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Abstract
This paper develops a novel tree-based algo-
rithm, called Bonsai, for efficient prediction on
IoT devices – such as those based on the Ar-
duino Uno board having an 8 bit ATmega328P
microcontroller operating at 16 MHz with no na-
tive floating point support, 2 KB RAM and 32
KB read-only flash. Bonsai maintains predic-
tion accuracy while minimizing model size and
prediction costs by: (a) developing a tree model
which learns a single, shallow, sparse tree with
powerful nodes; (b) sparsely projecting all data
into a low-dimensional space in which the tree is
learnt; and (c) jointly learning all tree and pro-
jection parameters. Experimental results on mul-
tiple benchmark datasets demonstrate that Bon-
sai can make predictions in milliseconds even on
slow microcontrollers, can fit in KB of memory,
has lower battery consumption than all other al-
gorithms while achieving prediction accuracies
that can be as much as 30% higher than state-
of-the-art methods for resource-efficient machine
learning. Bonsai is also shown to generalize to
other resource constrained settings beyond IoT
by generating significantly better search results
as compared to Bing’s L3 ranker when the model
size is restricted to 300 bytes. Bonsai’s code can
be downloaded from (BonsaiCode).

1. Introduction
Objective: This paper develops a novel tree-based algo-
rithm, called Bonsai, which can be trained on a laptop, or
the cloud, and can then be shipped onto severely resource
constrained Internet of Things (IoT) devices.

Resource constrained devices: The Arduino Uno board
has an 8 bit ATmega328P microcontroller operating at 16
MHz with 2 KB SRAM and 32 KB read-only flash mem-
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ory. The BBC Micro:Bit has a 32 bit ARM Cortex M0 mi-
crocontroller operating at 16 MHz with 16 KB SRAM and
256 KB read-only flash. Neither provides hardware sup-
port for floating point operations. Billions of such tiny IoT
microcontrollers have been deployed in the world (Meunier
et al., 2014). Before deployment, the OS and all application
code and data are burnt onto flash, leaving only a few KB
for storing the trained ML model, prediction code, feature
extraction code and associated data and parameters. Af-
ter deployment, the only writable memory available is the
2 KB (Uno) or 16 KB (Micro:Bit) of SRAM which might
not be sufficient to hold even a single feature vector.

The Internet of Things: A number of applications have
been developed for consumer, enterprise and societal IoT
including predictive maintenance, intelligent healthcare,
smart cities and housing, etc. The dominant paradigm for
these applications, given the severe resource constraints of
IoT devices, has been that the IoT device is dumb – it just
senses its environment and transmits the sensor readings to
the cloud where all the decision making happens.

Motivating scenarios: This paper proposes an alternative
paradigm where the IoT device can make predictions lo-
cally without necessarily connecting to the cloud. This en-
ables many scenarios, beyond the pale of the traditional
paradigm, where it is not possible to transmit data to the
cloud due to latency, bandwidth, privacy and energy con-
cerns. For instance, consider a microcontroller implanted
in the brain which warns patients about impending seizures
so that they can call for help, pull over if they are driving,
etc. Making predictions locally would allow the device to
work everywhere irrespective of cloud connectivity. Fur-
thermore, alerts could be raised more quickly with local
predictions than if all the sensor readings had to be first
transmitted to the cloud. In addition, since the energy re-
quired for executing an instruction might be much lower
than the energy required to transmit a byte, making predic-
tions locally would extend battery life significantly thereby
avoiding repeated brain surgery and might also prevent
brain tissue damage due to excess heat dissipation from the
communicating radio. Finally, people might not be willing
to transmit such sensitive data to the cloud. These charac-
teristics are shared by many other scenarios including im-
plants in the heart, precision agriculture on disconnected
farms, smart spectacles for the visually impaired, etc.
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Tree algorithms: Tree algorithms are general and can be
used for classification, regression, ranking and other prob-
lems commonly found in the IoT setting. Even more impor-
tantly, they are ideally suited to IoT applications as they can
achieve good prediction accuracies with prediction times
and energies that are logarithmic in the number of training
points. Unfortunately, they do not directly fit on tiny IoT
devices as their space complexity is linear rather than log-
arithmic. In particular, learning shallow trees, or aggres-
sively pruning deep trees or large ensembles, to fit in just a
few KB often leads to poor prediction accuracy.

