StingyCD

A. Proof of Theorem 2.1

Theorem 2.1 (Safeness of StingyCD). In Algorithm 2, every skipped update would, if computed, resultin = 0. That is,
ifg® D ;and xi(t D =0, then

C D
@ 1. Aisb Ax® D o
max X; ; > =0:
kA;k

t 1) _

Proof. Since X; 0, we need to prove that if gt D ; then

D E
Aprt D 0; (3)

where we have used the definition r® D =p Ax® D,

We show by induction that q® = rr r® ?_ The base case is that g D = 0 whenever StingyCD performs the update
rr r D Theinductive step is that

D E
@@ =q® D 2 Ar®D rr o+ 2kAK)
) D E
= r®D g 2 ARr® D o4 2pAK (5)
2
= r®D A rr (6)
2
= r® rr 7
. -y . - 2 -
Recall the definition ; = sign (gi) k/f*kz where gi = hAj;rri+ . It follows that
€D > D e’ signgg) O, ®)
kA;k
(t 1) i
> T Ak ©)
D> kAk r® D pr hA;; rri + (10)
D> hA;rri +kAKk r® D r 0 (11)
D E
> A;rt D 0: (12)
O

B. Proof of Theorem 2.2

Theorem 2.2 (Per iteration time complexity of StingyCD). Algorithm 2 can be implemented so that iteration t requires

Less time than an identical iteration of Algorithm 1 if gt 1 i and x§t Y=o (the update is skipped) and rr is
not updated. Specifically, StingyCD requires O(1) time, while CD requires O(NNZ (Aj;)) time.

The same amount of time (up to an O(1) term) as a CD iteration if the update is not skipped and rr is not updated.
In particular, both algorithms require the same number of O(NNZ (A;)) operations.

More time than a CD iteration if rr is updated. In this case, StingyCD requires O(NNZ (A)) time.

Proof. Note that at each iteration, CD computes a dot product of length NNZ (A;) to compute . If & 0, an additional
O(NNZ (A))) operation is required to update r®.

StingyCD

Case 1: the update is skipped and rr is not updated In this case, the only computation StingyCD performs during this
iteration is (i.) deciding not to update the reference vector, (ii.) choosing a coordinate to update, and (iii.) checking whether

qt D i and x§t D=, Steps (i.) and (ii.) can be easily be defined so that they require O(1) time, and checking the
conditions for (iii.) also requires constant time.

Case 2: the update is not skipped and rr is not updated In this case, the only additional operation that we have not
already considered is the update to q(®. This update can be performed in constant time by caching previous computations of
hAGrri, A r® D and kAk2. The value of hA;; rri was computed when computing the threshold ;,and A;; r®t D

and kA;k? are necessary to compute .

Case 3: rris updated In this case, computing ; for all i requires computing hA;; rri for all columns in A. This is a
matrix-vector multiply that requires O(NNZ (A;)) operations. O

C. Proof of Theorem 3.2
Theorem 3.2 (Equation for P (U®)). Assume x{* © =0and ; 2 (qt ;q® D). Then Assumption 3.1 implies
C

2la e (P75 i 0

PU®) = :
(U™) 1 3las =g »y(%51;3) otherwise;

where I1x(a;b) is the regularized incomplete beta function.

Proof. Recall the illustration form Figure 2:

— bd(8®) n A

Because we assume rt 1 js uniformly distributed on the boundary of S, the probability that rt 1 2 A; is given by
dividing the area of A; \ bd(S®) by the area of bd(S®). The region A; \ bd(S®) is a hyperspherical cap. In the case
that rr 2 A;, we know from (Li, 2011) that the area of Aj \ bd(S®) is given by

Larea(S®@)lgin¢ y2(252; 3); (13)
where area(S(™) is the surface area of SM® and s the angle indicated in the diagram.
When ; 0, note that by definition of ;, we have rr 2 A;. It follows then that when ; 0, we have
1 [GAY I n 1.1
area(S'V)l ;
P(Ut) — 2 () sin()2\ 3 2) (14)
area(SM)
=2a cos(y2("5: 3) (15)
=3la =qe ("5 3): (16)
In the case that ; < 0, we have rr 2 A;, and we can use symmetry to see that
PUD=1 3las+ =qa ("4 3): a7

StingyCD

D. Details of estimating P (U®) in StingyCD+

In x3.1, we defined the probability P (U®). Assuming ; 2 (q® D;q® D), we have

(1 1.1 H

PU®) = la imge (P 3) i 0 (18)
1 3la+ ;= »y(P5%;3) otherwise;

where I« (a; b) is the regularized incomplete beta function.

