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A. Proof of Theorem 2.1
Theorem 2.1 (Safeness of StingyCD). In Algorithm 2, every skipped update would, if computed, result in δ = 0. That is,
if q(t−1) ≤ τi and x(t−1)i = 0, then

max

{
−x(t−1)i ,

〈
Ai,b−Ax(t−1)〉− λ

‖Ai‖2

}
= 0 .

Proof. Since x(t−1)i = 0, we need to prove that if q(t−1) ≤ τi, then〈
Ai, r

(t−1)
〉
− λ ≤ 0, (3)

where we have used the definition r(t−1) = b−Ax(t−1).

We show by induction that q(t) =
∥∥rr− r(t)

∥∥2. The base case is that q(t−1) = 0 whenever StingyCD performs the update
rr← r(t−1). The inductive step is that

q(t) = q(t−1) − 2δ
〈
Ai, r

(t−1) − rr
〉

+ δ2 ‖Ai‖2 (4)

=
∥∥∥r(t−1) − rr

∥∥∥2 − 2δ
〈
Ai, r

(t−1) − rr
〉

+ δ2 ‖Ai‖2 (5)

=
∥∥∥r(t−1) − δAi − rr

∥∥∥2 (6)

=
∥∥∥r(t) − rr

∥∥∥2 . (7)

Recall the definition τi = sign (gi)
g2i
‖Ai‖2

, where gi = −〈Ai, rr〉+ λ. It follows that

q(t−1) ≤ τi ⇒
∥∥∥r(t−1) − rr

∥∥∥2 ≤ sign (gi)
g2i

‖Ai‖2
(8)

⇒
∥∥∥r(t−1) − rr

∥∥∥ ≤ gi
‖Ai‖

(9)

⇒ ‖Ai‖
∥∥∥r(t−1) − rr

∥∥∥ ≤ −〈Ai, rr〉+ λ (10)

⇒ 〈Ai, rr〉+ ‖Ai‖
∥∥∥r(t−1) − rr

∥∥∥− λ ≤ 0 (11)

⇒
〈
Ai, r

(t−1)
〉
− λ ≤ 0 . (12)

B. Proof of Theorem 2.2
Theorem 2.2 (Per iteration time complexity of StingyCD). Algorithm 2 can be implemented so that iteration t requires

• Less time than an identical iteration of Algorithm 1 if q(t−1) ≤ τi and x(t−1)i = 0 (the update is skipped) and rr is
not updated. Specifically, StingyCD requires O(1) time, while CD requires O(NNZ (Ai)) time.

• The same amount of time (up to an O(1) term) as a CD iteration if the update is not skipped and rr is not updated.
In particular, both algorithms require the same number of O(NNZ (Ai)) operations.

• More time than a CD iteration if rr is updated. In this case, StingyCD requires O(NNZ (A)) time.

Proof. Note that at each iteration, CD computes a dot product of length NNZ (Ai) to compute δ. If δ 6= 0, an additional
O(NNZ (Ai)) operation is required to update r(t).
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Case 1: the update is skipped and rr is not updated In this case, the only computation StingyCD performs during this
iteration is (i.) deciding not to update the reference vector, (ii.) choosing a coordinate to update, and (iii.) checking whether
q(t−1) ≤ τi and x

(t−1)
i = 0. Steps (i.) and (ii.) can be easily be defined so that they require O(1) time, and checking the

conditions for (iii.) also requires constant time.

Case 2: the update is not skipped and rr is not updated In this case, the only additional operation that we have not
already considered is the update to q(t). This update can be performed in constant time by caching previous computations of
〈Ai, rr〉,

〈
Ai, r

(t−1)〉, and ‖Ai‖2. The value of 〈Ai, rr〉was computed when computing the threshold τi, and
〈
Ai, r

(t−1)〉
and ‖Ai‖2 are necessary to compute δ.

Case 3: rr is updated In this case, computing τi for all i requires computing 〈Ai, rr〉 for all columns in A. This is a
matrix-vector multiply that requires O(NNZ (Ai)) operations.

