A. Support Vector Technique

We describe Algorithm 2 in detail. Algorithm 2 takes as input the sample set S, the query sequence \mathcal{F}, the sensitivity of query Δ, the threshold τ, and the stop parameter s. Algorithm 2 outputs the result of each comparison with the threshold. In Algorithm 2, each noisy query output is compred with a noisy threshold at line 4 and outputs the result of comparison. Let \top mean that $f_{k}(S)>\tau$. Algorithm 2 is terminated if outputs $\top s$ times.

```
Algorithm 2 Sparse Vector Technique (Dwork \& Roth, 2014).
Require: Sample set \(S\), query sequence \(\mathcal{F}\), sensitivity of query \(\Delta\), threshold \(\tau\), stop parameter \(s\)
    \(\rho=\operatorname{Lap}(2 \Delta s / \epsilon)\)
    count \(=0\)
    for each \(f_{i} \in \mathcal{F}\) do
        if \(f_{i}(S)+\operatorname{Lap}(4 \Delta s / \epsilon) \geq \tau+\rho\) then
            Output T
            \(\rho=\operatorname{Lap}\left(2 \Delta s / \epsilon_{1}\right)\)
            count \(=\) count +1
            if count \(\geq s\) then
                Abort
            end if
        else
            Output \(\perp\)
        end if
    end for
```


B. The proof of Theorem 2

Proof. By definition, we have

$$
\begin{aligned}
& \operatorname{Pr}\left[\mathcal{M}\left(S, \hat{\tau_{\alpha}}\right)=\text { acc } \mid H_{1} \text { is true }\right] \\
= & \sup _{P \in \mathcal{P}} \operatorname{Pr}_{S \sim P}\left[\mathcal{M}\left(S, \hat{\tau_{\alpha}}\right)=\mathrm{acc}\right] \\
= & \sup _{P \in \mathcal{P}}\left\{\operatorname{Pr}_{S \sim P}\left[\mathcal{M}\left(S, \hat{\tau_{\alpha}}\right)=\operatorname{acc} \mid \chi^{2}(S)>\hat{\tau}_{\alpha}+\gamma\right] \operatorname{Pr}_{S \sim P}\left[\chi^{2}(S)>\hat{\tau}_{\alpha}+\gamma\right]\right. \\
+ & \left.\operatorname{Pr}_{S \sim P}\left[\mathcal{M}\left(S, \hat{\tau_{\alpha}}\right)=\operatorname{acc} \mid \chi^{2}(S) \leq \hat{\tau}_{\alpha}+\gamma\right] \operatorname{Pr}_{S \sim P}\left[\chi^{2}(S) \leq \hat{\tau}_{\alpha}+\gamma\right]\right\} \\
\leq & \sup _{P \in \mathcal{P}}\left\{\operatorname{Pr}_{S \sim P}\left[\mathcal{M}\left(S, \hat{\tau_{\alpha}}\right)=\operatorname{acc} \mid \chi^{2}(S)>\hat{\tau}_{\alpha}+\gamma\right]+\operatorname{Pr}_{S \sim P}\left[\chi^{2}(S) \leq \hat{\tau}_{\alpha}+\gamma\right]\right\} .
\end{aligned}
$$

For any $P \in \mathcal{P}, \operatorname{Pr}_{S \sim P}\left[\chi^{2}(S) \leq \hat{\tau}_{\alpha}+\gamma\right] \leq \beta_{\hat{\tau}_{\alpha}+\gamma}$ by definition. Thus, we have

$$
\operatorname{Pr}\left[\mathcal{M}\left(S, \hat{\tau}_{\alpha}\right)=\operatorname{acc} \mid H_{1} \text { is true }\right] \leq \sup _{P \in \mathcal{P}}\left\{\operatorname{Pr}_{S \sim P}\left[\mathcal{M}\left(S, \hat{\tau}_{\alpha}\right)=\operatorname{acc} \mid \chi^{2}(S)>\hat{\tau}_{\alpha}+\gamma\right]+\beta_{\hat{\tau}_{\alpha}+\gamma}\right\}
$$

