-based tree).

where the first inequality was taken from the proof of Theorem 1 and the following equality follows from the fact that each node is balanced. By next following exactly the same steps as shown in the proof of Theorem 1 we obtain the corollary.  $\Box$ 

## **11. Experimental Setting**

## 11.1. Classification

For the YFCC100M experiments, we learned our models with SGD with a linearly decreasing rate for five epochs. We run a hyper-parameter search on the learning rate (in  $\{0.01, 0.02, 0.05, 0.1, 0.25, 0.5\}$ ). In the learned tree settings, the learning rate stays constant for the first half of training, during which the AssignLabels() routine is called 50 times. We run the experiments in a Hogwild data-parallel setting using 12 threads on an Intel Xeon E5-2690v4 2.6GHz CPU. At prediction time, we perform a truncated depth first search to find the most likely label (using the same idea as in a branch-and-bound algorithm: if a node score is less than that of the best current label, then all of its descendants are out).

## **11.2. Density Estimation**

In our experiments, we use a context window size of 4. We optimize the objectives with Adagrad, run a hyper-parameter search on the batch size (in  $\{32, 64, 128\}$ ) and learning rate (in  $\{0.01, 0.02, 0.05, 0.1, 0.25, 0.5\}$ ). The hidden representation dimension is 200. In the learned tree settings, the AssignLabels() routine is called 50 times per epoch. We used a 12GB NVIDIA GeForce GTX TITAN GPU and all tree-based models are 65-ary for the Gutenberg data and 25-ary for Pen TreeBank. Table 4 provides the perplexity and speed results on the PTB text.

For the Cluster Tree, we learn dimension 50 word embeddings with FastTree for 5 epochs using a hierarchical softmax loss, then obtain  $45 = 65^2$  centroids using the ScikitLearn implementation of MiniBatchKmeans, and greedily assign words to clusters until full (when a cluster has 65 words).

| Algorithm 3 Label Assignment Algorithm | under Depth Constraint |
|----------------------------------------|------------------------|
|----------------------------------------|------------------------|

| <b>Input</b> Node statistics, max depth D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | // then, assign each label to a child of $n$ under depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Paths from root to labels: $\mathcal{P} = (\mathbf{c}^i)_{i=1}^K$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | // constraints                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| node ID $n$ and depth $d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | unassigned $\leftarrow$ labels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| List of labels currently reaching the node                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $full \leftarrow \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ouput Updated paths                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | for $j = 1$ to $M$ do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Lists of labels now assigned to each of $n$ 's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | assigned <sub>i</sub> $\leftarrow \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| children under depth constraints                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | while unassigned $\neq \emptyset$ do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>procedure AssignLabels</b> (labels, n, d)<br>// first, compute $p_j^{(n)}$ and $p_{j i}^{(n)}$ . $\odot$ is the element-wise<br>// multiplication<br>$\mathbf{p}_0^{avg} \leftarrow 0$<br>count $\leftarrow 0$<br>for i in labels do<br>$\mathbf{p}_0^{avg} \leftarrow \mathbf{p}_0^{avg} + \operatorname{SumProbas}_{n,i}$<br>count $\leftarrow$ count $+$ Counts <sub>n,i</sub><br>$\mathbf{p}_i^{avg} \leftarrow \operatorname{SumProbas}_{n,i}/\operatorname{Counts}_{n,i}$<br>$\mathbf{p}_0^{avg} \leftarrow \mathbf{p}_0^{avg}/\operatorname{count}$ | $\begin{split} & \Big/ \Big/ \frac{\partial J_n}{\partial p_{j i}^{(n)}} \text{ is given in Equation 10} \\ & (i^*, j^*) \leftarrow \operatorname*{argmax}_{i \in \mathrm{unassigned}, j \not\in \mathrm{full}} \left( \frac{\partial J_n}{\partial p_{j i}^{(n)}} \right) \\ & \mathbf{c}_d^{i^*} \leftarrow (n, j^*) \\ & \operatorname{assigned}_{j^*} \leftarrow \operatorname{assigned}_{j^*} \cup \{i^*\} \\ & \operatorname{unassigned} \leftarrow \operatorname{unassigned} \setminus \{i^*\} \\ & \operatorname{if}  \operatorname{assigned}_{j^*}  = M^{D-d} \text{ then} \\ & \operatorname{full} \leftarrow \operatorname{full} \cup \{j^*\} \\ & \operatorname{for} j = 1 \text{ to } M \text{ do} \\ & \operatorname{AssignLabels} (\operatorname{assigned}_j, \operatorname{child}_{n,j}, d+1) \\ & \operatorname{return} \operatorname{assigned} \end{split}$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| Leaf 229   | Leaf 230 | Leaf 300    | Leaf 231  |
|------------|----------|-------------|-----------|
| suggested  | vegas    | payments    | operates  |
| watched    | &        | buy-outs    | includes  |
| created    | calif.   | swings      | intends   |
| violated   | park     | gains       | makes     |
| introduced | n.j.     | taxes       | means     |
| discovered | conn.    | operations  | helps     |
| carried    | pa.      | profits     | seeks     |
| described  | pa.      | penalties   | reduces   |
| accepted   | ii       | relations   | continues |
| listed     | d.       | liabilities | fails     |
|            |          |             |           |

*Table 5.* Example of labels reaching leaf nodes in the final tree. We can identify a leaf for 3rd person verbs, one for past participates, one for plural nouns, and one (loosely) for places.