C. Proof of Theorem 3.2
Theorem 3.2 (Equation for P (U (t))). Assume x(t−1)i = 0 and τi ∈ (−q(t−1), q(t−1)). Then Assumption 3.1 implies

P (U (t)) =

{
1
2I(1−τi/q(t−1))(

n−1
2 , 12 ) if τi ≥ 0,

1− 1
2I(1+τi/q(t−1))(

n−1
2 , 12 ) otherwise,

where Ix(a, b) is the regularized incomplete beta function.

Proof. Recall the illustration form Figure 2:

Because we assume r(t−1) is uniformly distributed on the boundary of S(t), the probability that r(t−1) ∈ Ai is given by
dividing the area of Ai ∩ bd(S(t)) by the area of bd(S(t)). The region Ai ∩ bd(S(t)) is a hyperspherical cap. In the case
that rr /∈ Ai, we know from (Li, 2011) that the area of Ai ∩ bd(S(t)) is given by

1
2area(S(t))Isin(θ)2(n−12 , 12 ) , (13)

where area(S(t)) is the surface area of S(t) and θ is the angle indicated in the diagram.

When τi ≥ 0, note that by definition of τi, we have rr /∈ Ai. It follows then that when τi ≥ 0, we have

P (Ut) =
1
2area(S(t))Isin(θ)2(n−12 , 12 )

area(S(t))
(14)

= 1
2I(1−cos(θ)2)(

n−1
2 , 12 ) (15)

= 1
2I(1−τi/q(t−1))(

n−1
2 , 12 ) . (16)

In the case that τi < 0, we have rr ∈ Ai, and we can use symmetry to see that

P (Ut) = 1− 1
2I(1+τi/q(t−1))(

n−1
2 , 12 ) . (17)
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D. Details of estimating P (U (t)) in StingyCD+
In §3.1, we defined the probability P (U (t)). Assuming τi ∈ (−q(t−1), q(t−1)), we have

P (U (t)) =

{
1
2I(1−τi/q(t−1))(

n−1
2 , 12 ) if τi ≥ 0,

1− 1
2I(1+τi/q(t−1))(

n−1
2 , 12 ) otherwise,

(18)

where Ix(a, b) is the regularized incomplete beta function.

In our implementation of StingyCD+, we compute P (U (t)) approximately using a lookup table. First, we make use of the
approximation

1
2I(1−τi/q(t−1))(

n−1
2 , 12 ) ≈ 1− Φ

(√
τi(n− 1)/q(t−1)

)
. (19)

Above, Φ is the standard normal CDF.

Using (19) is not strictly necessary. Using (19) leads to a simpler implementation, however, since we no longer need to
compute the regularized incomplete beta function. Instead we only need to define a lookup table for the standard normal
CDF. We expect this approximation has negligible effect on StingyCD+, since (19) is a very close approximation for
moderately large n.

Using (19), our StingyCD+ implementation uses a lookup table of 128 values for 1 − Φ(
√
x). Values of x are spaced

uniformly between 0 and 32 inclusive, meaning the table stores the values 1 − Φ(0), 1 − Φ(
√

0.25), 1 − Φ(
√

0.5), . . .,
1− Φ(

√
32).

To estimate P (U (t)) during each iteration, StingyCD+ first computes τi(n−1)/q(t−1) and then reads the closest value from
the table that results in an upper bound for P (U (t)). For example, if τi(n−1)/q(t−1) = 0.2, our approximation of P (U (t))
is 1− Φ(

√
0.25) = 0.308 . . .. If τi(n− 1)/q(t−1) = −0.2, then our approximation of P (U (t)) is Φ(

√
0.5) = 0.760 . . ..

E. Proof of Theorem 3.3
Theorem 3.3 (StingyCD+ converges to a solution of (P)). In StingyCD+, assume ξ(t) ≤ NNZ

(
x(t−1)) for all t > 0.

Also, for each i ∈ [m], assume the largest number of consecutive iterations during which get next coordinate() does
not return i is bounded as t→∞. Then

lim
t→∞

f(x(t)) = f(x?) .

Before proving the theorem, we introduce and prove a few lemmas.