In our implementation of StingyCD+, we compute P (U () approximately using a lookup table. First, we make use of the

approximation a

i(n D D (19)

NI
~
[y

%I(l i=q(t 1))(%1
Above, is the standard normal CDF.

Using (19) is not strictly necessary. Using (19) leads to a simpler implementation, however, since we no longer need to
compute the regularized incomplete beta function. Instead we only need to define a lookup table for the standard normal
CDF. We expect this approximation has negligible effect on StingyCD+, since (19) is a very close approximation for
moderately large n.

es of x pe s spaced

Using (19), our StingyCD+ implementation uses a lookup table of 128 values for 1 7(2, Valu
0:25);1 (0:5);:

unlfornﬁy between 0 and 32 inclusive, meaning the table stores the values 1 0);1 (
1 (¢ 32).

To estimate P (U®) during each iteration, StingyCD+ first computes ;(n 1)=q(1 and then reads the closest value from
the table @t results in an upper bound for P (UM). For example, if j(n 1)=q® Y =0:2, our appr('glmatlon of P (U (t))
is1 0:25) = 0:308:::. If j(n 1)=q D = 0:2, then our approximation of P(U®M)is (' 0:5) = 0:760:

E. Proof of Theorem 3.3

Theorem 3.3 (StingyCD+ converges to a solution of (P)). In StingyCD+, assume ® NNz x{ D forall t > 0.
Also, for each i 2 [m], assume the largest number of consecutive iterations during which get_next_coordinate() does
not return i isboundedast ¥ 1. Then

Jim f(x(t)) =f(x%):

Before proving the theorem, we introduce and prove a few lemmas.

Lemma E.1. Given the assumptions of Theorem 3.3, let M be a number larger than the maximum number of consecutive
iterations get_next_coordinate() does not return coordinate i foralli 2 [m]ast ¥ 1. Consider any iteration t > 0 of

StingyCD+ and any i 2 [m] such that x? Y & 0. Then there exists an iteration t* t during which StingyCD+ computes
an update to coordinate i. Furthermore, we have t* t+ mM.

Proof. Define C(t 1 as the set of coordinates that correspond to nonzero entries in x(t :
ct V=i : x{* V& og: (20)
Let igelayea denote the unique coordinate in C(1 sych that the delay Di(t) is largest:

idelayed = argmax D® (21)
i2ct 1

This coordinate is unique because t1t differs for all i 2 C(* Y—StingyCD+ updates at most one coordinate during each
iteration.

We must have D-((?. wea NNZ x® D since the NNZ x® D 1 coordinates in C®* 1 not equal t0 igelayeq Were
updated before igelayeq Was last updated (otherwise (21) would not hold). Thus, counting these updates, as well as the
update to weight igelayea during iteration t',islt .o+ We must have Dn(z.ayed NNZ x® D |

StingyCD

Now letk 0 be the smallest such k for which get_next_coordinate() returns igeiayed during iteration t + k. Note that

k < M. We must have DS::,)ed NNZ x®*& D since (i) until an update for coordinate i is computed, D is nonde-

creasing with t for all i, (ii) we have Di(zuayed NNZ x® D and (i) whenever NNZ x® = NNz x® D +1
0 0

fort! 2 ft;t+1;:::;t+k 1g, we must also have Di(;e;;)d = Di(;e?ayed + 1—an update to a zero entry of x increases

the delay for all coordinates by 1.