C. The proof of Theorem 3

Proof. Fix the sample S. Then, the conditional distribution $\operatorname{Pr}\left[\mathcal{M}_{\Delta}\left(S, \hat{\gamma}_{\alpha}\right)=\operatorname{acc} \mid S\right]$ is obtained as

$$
\begin{aligned}
\operatorname{Pr}\left[\mathcal{M}_{\Delta}\left(S, \hat{\tau}_{\alpha}\right)=\operatorname{acc} \mid S\right] & =\operatorname{Pr}\left[\chi^{2}(S)+\operatorname{Lap}\left(\frac{\Delta}{\epsilon}\right) \leq \hat{\tau}_{\alpha}\right] \\
& =\operatorname{Pr}\left[\operatorname{Lap}\left(\frac{\Delta}{\epsilon}\right) \leq \hat{\tau}_{\alpha}-\chi^{2}(S)\right] \\
& =\frac{\epsilon}{2 \Delta} \int_{-\infty}^{\hat{\tau}_{\alpha}-\chi^{2}(S)} \exp \left(\frac{x \epsilon}{\Delta}\right) d x \\
& =\frac{1}{2} \exp \left(\frac{\left(\hat{\tau}_{\alpha}-\chi^{2}(S)\right) \epsilon}{\Delta}\right) .
\end{aligned}
$$

Under the condition $\chi^{2}(S)>\hat{\tau}_{\alpha}+\gamma$, we have

$$
\begin{align*}
\operatorname{Pr}\left[\mathcal{M}_{\Delta}\left(S, \hat{\tau}_{\alpha}\right)=\operatorname{acc} \mid S\right] & =\operatorname{Pr}\left[\chi^{2}(S)+\operatorname{Lap}\left(\frac{\Delta}{\epsilon}\right) \leq \hat{\tau}_{\alpha}\right] \\
& \leq \frac{1}{2} \exp \left(\frac{-\gamma \epsilon}{\Delta}\right) \tag{8}
\end{align*}
$$

The gamma error is rearranged as

$$
\begin{equation*}
E\left(\hat{\tau}_{\alpha}, \gamma, \mathcal{M}_{\Delta}\right)=\sup _{P \in \mathcal{P}} \underset{S \sim P}{\operatorname{E}}\left[\operatorname{Pr}\left[\mathcal{M}_{\Delta}\left(S, \hat{\tau}_{\alpha}\right)=\operatorname{acc} \mid S\right] \mid \chi^{2}(S)>\hat{\tau}_{\alpha}+\gamma\right] . \tag{9}
\end{equation*}
$$

Substituting Eq. 8 into Eq. 9 gives the claim.

D. The proof of Lemma 1

Proof. Let $\chi^{2}\left(c_{11}, c_{10}\right)=\tau_{\alpha}$. Eq. 4 is rearranged as

$$
\begin{equation*}
A c_{11}^{2}+B c_{10}^{2}+2 C c_{11} c_{10}+D\left(c_{11}+c_{10}\right)=0 \tag{10}
\end{equation*}
$$

where $A=\left(N_{0}^{2} N+\tau_{\alpha} N_{1} N_{0}\right), B=\left(N_{1}^{2} N+\tau_{\alpha} N_{1} N_{0}\right), C=N_{1} N_{0}\left(\tau_{\alpha}-N\right)$, and $D=-\tau_{\alpha} N_{1} N_{0} N$. Eq. 10 is a quadratic form, and it is an ellipse if and only if $A B-C^{2}>0$. For any $N_{1}>0, N_{0}>0, N>0$, and $\tau_{\alpha}>0$, we have

$$
\begin{aligned}
A B-C^{2} & =\left(N_{0}^{2} N+\tau_{\alpha} N_{1} N_{0}\right)\left(N_{1}^{2} N+\tau_{\alpha} N_{1} N_{0}\right)-\left\{N_{1} N_{0}\left(\tau_{\alpha}-N\right)\right\}^{2} \\
& =\tau_{\alpha} N N_{1} N_{0}\left(N_{1}+N_{0}\right)^{2}>0 .
\end{aligned}
$$

Thus, we get the claim.