Lemma E.1. Given the assumptions of Theorem 3.3, let M be a number larger than the maximum number of consecutive
iterations get next coordinate() does not return coordinate i for all i ∈ [m] as t→∞. Consider any iteration t > 0 of
StingyCD+ and any i ∈ [m] such that x(t−1)i 6= 0. Then there exists an iteration t′ ≥ t during which StingyCD+ computes
an update to coordinate i. Furthermore, we have t′ ≤ t+mM .

Proof. Define C(t−1) as the set of coordinates that correspond to nonzero entries in x(t−1):

C(t−1) = {i : x
(t−1)
i 6= 0}. (20)

Let idelayed denote the unique coordinate in C(t−1) such that the delay D(t)
i is largest:

idelayed = argmax
i∈C(t−1)

D
(t)
i . (21)

This coordinate is unique because tlasti differs for all i ∈ C(t−1)—StingyCD+ updates at most one coordinate during each
iteration.

We must have D(t)
idelayed

≥ NNZ
(
x(t−1)), since the NNZ

(
x(t−1)) − 1 coordinates in C(t−1) not equal to idelayed were

updated before idelayed was last updated (otherwise (21) would not hold). Thus, counting these updates, as well as the
update to weight idelayed during iteration tlastidelayed

, we must have D(t)
idelayed

≥ NNZ
(
x(t−1)).



StingyCD

Now let k ≥ 0 be the smallest such k for which get next coordinate() returns idelayed during iteration t+ k. Note that
k < M . We must have D(t+k)

idelayed
≥ NNZ

(
x(t+k−1)), since (i) until an update for coordinate i is computed, D(t)

i is nonde-

creasing with t for all i, (ii) we have D(t)
idelayed

≥ NNZ
(
x(t−1)), and (iii) whenever NNZ

(
x(t′)

)
= NNZ

(
x(t′−1)

)
+ 1

for t′ ∈ {t, t + 1, . . . , t + k − 1}, we must also have D(t′+1)
idelayed

= D
(t′)
idelayed

+ 1—an update to a zero entry of x increases
the delay for all coordinates by 1.

In addition, since idelayed ∈ C(t−1) and idelayed has not been updated since before iteration t, we must have x(t+k−1)idelayed
6= 0.

Thus, by definition of P (U (t+k)), we must have P (U (t+k)) = 1. Applying the assumption that ξ(t+k) ≤ NNZ
(
x(t+k−1)),

it follows that
P (U (t+k))D

(t+k)
idelayed

= D
(t+k)
idelayed

≥ NNZ
(
x(t+k)−1

)
≥ ξ(t+k) . (22)

Thus, the condition for skipping update t + k in StingyCD+ is not satisfied. That is, during iteration t + k, StingyCD+
computes an update to coordinate idelayed. It follows that D(t+k+1)

idelayed
= 1. That is, idelayed now corresponds to the weight

with smallest delay among nonzero weights.

Now consider any i such that x(t−1)i 6= 0. This coordinate was last updated during iteration tlasti . It follows that if
coordinate i is not updated by iteration tlasti + (m − 1)M , then i corresponds to the weight with largest delay among
nonzero weights. This is because we have shown that the nonzero weight with maximum delay is updated within M
iterations, after which it becomes the nonzero weight with smallest delay. Thus, before coordinate i is updated again, at
most (m − 1) other coordinates correspond to the nonzero weight with largest delay, each of which requires at most M
iterations to update. It follows that after an additional M iterations—that is, by iteration tlasti + mM—coordinate i must
be updated.

Lemma E.2. Given the assumptions of Theorem 3.3, then for some set F , StingyCD+ converges to a solution of the
problem

minimize
x∈Rm

f(x) := 1
2 ‖Ax− b‖2 + λ 〈1,x〉

s.t. x ≥ 0
xi = 0 ∀i ∈ F .

(P’)

Proof. First note that f(x(t)) is nonincreasing with t. This is because whenever x(t) 6= x(t−1), we can write

x(t) = x(t−1) + δei (23)

for some coordinate i, where

δ = argmin
δ′ : x

(t−1)
i +δ′≥0

f(x(t−1) + δ′ei) = max

{
−x(t−1)i ,

〈Ai,b−Ax(t−1)〉−λ
‖Ai‖2

}
. (24)

Second, note that for all t, x(t) ≥ 0. From the definition of f , it follows that f(x(t)) ≥ 0 for all t.