In addition, since igelayed 2 c®t D and igelayed has not been updated since before iteration t, we must have xTk D g,

Idelayed
Thus, by definition of P (U 1)), we must have P (U (t+K)) = 1. Applying the assumption that *% NNz x{*+k 1
it follows that
PU®NDI = it Nz xR 1 (22)

|de|ayed |de|ayed
Thus, the condition for skipping update t + k in StingyCD+ is not satisfied. That is, during iteration t + k, StingyCD+

computes an update to coordinate igelayed. It follows that D§§::y:d1) = 1. That is, igelayed NOW corresponds to the weight
with smallest delay among nonzero weights.

Now consider any i such that x§t D & 0. This coordinate was last updated during iteration t!2t, It follows that if
coordinate i is not updated by iteration 3t + (m 1)M, then i corresponds to the weight with largest delay among
nonzero weights. This is because we have shown that the nonzero weight with maximum delay is updated within M
iterations, after which it becomes the nonzero weight with smallest delay. Thus, before coordinate i is updated again, at
most (m 1) other coordinates correspond to the nonzero weight with largest delay, each of which requires at most M
iterations to update. It follows that after an additional M iterations—that is, by iteration tlt + mM—coordinate i must
be updated. O

Lemma E.2. Given the assumptions of Theorem 3.3, then for some set F, StingyCD+ converges to a solution of the
problem
minimize f(x) := JkAx bk*+ h1;xi
X2RmM
sit: X 0 (P
Xi=08i2F :

Proof. First note that £(x(®) is nonincreasing with t. This is because whenever x® & x(1 we can write
x® =xC D4 g (23)
for some coordinate i, where
. € 1;
= argmin f(x® D+ %) =max x*Y; % : (24)
0:x® Dyo g '
Second, note that for all t, x(® 0. From the definition of f, it follows that f(x(®) 0 for all t.
Thus, £(x®) is a bounded monotone sequence, which implies that Jim T(x®) exists.

Now let us assume that X(® does not converge to a solution of (P’) for some set F. Then there exists a value > 0 for
which the following holds: for all t > 0, there exists an iteration t > t’ such that for some i where xft D & 0, we have

C D
@ 1. Aprt D
X D.

LI 25
! KA;K? (25)

j] = max

In other words, if StingyCD+ updated coordinate i (corresponding to a nonzero weight) during iteration t, the magnitude
of the update would be at least positive value

Also, note that after any update to a coordinate i during iteration t of StingyCD+, we have (by Taylor expansion)
D
f(x®) f(x® V)= Airt D TkAK? 2 (26)

LkAK® 2: (27)

StingyCD

Now define f' = Jim £(x®). Consider an iteration t’ such that f(x®?) '+ , where we define > 0 later.

According to (25), there exists an iteration t > t° such that for some i for which x? D > 0, we have

C P

Air® D
max x{" D (28)
kAK
According to Lemma E.1, StingyCD+ will compute at least one update to coordinate i between iterations t and t + mM.
During each of the iterations between iteration t and t + mM), suppose that coordinate i’ is updated by an amount °. It
must be the case then that p_

2
0 .
kAjok (29)

Otherwise the fact that f = Jim T(x®) would be violated due to (27).

Now let T denote the iteration during which coordinate i is next updated. From the triangle inequality and (29), it follows
that

rc D (@D mMp?: (30)
This implies that
. . h i
Air™ D Ajrt mmPz . mmPr (31)
KAK KAK KAGK T kAK

Now let be the update to coordinate i during iteration T. It follows that

(AF(T 1))
j = max xi(T l);"—2 (32)
C kAk N
max x{* ; Airt mm"2 (33)
YT KAK kAik
pP_—
mM - 2
AK (34)
Now let us define s = min kAjk.
i: kA k=0
-1 _S 2 (35)
8 mM
Then it follows that
ii>3 (36)
From (27), it follows that
fx™) fxT D) lkak® 2 £+ 1?2 2<f; 37)
which violates the assumption that lim f(x®) = £
Thus, StingyCD+ must converge to a solution of (P”) for some set .
O

Proof of Theorem 3.3. Suppose that StingyCD+ does not converge to a solution to (P).