E. The affine transformation V

The affine transformation V that transforms the ellipse derived in Eq. 10 to the unit circle is defined as follows:

$$
\begin{aligned}
& V\left(\left(c_{11}, c_{10}\right)^{t}\right)= \\
& \left(\begin{array}{cc}
\sqrt{\frac{\lambda_{1}}{R}} & 0 \\
0 & \sqrt{\frac{\lambda_{2}}{R}}
\end{array}\right)\left(\left(\begin{array}{ll}
\frac{C}{\sqrt{C^{2}+\left(\lambda_{1}-A\right)^{2}}} & \frac{\left(\lambda_{1}-A\right)}{\sqrt{C^{2}+\left(\lambda_{1}-A\right)^{2}}} \\
\frac{-\left(\lambda_{1}-A\right)}{\sqrt{C^{2}+\left(\lambda_{1}-A\right)^{2}}} & \frac{C}{\sqrt{C^{2}+\left(\lambda_{1}-A\right)^{2}}}
\end{array}\right)\binom{c_{11}}{c_{10}}+\frac{D}{2 \sqrt{C^{2}+\left(\lambda_{1}-A\right)^{2}}}\binom{\frac{C+\lambda_{1}-A}{\lambda_{1}}}{\frac{C+\lambda_{2}-B}{\lambda_{2}}}\right) .
\end{aligned}
$$

where λ_{1} and λ_{2} are the eigenvalues of matrix $\left(\begin{array}{ll}A & C \\ C & B\end{array}\right)$ and

$$
\begin{equation*}
R=\frac{D^{2}\left(\lambda_{2}\left(C+\lambda_{1}-A\right)^{2}+\lambda_{1}\left(C+\lambda_{2}-B\right)^{2}\right)}{4 \lambda_{1} \lambda_{2}\left(C^{2}+\left(\lambda_{1}-A\right)^{2}\right)} . \tag{11}
\end{equation*}
$$

F. The proof of Theorem 5

Proof. We can rewrite Eq. 10 as

$$
\left(c_{11}, c_{10}\right)\left(\begin{array}{ll}
A & C \tag{12}\\
C & B
\end{array}\right)\binom{c_{11}}{c_{10}}+D(1,1)\binom{c_{11}}{c_{10}}=0,
$$

where A, B, C and D are defined in Appendix D. By eigendecomposition of the matrix $\left(\begin{array}{ll}A & C \\ C & B\end{array}\right)$, we obtain as

$$
\left(\begin{array}{ll}
A & C \\
C & B
\end{array}\right)=P^{T} \operatorname{diag}\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) P,
$$

where $\lambda_{1}, \lambda_{2}=\frac{(A+B) \pm \sqrt{(A+B)^{2}-4 A B+4 C^{2}}}{2}$ and

$$
P=\left(\begin{array}{cc}
\frac{C}{\sqrt{C^{2}+\left(\lambda_{1}-A\right)^{2}}} & \frac{-\left(\lambda_{1}-A\right)}{\sqrt{C^{2}+\left(\lambda_{1}-A\right)^{2}}} \\
\frac{\lambda_{1}-A}{\sqrt{C^{2}+\left(\lambda_{1}-A\right)^{2}}} & \frac{C}{\sqrt{C^{2}+\left(\lambda_{2}-A\right)^{2}}}
\end{array}\right) .
$$

Let $\binom{\hat{c}_{11}}{\hat{c}_{10}}=P^{T}\binom{c_{11}}{c_{10}}$. Then, we can rewrite Eq. 12 as

$$
\begin{align*}
& \lambda_{1}\left(\hat{c}_{11}+\frac{D}{2 \lambda_{1} \sqrt{C^{2}+\left(\lambda_{1}-A\right)^{2}}}\left(C+\lambda_{1}-A\right)\right)^{2}+\lambda_{2}\left(\hat{c}_{10}+\frac{D}{2 \lambda_{2} \sqrt{C^{2}+\left(\lambda_{1}-A\right)^{2}}}\left(C+\lambda_{2}-B\right)\right)^{2} \\
= & \frac{D^{2}\left(\lambda_{2}\left(C+\lambda_{1}-A\right)^{2}+\lambda_{1}\left(C+\lambda_{2}-B\right)^{2}\right)}{4 \lambda_{1} \lambda_{2}\left(C^{2}+\left(\lambda_{1}-A\right)^{2}\right)} . \tag{13}
\end{align*}
$$