Thus, f(x(t)) is a bounded monotone sequence, which implies that lim
t→∞

f(x(t)) exists.

Now let us assume that x(t) does not converge to a solution of (P’) for some set F . Then there exists a value ν > 0 for
which the following holds: for all t′ > 0, there exists an iteration t > t′ such that for some i where x(t−1)i 6= 0, we have

|δ| =

∣∣∣∣∣max

{
−x(t−1)i ,

〈
Ai, r

(t−1)〉− λ
‖Ai‖2

}∣∣∣∣∣ ≥ ν . (25)

In other words, if StingyCD+ updated coordinate i (corresponding to a nonzero weight) during iteration t, the magnitude
of the update would be at least positive value ν.

Also, note that after any update δ to a coordinate i during iteration t of StingyCD+, we have (by Taylor expansion)

f(x(t))− f(x(t−1)) =
(
λ−

〈
Ai, r

(t−1)
〉)

δ + 1
2 ‖Ai‖2 δ2 (26)

≤ − 1
2 ‖Ai‖2 δ2 . (27)



StingyCD

Now define f̂ = lim
t→∞

f(x(t)). Consider an iteration t′ such that f(x(t′)) ≤ f̂ + ε, where we define ε > 0 later.

According to (25), there exists an iteration t > t′ such that for some i for which x(t−1)i > 0, we have∣∣∣∣∣max

{
−x(t−1)i ,

〈
Ai, r

(t−1)〉− λ
‖Ai‖2

}∣∣∣∣∣ ≥ ν . (28)

According to Lemma E.1, StingyCD+ will compute at least one update to coordinate i between iterations t and t + mM .
During each of the iterations between iteration t and t + mM , suppose that coordinate i′ is updated by an amount δ′. It
must be the case then that

δ′ ≤
√

2ε

‖Ai′‖
. (29)

Otherwise the fact that f̂ = lim
t→∞

f(x(t)) would be violated due to (27).

Now let T denote the iteration during which coordinate i is next updated. From the triangle inequality and (29), it follows
that ∥∥∥r(t−1) − r(T−1)

∥∥∥ ≤ mM√2ε . (30)

This implies that 〈
Ai, r

(T−1)〉
‖Ai‖2

−
〈
Ai, r

(t−1)〉
‖Ai‖2

∈
[
−mM

√
2ε

‖Ai‖ ,+mM
√
2ε

‖Ai‖

]
. (31)

Now let δ be the update to coordinate i during iteration T . It follows that

|δ| =

∣∣∣∣∣max

{
x
(T−1)
i ,

〈
Ai, r

(T−1)〉− λ
‖Ai‖2

}∣∣∣∣∣ (32)

≥

∣∣∣∣∣max

{
x
(t−1)
i ,

〈
Ai, r

(t−1)〉− λ
‖Ai‖2

}∣∣∣∣∣− mM
√

2ε

‖Ai‖
(33)

≥ ν − mM
√

2ε

‖Ai‖
. (34)

Now let us define s = min
i′ : ‖Ai′‖>0

‖Ai′‖.

ε = 1
8

( νs

mM

)2
(35)

Then it follows that
|δ| > 1

2ν . (36)

From (27), it follows that

f(x(T )) ≤ f(x(T−1))− 1
2 ‖Ai‖2 δ2 ≤ f̂ + ε− 1

2s
2ν2 < f̂ , (37)

which violates the assumption that lim
t→∞

f(x(t)) = f̂ .

Thus, StingyCD+ must converge to a solution of (P’) for some set F .

Proof of Theorem 3.3. Suppose that StingyCD+ does not converge to a solution to (P).