Bonsai: This paper develops a novel tree learner, called
Bonsai, designed specifically for severely resource con-
strained IoT devices based on the following contributions.
First, Bonsai learns a single, shallow, sparse tree so as to
reduce model size but with powerful nodes for accurate
prediction. Second, both internal and leaf nodes in Bonsai
make non-linear predictions. Bonsai’s overall prediction
for a point is the sum of the individual node predictions
along the path traversed by the point. Path based predic-
tion allows Bonsai to accurately learn non-linear decision
boundaries while sharing parameters along paths to further
reduce model size. Third, Bonsai learns a sparse matrix
which projects all data points into a low-dimensional space
in which the tree is learnt. This allows Bonsai to fit in a few
KB of flash. Furthermore, the sparse projection is imple-
mented in a streaming fashion thereby allowing Bonsai to
tackle IoT applications where even a single feature vector
might not fit in 2 KB of RAM. Fourth, rather than learning
the Bonsai tree node by node in a greedy fashion, all nodes
are learnt jointly, along with the sparse projection matrix,
so as to optimally allocate memory budgets to each node
while maximising prediction accuracy.

Implementation: Another contribution is an efficient im-
plementation of Bonsai which reduces its prediction costs
on the Arduino and Micro:Bit to be even lower than that of
an unoptimized linear classifier. This allows Bonsai to en-
joy the prediction accuracy of a non-linear classifier while
paying less than linear costs. This paper does not focus on
the system and implementation details due to space limita-
tions but the interested reader is referred to the publically
available source code (BonsaiCode).

Results: These contributions allow Bonsai to make pre-
dictions in milliseconds even on slow microcontrollers, fit
in a few KB of flash and extend battery life beyond all
other algorithms. Furthermore, it is demonstrated on multi-
ple benchmark datasets that Bonsai’s prediction accuracies
can approach those of uncompressed kNN classifiers, RBF-
SVMs, single hidden layer neural networks and gradient
boosted decision tree ensembles whose models might take
many MB of RAM. It is also demonstrated that Bonsai’s
prediction accuracies for a given model size can be as much

as 30% higher than state-of-the-art methods for resource-
efficient machine learning. Finally, Bonsai is shown to gen-
eralize to other resource constrained settings beyond IoT by
producing significantly better search results than Bing’s L3
ranker when the model size is restricted to 300 bytes.

2. Related Work
The literature on resource-efficient machine learning is vast
and specialized solutions have been developed for reduc-
ing the prediction costs of kNN algorithms (Kusner et al.,
2014b; Wang et al., 2016), SVMs (Hsieh et al., 2014; Jose
et al., 2013; Le et al., 2013; Li et al., 2016), deep learn-
ing (Iandola et al., 2016; Han et al., 2016; Yang et al., 2015;
Denton et al., 2014; Wu et al., 2016; Rastegari et al., 2016;
Hubara et al., 2016; Shankar et al., 2016; Ioannou et al.,
2016a), model compression (Bucilua et al., 2006; Ba &
Caruana, 2014), feature selection (Kusner et al., 2014a; Xu
et al., 2013; 2012; Nan et al., 2015; Wang et al., 2015) and
applications such as face detection (Viola & Jones, 2004).

Resource-efficient tree classifiers are particularly germane
to this paper. The standard approach is to greedily grow
the decision tree ensemble node by node until the predic-
tion budget is exhausted. A popular alternative is to first
learn the random forest or gradient boosted decision tree
ensemble to maximize prediction accuracy and then use
pruning techniques to meet the budget constraints (Duda
et al., 2002; Dekel et al., 2016; Nan et al., 2016; Li, 2001;
Breiman et al., 1984; Zhang & Huei-chuen, 2005; Sherali
et al., 2009; Kulkarni & Sinha, 2012; Rokach & Maimon,
2014; Joly et al., 2012). Unfortunately, such techniques are
fundamentally limited as they attempt to approximate com-
plex non-linear decision boundaries using a small number
of axis-aligned hyperplanes. This can lead to poor predic-
tion accuracies as observed in Section 5.