The right hand side is equivalent to R. Since $A>0$ and $B>0$, we have $\lambda_{1} \geq 0$ and $\lambda_{2} \geq 0$. Thus, by definition $R \geq 0$. Dividing the right hand side and left hand side of Eq. 13 by R gives $\dot{c}_{11}^{2}+\dot{c}_{10}^{2}=1$ where

$$
\begin{aligned}
& \dot{c}_{11}=\sqrt{\frac{\lambda_{1}}{R}}\left(\tilde{c}_{11}+\frac{D}{2 \lambda_{1} \sqrt{C^{2}+\left(\lambda_{1}-A\right)^{2}}}\left(C+\lambda_{1}-A\right)\right), \\
& \dot{c}_{10}=\sqrt{\frac{\lambda_{2}}{R}}\left(\hat{c}_{10}+\frac{D}{2 \lambda_{2} \sqrt{c^{2}+\left(\lambda_{1}-A\right)^{2}}}\left(C+\lambda_{2}-B\right)\right) .
\end{aligned}
$$

Consequently, $\chi^{2}\left(c_{11}, c_{10}\right)=\tau_{\alpha}$ if and only if the vector $\left(\dot{c}_{11}, \dot{c}_{10}\right)$ is on the boundary of the unit circle.
The relationship between $\left(c_{11}, c_{10}\right)$ and $\left(\dot{c}_{11}, \dot{c}_{10}\right)$ is obtained as

$$
\binom{\dot{c}_{11}}{\dot{c}_{10}}=\left(\begin{array}{cc}
\sqrt{\frac{\lambda_{1}}{R}} & 0 \\
0 & \sqrt{\frac{\lambda_{2}}{R}}
\end{array}\right)\left(\left(\begin{array}{cc}
\frac{C}{\sqrt{C^{2}+\left(\lambda_{1}-A\right)^{2}}} & \frac{\left(\lambda_{1}-A\right)}{\sqrt{C^{2}+\left(\lambda_{1}-A\right)^{2}}} \\
\frac{-\left(\lambda_{1}-A\right)}{\sqrt{C^{2}+\left(\lambda_{1}-A\right)^{2}}} & \frac{C}{\sqrt{C^{2}+\left(\lambda_{1}-A\right)^{2}}}
\end{array}\right)\binom{c_{11}}{c_{10}}+\frac{D}{2 \sqrt{C^{2}+\left(\lambda_{1}-A\right)^{2}}}\binom{\frac{C+\lambda_{1}-A}{C \lambda_{1}-B}}{\frac{\lambda_{2}}{\lambda_{2}}}\right) .
$$

Thus, by the definition of V, we have $\left(\dot{c}_{11}, \dot{c}_{10}\right)^{t}=V\left(\left(c_{11}, c_{10}\right)^{t}\right)$. Since $R \geq 0, \chi^{2}\left(c_{11}, c_{10}\right)>\tau_{\alpha}$ if and only if $1<\left\|\left(\dot{c}_{11}, \dot{c}_{10}\right)\right\|_{2}=\left\|V\left(\left(c_{11}, c_{10}\right)^{t}\right)\right\|_{2}$.