Now define f̂ = lim
t→∞

f(x(t)). Also define r̂ = lim
t→∞

r(t) and x̂ = lim
t→∞

x(t).
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Lemma E.2 guarantees that the algorithm at least converges to a solution of (P’) for some set F . Using this assumption, if
StingyCD+ does not converge to (P)’s solution then there exists a ν > 0 such that for some i such that x̂i 6= 0, we have

〈Ai, r̂〉 − λ ≥ ν . (38)

Consider an iteration t′ such that f(x(t′−1)) ≤ f̂ + ε, where we define ε > 0 later. By Taylor expansion, we have for any
t ≥ t′,

f(x(t)) = f(x̂) +
〈
∇f(x̂),x(t) − x̂

〉
+ 1

2

∥∥∥Ax(t) −Ax̂
∥∥∥2 (39)

≥ f̂ + 1
2

∥∥∥r̂− r(t−1)
∥∥∥2 . (40)

This implies that for any t ≥ t′, we have ∥∥∥r̂− r(t−1)
∥∥∥ ≤ √2ε . (41)

Define ε = min
i′ : ‖Ai′‖6=0

ν2

8‖Ai′‖2
. It follows then that for all t ≥ t′,

〈
Ai, r

(t−1)
〉
− λ ≥ 〈Ai, r̂〉 − ‖Ai‖

√
2ε− λ ≥ ν − ‖Ai‖

√
2ε ≥ 1

2ν . (42)

Also, if we assume −〈Ai, rr〉+ λ > 0, we must have

τi =
(−〈Ai, rr〉+ λ)

2

‖Ai‖2
(43)

≤
(
−
〈
Ai, r

(t−1)〉+ λ+ ‖Ai‖
∥∥r(t−1) − rr

∥∥)2
‖Ai‖2

(44)

≤ (q(t−1) − 1
2ν)2 (45)

< q(t−1) . (46)

Otherwise, we must have −〈Ai, rr〉 + λ < 0, which ensures τi ≤ 0 ≤ q(t−1). In addition, q(t−1) is bounded as t → ∞
due to (41). As a result, whenever i is returned by get next coordinate() during an iteration t > t′, then P (U (t)) is
bounded away from zero. As t → ∞, the delay D(t)

i increases as, at a minimum, nonzero-valued coorinates are updated.
Thus, for an eventual iteration T , we have

P (U (t))D
(t)
i ≥ ξ

(t) . (47)

At this point, an update to coordinate i is computed. From (42), it follows that

δ ≥ 1
2

ν

‖Ai‖2
, (48)

which ensures that

f(x(T )) ≤ f(x(T−1))− 1
2 ‖Ai‖2 δ2 (49)

≤ f(x̂) + ε− 1
2

ν2

‖Ai‖2
(50)

≤ f(x̂)− 3
8

ν2

‖Ai‖2
. (51)

This contradicts the definition of x̂. Thus, our assumption that x(t) does not converge to a solution of (P ) is incorrect.
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F. Generalizing StingyCD to Linear SVMs
In this section, we briefly describe how to apply StingyCD to the problem

minimize
x∈Rn

1
2 ‖Mx‖2 − 〈1,x〉

s.t. x ∈ [0, C]n .
(PSVM)

We note that (PSVM) is very similar to (P). If not for the constraint that x ≤ C1, in fact, (PSVM) would be an instance of
(P)—we could solve (PSVM) by defining A = M, b = 0, and λ = −1 and then running Algorithm 2.

To incorporate the new constraint, our CD update becomes

δSVM = min
{
C − x(t−1)i , δ

}
.

In this case, StingyCD’s same rule applies for guaranteeing coordinate i remains 0 during iteration t. With a minor change,
we can also check if x(t−1)i is guaranteed to remain C during iteration t. Specifically, if x(t−1)i = C and q(t−1) ≤ −τi,
then it is guaranteed that δSVM = 0.
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G. Additional comparisons for Lasso problems
This section contains results using additional values of λ for the experiments in §6.1. In general, we find the results to be
quite consistent, regardless of λ. Only “CD + Safe Screening” seems to be greatly affected by this parameter.

G.1. Full results for finance dataset

Number of examples: 1.6× 104. Number of features: 5.5× 105.
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G.2. Full results for allstate dataset

Number of examples: 2.5× 105. Number of features: 1.5× 104.
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H. Additional comparisons for logistic regression problems
H.1. Full results for lending club dataset

Number of examples: 1.1× 105. Number of features: 3.1× 104.

lending club, λ = 0.05λmax, ‖x?‖0 = 272
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H.2. Full results for kdda dataset

Number of examples: 8.4× 106. Number of features: 2.2× 106.

kdda, λ = 0.02λmax, ‖x?‖0 = 195
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