Now define f = lim f(x®). Also define # = lim r® and & = lim x®.
tf tr 1 t? 1

StingyCD

Lemma E.2 guarantees that the algorithm at least converges to a solution of (P’) for some set F. Using this assumption, if
StingyCD+ does not converge to (P)’s solution then there existsa > 0 such that for some i such that X; & 0, we have

hA;; fi : (38)

Consider an iteration t’ such that f(x(to D) £+ , where we define > 0 later. By Taylor expansion, we have for any
t

D E)
fx®) =FR)+ rfR);x® % +1 Ax® Az (39)
2
f+1¢ &9 (40)
This implies that forany t t°, we have
¢ or@ D p?: (41)
. _ . 2 0
Define = i°:krRIi?k&0 AR It follows then that forallt t’,
D E p_ p_
A r® D hAi P KAk 2 kAk 2 1 (42)

Also, if we assume hA;; rri+ > 0, we must have

C_(hAG i+)?

43
i KAKC (43)

Air®D 4+ +kAK €D pr 2
5 (44)

kA;k

@ P 3)? (45)
<qtD: (46)
Otherwise, we must have hA;;rri+ <0, whichensures ; 0 q@® D, Inaddition, g D isboundedast ¥ 1

due to (41). As a result, whenever i is returned by get_next_coordinate() during an iteration t > t°, then P (U®) is

bounded away from zero. Ast ¥ 1, the delay Di(t) increases as, at a minimum, nonzero-valued coorinates are updated.
Thus, for an eventual iteration T, we have

PU®D® ©: @7

At this point, an update to coordinate i is computed. From (42), it follows that

Al (48)
which ensures that
fx™M) FxT V) kA 2 (49)
LR kAi2k2 (50)
fR) iap: (51)

This contradicts the definition of &. Thus, our assumption that x® does not converge to a solution of (P) is incorrect.

StingyCD

F. Generalizing StingyCD to Linear SVMs

In this section, we briefly describe how to apply StingyCD to the problem

minimize %kMxk2 hl: xi
X2RnN

(PSVM)
sit: X 2 [0;C]"

We note that (PSVM) is very similar to (P). If not for the constraint that x ~ C1, in fact, (PSVM) would be an instance of
(P)—we could solve (PSVM) by defining A = M, b =0,and = 1 and then running Algorithm 2.

To incorporate the new constraint, our CD update becomes

n o
sw=min ¢ x*Y;
In this case, StingyCD’s same rule applies for guaranteeing coordinate i remains 0 during iteration t. With a minor change,
we can also check if xi(t D s guaranteed to remain C during iteration t. Specifically, if xi(t D = ¢ and gt b i
then it is guaranteed that sypm = 0.

StingyCD

G. Additional comparisons for Lasso problems

This section contains results using additional values of for the experiments in x6.1. In general, we find the results to be
quite consistent, regardless of . Only “CD + Safe Screening” seems to be greatly affected by this parameter.

G.1. Full results for finance dataset

Number of examples: 1:6 ~ 10*. Number of features: 5:5 10°.

nance, = 0:1 max, kX°k, = 375
& _ 100 1.00
-2 E 3) i
5 1 & o090 ;0%
2 3 3 & 0.85 .
2 E 2085 =
S 5 é 0.80 4
ot - =3
z 1 o 3 075 8
x 1 1 e 075 1 1 1 1 070 1 1 1 1
0.0 0.5 1.0 15 2.0 00 02 04 06 08 10 00 02 04 06 08 10
Time (min) Time (min) Time (min)
nance, =0:05 max, kKX’k, = 1746
. 107! r r : : 1.00 : 1.00 r .
= 1072 i 8 =
= . % 0.95 - = 0.95 4
£ 107 i £ B
= S 194 . _
210 i Zo9H Z o
2 1077 i 3 %085 -
n —6 0.85 H
g 10 1 % £ 0.80 i
g 1077 1 2080)
% 10-8 £ 3 g - @ 0.75 E
x 10’9 E | 1 1 1 b 075 L 1 1 1 070 1 1 1 1
0 1 2 3 4 5 00 05 10 15 20 25 0.0 05 10 15 20 25
Time (min) Time (min) Time (min)

nance, =0:02 max, kX’k, = 6591

nance, =0:01 max, kx’k, = 10276

o StingyCD+ A—A StingyCD w—a CD + Safe Screening & CD