Tree models have also been developed to learn more com-
plex decision boundaries by moving away from learning
axis-aligned hyperplanes at internal nodes and constant
predictors at the leaves. For instance, (Breiman, 2001;
Murthy et al., 1994; Kontschieder et al., 2015) learnt more
powerful branching functions at internal nodes based on
oblique cuts and full hyperplanes while (Utgoff, 1989;
Hsieh et al., 2014) learnt more powerful leaf node predic-
tors based on linear classifiers, kernelized SVMs, etc. Bon-
sai achieves better budget utilization than such models by
learning shorter trees, typically depth 4 or lower, and by
sharing the parameters between leaf node predictors.

The models closest to Bonsai are Decision Jungles (Shot-
ton et al., 2013) and LDKL (Jose et al., 2013). Bon-
sai improves upon LDKL by learning its tree in a low-
dimensional space, learning sparse branching functions and
predictors and generalizing the model to multi-class classi-
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fication, ranking, etc. Decision Jungles are similar to Bon-
sai in that they share node parameters using a DAG struc-
ture. Unfortunately, Decision Jungles need to learn deep
tree ensembles with many nodes as they use weak constant
classifiers as leaf node predictors. Bonsai can have lower
model size and higher accuracy as it learns a single, shallow
tree in a low-dimensional space with non-linear predictors.

Note that while tree based cost-sensitive feature selection
methods are not directly relevant, their performance is nev-
ertheless empirically compared to Bonsai’s in Section 5.

3. The Bonsai Model for Efficient Prediction
Overview: Bonsai learns a single, shallow sparse tree
whose predictions for a point x are given by

y(x) =
∑
k

Ik(x)W
>
k Zx ◦ tanh(σV>k Zx) (1)

where ◦ denotes the elementwise Hadamard product, σ is a
user tunable hyper-parameter, Z is a sparse projection ma-
trix and Bonsai’s tree is parameterized by Ik, Wk and Vk

where Ik(x) is an indicator function taking the value 1 if
node k lies along the path traversed by x and 0 otherwise
and Wk and Vk are sparse predictors learnt at node k. The
prediction function is designed to minimize the model size,
prediction time and prediction energy, while maintaining
prediction accuracy, even at the expense of increased train-
ing costs. The function is also designed to minimize the
working memory required as the Uno provides only 2 KB
of writeable memory for storing the feature vector, pro-
gramme variables and intermediate computations.

Streaming sparse projection: Bonsai projects each
D-dimensional input feature vector x into a low D̂-
dimensional space using a learnt sparse projection matrix
ZD̂×D. Bonsai uses fixed point arithmetic for all math
computation, including Zx, when implemented on the IoT
device so as to avoid floating point overheads. Note that D̂
could be as low as 5 for many binary classification applica-
tions. This has the following advantages. First, it reduces
Bonsai’s model size as all tree parameters are now learnt
in the low-dimensional space. Second, when D̂ is small,
Zx could be stored directly in the microcontroller’s regis-
ters thereby reducing prediction time and energy. Third,
learning the projection matrix jointly with the tree param-
eters improves prediction accuracy. Fourth, since Zx can
be computed in a streaming fashion, this allows Bonsai to
tackle IoT applications where even a single feature vector
cannot fit in 2 KB of SRAM. This is critical since stan-
dard tree implementations are unable to handle a stream-
ing feature vector – the entire feature vector needs to be
streamed for the root node to determine whether to pass the
point down to the left or right child and therefore the vector
is unavailable for processing at subsequent nodes. Some

implementations work around this limitation by simultane-
ously evaluating the branching function at all nodes as the
vector is streamed but this increases the prediction costs
from logarithmic to linear which might not be acceptable.