G. The proof of Lemma 2

Proof. Let S and S^{\prime} be databases such that $d\left(S, S^{\prime}\right)=1$. Let $\mathbf{c}=\left(c_{11}, c_{10}\right)^{t}$ and $\mathbf{c}^{\prime}=\left(c_{11}^{\prime}, c_{10}^{\prime}\right)^{t}$ be the elements of the contingency table derived from S and S^{\prime}, respectively. Then, we have

$$
\begin{aligned}
\left|\|V(\mathbf{c})\|_{2}-\left\|V\left(\mathbf{c}^{\prime}\right)\right\|_{2}\right| & =\sqrt{\|V(\mathbf{c})\|_{2}^{2}+\left\|V\left(\mathbf{c}^{\prime}\right)\right\|_{2}^{2}-2\|V(\mathbf{c})\|_{2}\left\|V\left(\mathbf{c}^{\prime}\right)\right\|_{2}} \\
& =\sqrt{\left\|V(\mathbf{c})-V\left(\mathbf{c}^{\prime}\right)\right\|_{2}^{2}+2(V(\mathbf{c}))^{t} V\left(\mathbf{c}^{\prime}\right)-2\|V(\mathbf{c})\|_{2}\left\|V\left(\mathbf{c}^{\prime}\right)\right\|_{2}}
\end{aligned}
$$

From CauchySchwarz inequality, we have

$$
\left|\|V(\mathbf{c})\|_{2}-\left\|V\left(\mathbf{c}^{\prime}\right)\right\|_{2}\right| \leq\left\|V(\mathbf{c})-V\left(\mathbf{c}^{\prime}\right)\right\|_{2}
$$

From the definition of V, we have

$$
V(\mathbf{c})-V\left(\mathbf{c}^{\prime}\right)=\left(\begin{array}{cc}
\sqrt{\frac{\lambda_{1}}{R}} & 0 \\
0 & \sqrt{\frac{\lambda_{2}}{R}}
\end{array}\right)\left(\begin{array}{cc}
\frac{C}{\sqrt{C^{2}+\left(\lambda_{1}-A\right)^{2}}} & \frac{\left(\lambda_{1}-A\right)}{\sqrt{C^{2}+\left(\lambda_{1}-A\right)^{2}}} \\
\frac{-\left(\lambda_{1}-A\right)}{\sqrt{C^{2}+\left(\lambda_{1}-A\right)^{2}}} & \frac{C}{\sqrt{C^{2}+\left(\lambda_{1}-A\right)^{2}}}
\end{array}\right)\left(\mathbf{c}-\mathbf{c}^{\prime}\right)
$$

Since $d\left(S, S^{\prime}\right)=1$, an element of $\mathbf{c}-\mathbf{c}^{\prime}$ is either of 1 or -1 and the other is 0 . Consequently, we have

$$
\begin{aligned}
\left\|V(\mathbf{c})-V\left(\mathbf{c}^{\prime}\right)\right\|_{2} & =\sqrt{\frac{1}{C^{2}+\left(\lambda_{1}-A\right)^{2}}\left(\left(C \sqrt{\frac{\lambda_{1}}{R}}\right)^{2}+\left(-\left(\lambda_{1}-A\right) \sqrt{\frac{\lambda_{2}}{R}}\right)^{2}\right)} \\
& \leq \sqrt{\left(\sqrt{\frac{\lambda_{1}}{R}}\right)^{2}+\left(\sqrt{\frac{\lambda_{2}}{R}}\right)^{2}}=\sqrt{\frac{\lambda_{1}+\lambda_{2}}{R}}
\end{aligned}
$$

Hence,

$$
\Delta=\max _{S, S^{\prime}: d\left(S, S^{\prime}\right)=1}\left|\|V(\mathbf{c})\|_{2}-\left\|V\left(\mathbf{c}^{\prime}\right)\right\|_{2}\right| \leq \sqrt{\frac{\lambda_{1}+\lambda_{2}}{R}}
$$

By using Eq. 11, we get

$$
\begin{aligned}
\Delta & =\sqrt{\frac{\lambda_{1}+\lambda_{2}}{R}} \\
& =2 \sqrt{\frac{\left(N_{0}^{2}+N_{1}^{2}\right) N+2 \tau_{\alpha} N_{0} N_{1}}{\tau_{\alpha} N_{0} N_{1} N^{2}}}
\end{aligned}
$$