Branching function at internal nodes: Bonsai computes
Ik by learning a sparse vector θ at each internal node such
that the sign of θ>Zx determines whether point x should
be branched to the node’s left or right child. Using more
powerful branching functions than the axis-aligned hyper-
planes in standard decision trees allows Bonsai to learn
shallow trees which can fit in a few KB. Of course, this
is not a novel idea, and is insufficient in itself to allow a
single, shallow decision tree to make accurate predictions.

Node predictors: Decision trees, random forests and
boosted tree ensembles are limited to making constant pre-
dictions at just the leaf nodes. This restricts their predic-
tion accuracy when there are very few leaves. In contrast,
for a multi-class, multi-label or regression problem with L
targets, Bonsai learns matrices WD̂×L and VD̂×L at both
leaf and internal nodes so that each node predicts the vec-
tor W>Zx◦tanh(σV>Zx). Note that the functional form
of the node predictor was chosen as it was found to work
well empirically (other forms could be chosen if found to
be more appropriate). Further note that W and V will re-
duce to vectors for binary classification, ranking and single-
target regression. Bonsai’s overall predicted vector is given
by (1) and is the sum of the individual vectors predicted
by the nodes lying along the path traversed by x. This al-
lows Bonsai to accurately learn non-linear decision bound-
aries using shallow trees with just a few nodes. Further-
more, path based prediction allows parameter sharing and
therefore reduces model size as compared to putting inde-
pendent classifiers of at least equal complexity in the leaf
nodes alone. For instance, a depth 4 Bonsai tree with 15
internal and 16 leaf nodes stores 31 W and 31 V matrices
with overall predictions being the sum of 4 terms depend-
ing on the path taken. If parameters were not shared and
each leaf node independently learnt 4 W and 4 V matrices
to make predictions of at least equal complexity, then a to-
tal of 16× 4 = 64 W and 64 V matrices would need to be
stored thereby exceeding the memory budget. As an imple-
mentation detail, note that Bonsai uses the approximation
tanh(x) ≈ x if |x| < 1 and signum(x) otherwise in order
to avoid floating point computation.

4. Training Bonsai
Notation: Bonsai learns a balanced tree of user specified
height h with 2h − 1 internal nodes and 2h leaf nodes. The
parameters that need to be learnt include: (a) Z: the sparse
projection matrix; (b) θ = [θ1, . . . ,θ2h−1]: the parame-
ters of the branching function at each internal node; and (c)
W = [W1, . . . ,W2h+1−1] and V = [V1, . . . ,V2h+1−1]:
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the predictor parameters at each node. Let Θ = [θ,W,V]
denote a matrix obtained by stacking all the parameters to-
gether except for Z. Finally, it is assumed that N train-
ing points {(xi, y

¯i
)Ni=1} have been provided and that bud-

get constraints BZ and BΘ on the projection matrix and
tree parameters have been specified depending on the flash
memory available on the IoT device.

Optimization problem: Bonsai’s parameters are learnt as

min
Z,Θ

J (Z,Θ) =
λθ
2

Tr(θ>θ) +
λW

2
Tr(W>W)

+
λV

2
Tr(V>V) +

λZ

2
Tr(ZZ>)

+
1

N

N∑
i=1

L(xi,yi,y(xi);Z,Θ)

s. t. ‖Z‖0 ≤ BZ, ‖Θ‖0 ≤ BΘ

(2)

where y(xi) is Bonsai’s prediction for point xi as given
in (1) and L is an appropriately chosen loss function for
classification, regression, ranking, etc. For instance, L =
max(0, 1 − yiy(xi)) with yi ∈ {−1,+1} for binary clas-
sification and L = maxy∈Y((yi − y)>y(xi) + 1 − y>i y)
with Y = {y|y ∈ {0, 1}L,1>y = 1} and yi ∈ Y for
multi-class classification. It is worth emphasizing that the
optimization problem is formulated such that all parame-
ters are learnt jointly subject to the budget constraints. This
leads to significantly higher prediction accuracies than if Z
were first learnt independently, say using sparse PCA, and
then Θ was learnt afterwards (see Section 5).