H. The proof of Theorem 7

Proof. As the same manner of the proof of Theorem 3, we have

$$
\operatorname{Pr}\left[\mathcal{M}_{\Delta_{V}}\left(S, \hat{\tau}_{\alpha}\right)=\operatorname{acc} \mid S\right]=\frac{1}{2} \exp \left(\frac{\left(1-\left\|V\left(\left(c_{11}, c_{10}\right)^{t}\right)\right\|_{2}\right) \epsilon}{\Delta_{V}}\right)
$$

Define $g\left(c_{11}, c_{10}\right)=N_{1} N_{0}\left(c_{11}^{2}+c_{10}^{2}\right)-N_{1} N_{0} N\left(c_{11}+c_{10}\right)+2 N_{1} N_{0} c_{11} c_{10}$. Under the condition $\chi^{2}(S)>\hat{\tau}_{\alpha}+\gamma$, we have

$$
\left\|V\left(\left(c_{11}, c_{10}\right)^{t}\right)\right\|_{2}^{2}+\frac{\gamma g\left(c_{11}, c_{10}\right)}{R} \geq 1
$$

Hence,

$$
\left\|V\left(\left(c_{11}, c_{10}\right)^{t}\right)\right\|_{2} \geq \sqrt{1-\frac{\gamma g\left(c_{11}, c_{10}\right)}{R}}
$$

By the definition of R and $g, \frac{\gamma g\left(c_{11}, c_{10}\right)}{R}=-4 \gamma \frac{N_{1} N_{0}}{\tau_{\alpha} N^{2}}$. Hence,

$$
\operatorname{Pr}\left[\mathcal{M}_{\Delta_{V}}\left(S, \hat{\tau}_{\alpha}\right)=\operatorname{acc} \mid S\right] \leq \frac{1}{2} \exp \left(\frac{\epsilon N}{2}\left(1-\sqrt{1+\frac{4 \gamma M_{1} M_{0}}{\hat{\tau_{\alpha}} N^{2}}}\right) \sqrt{\frac{\hat{\tau_{\alpha} N_{1} N_{0}}}{\left(N_{1}^{2}+N_{0}^{2}\right) N+2 \hat{\tau_{\alpha}} N_{1} N_{0}}}\right)
$$

Thus, we get the claim by Eq. 9 .

I. Algorithm of Unit Circle Mechanism + SVT

We describe Algorithm 3 in detail. Algorithm 3 takes as input sample sets S^{1}, \cdots, S^{K}, the significance level α, the privacy budget ϵ, and two stop parameters $s_{1} \leq s_{2}$. Algorithm 3 is terminated if (1) it rejects at most s_{1} null hypothesis, or (2) it outputs s_{2} test results. In Algorithm 3, the outer for-loop (line 3-26) is the main loop of SVT. The test statistic for S^{k} is evaluated at line 5 and is compared with a noisy threshold at line 12 . To keep the type-I error as, at most, α per test, we want that $\hat{d}^{k}<1+\rho$ holds with the probability of at least $1-\alpha$, where ρ is the noise that SVT requires to add a threshold. To attain this, Algorithm 3 generates a sample distribution of the randomized test statistics by Monte Carlo sampling at the inner for-loop (line 6-10). What differs from the normal SVT framework are s_{2} and Monte Carlo sampling to find a new threshold to control FWER. For Algorithm 3, if marginals $N_{0}^{k}, N_{1}^{k}, M_{0}^{k}, M_{1}^{k}$ are public, then the computation of threshold τ^{k} does not consume an additional privacy budget Therefore, Algorithm 3 requires the same privacy budget as SVT does.

```
Algorithm 3 Unit Circle Mechanism + SVT
Require: Sample set \(S^{1}, \cdots, S^{K}\), significance level \(\alpha\), privacy budget \(\epsilon\), stop parameters \(s_{1} \leq s_{2}\),
    count \(_{1}=0\), count \(_{2}=0\)
    \(\rho=\operatorname{Lap}\left(\frac{2 s_{1} \Delta_{V, \frac{\alpha}{s_{2}}}\left(N_{0}, N_{1}\right)}{\epsilon}\right)\)
    for each sample set \(S^{k}\) do
        Evaluate contingency table from \(S^{k}\)
        \(\hat{d}^{k}\left(S^{k}\right)=\left\|V\left(\left(c_{11}^{k}, c_{10}^{k}\right)^{t}\right)\right\|_{2}+\operatorname{Lap}\left(\frac{4 s_{1} \Delta_{V, \frac{\alpha}{s_{2}}}\left(N_{0}, N_{1}\right)}{\epsilon}\right)\)
        for \(j=1\) to \(m\) do
            \(S^{k, j} \sim \operatorname{mult}\left(\frac{N_{1} M_{1}^{k}}{N^{2}}, \frac{N_{0} M_{1}^{k}}{N^{2}}, \frac{N_{1} M_{0}^{k}}{N^{2}}, \frac{N_{0} M_{0}^{k}}{N^{2}}\right)\)
            Evaluate contingency table from \(S^{k, j}\)
            \(\hat{d}^{k, j}\left(S^{k, j}\right)=\left\|V\left(\left(c_{11}^{k, j}, c_{10}^{k, j}\right)^{t}\right)\right\|_{2}+\operatorname{Lap}\left(\frac{4 s_{1} \Delta_{V, \frac{\alpha}{s_{2}}}\left(N_{0}^{k j}, N_{1}^{k j}\right)}{\epsilon}\right)-\rho\)
        end for
        Let \(\hat{\tau}^{k}\) be the \(\lceil(m+1)(1-\alpha)\rceil\) th largest value in \(\left\{\hat{d}^{k, j}\right\}_{j=1, \cdots, m}\)
        if \(\hat{d}^{k}\left(S^{k}\right)>\hat{\tau}^{k}+\rho\) then
            Return rej
            \(\rho=\operatorname{Lap}\left(\frac{2 s_{1} \Delta_{V, \frac{\alpha}{s_{2}}}\left(N_{0}, N_{1}\right)}{\epsilon}\right)\)
        count \(_{1}=\) count \(_{1}+1\)
        if count \(_{1} \geq s_{1}\) then
            Abort
        end if
        else
            Output acc
        end if
        count \(_{2}=\) count \(_{2}+1\)
        if count \(_{2} \geq s_{2}\) then
            Abort
        end if
    end for
```


J. Algorithm of Unit Circle Mechanism + EM

We describe Algorithm 4 in detail. Algorithm 4 takes the sample sets S^{1}, \cdots, S^{K}, the significance level α, the privacy budget ϵ, the stop parameter s_{1}. Algorithm 4 outputs s_{1} test results. Let $\mathcal{E}_{q}^{\epsilon}$ be the exponential mechanism with privacy budget ϵ and score function q. Algorithm 4 first calculates the score function defined by Jhonson et al. (Johnson \& Shmatikov, 2013) (line 1) and chooses the sample sets associated with the top s_{1} significant random variable pairs by the exponential mechanism (line 5). Then, the mechanism gets the results of the test by using the unit circle mechanism (line 9). In Algorithm 4 , we spend privacy budget $\frac{\epsilon}{2 s_{1}}$ for the exponential mechanism and $\frac{\epsilon}{2 s_{1}}$ for the unit circle mechanism s_{1} times, respectively.

```
Algorithm 4 Unit Circle Mechanism + EM
Require: Sample sets \(S^{1}, \cdots, S^{K}\), significance level \(\alpha\), privacy budget \(\epsilon\), stop parameter \(s_{1}\),
    Calculate score function \(q\left(S^{k}\right)\) for each sample set \(S^{k}\)
    \(I=\emptyset\)
    for \(j=1\) to \(s_{1}\) do
        repeat
            \(\hat{S} \leftarrow \mathcal{E}_{q}^{\frac{\epsilon}{2 s_{1}}}\)
        until \(\hat{S} \notin I\)
        \(I \leftarrow I \cup\{\hat{S}\}\)
        Run Algorithm 1 with Sample set \(\hat{S}\) and significance Level \(\frac{\alpha}{K}\) and privacy budget \(\frac{\epsilon}{2 s_{1}}\)
    end for
```