Algorithm: Optimizing (2) over the space of all balanced
trees of height h is a hard, non-convex problem. Tree grow-
ing algorithms typically optimize such problems by greed-
ily growing the tree a node at a time starting from the root.
Unfortunately, this leads to a suboptimal utilization of the
memory budget in Bonsai’s case as it is not clear a priori
how much budget to allocate to each node. For instance,
it is not apparent whether the budget should be distributed
equally between all nodes or whether the root node should
be allocated more budget and, if so, by how much.

Algorithm - Joint learning of nodes: Bonsai therefore
learns all node parameters jointly with the memory bud-
get for each node being determined automatically as part
of the optimization. The difficulty with joint learning is
that a node’s ancestors need to be learnt before it can
be determined which training points will reach the node.
Furthermore, the path traversed by a training point is a
sharply discontinuous function of θ and Z thereby ren-
dering gradient based techniques ineffective. Various ap-
proaches have been proposed in the literature for tackling
these difficulties (Jose et al., 2013; Kontschieder et al.,
2015; Norouzi et al., 2015; Xu et al., 2013; Ioannou et al.,
2016b). Bonsai follows the approach of (Jose et al., 2013)

and smooths the objective function by initially allowing
points to traverse multiple paths in the tree. In particu-
lar, the indicator function Ik(x) is relaxed to Ik>1(x) =
1
2Ij(x)

(
1 + (−1)k−2j tanh(σIθ>j Zx)

)
where j =

⌊
k
2

⌋
is

k’s parent node in a balanced tree, I1(x) = 1 and the pa-
rameter σI controls the fidelity of the approximation. Gra-
dients can now be computed as

∇θl
Ik(x) = σIIk(x)P

l
k(x)Zx (3)

∇ZIk(x) =
∑
l

σIIk(x)P
l
k(x)θlx

> (4)

where P l
k(x) = δlk((−1)Ck(l) − tanh(σIθ

>
l Zx)), δlk = 1

if node l is an ancestor of node k and 0 otherwise and
Ck(l) = 1 if node k is in the right subtree of node l and 0
otherwise. Of course, allowing a point to traverse multiple
paths increases prediction costs. Some approaches there-
fore allow multiple paths during training but select a sin-
gle path during prediction (Xu et al., 2013; Ioannou et al.,
2016b). At each node, a point x is greedily branched to the
child node having the greatest Ik(x). Unfortunately, this
can lead to a drop in accuracy as the model learnt during
training is different from the one used for prediction.

Bonsai therefore follows an alternative strategy where σI
is tuned during training to ensure that points gradually start
traversing at most a single path as optimization progresses.
In particular, σI is initialized to a small value, such as 0.01,
so as to ensure that tanh values are not saturated. As opti-
mization progresses, σI is gradually increased so that tanh
tends to the signum function and Ik(x) goes back to being
an indicator function by the time convergence is reached.
This allows Bonsai to directly use the learnt model for pre-
diction and was found to empirically lead to good results.

Algorithm - Gradient descent with iterative hard
thresholding: Various gradient based approaches, includ-
ing those based on alternating minimization, were tried for
optimizing (2). A gradient descent based algorithm with
iterative hard thresholding (IHT) was empirically found
to yield the best solutions. Gradient descent was chosen
over stochastic gradient descent as it removed the burden of
step size tuning, led to slightly better prediction accuracies
while keeping training time acceptable. For instance, train-
ing times range from 2 minutes for USPS-2 to 15 minutes
for MNIST-2 on a single core of a laptop with an Intel Core
i7-3667U processor at 2 GHz with 8 GB of RAM. Stochas-
tic gradient descent could be utilized for larger datasets or
if training costs also needed to be minimized. The algo-
rithm proceeds iteratively based on the following gradient
and IHT steps in each iteration.

Algorithm - Gradient step: Given feasible Zt and Θt

with a feasible allocation of the memory budget to various
nodes at time step t, Bonsai applies M updates of gradi-
ent descent keeping the support of Z and Θ fixed so that
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the budget allocations to nodes remain unchanged and the
memory constraints are never violated. The update equa-
tions at each time step are

Zt+1 = Zt − ηtZ∇ZJ (Zt,Θt)|supp(Zt)
(5)

Θt+1 = Θt − ηtΘ∇ΘJ (Zt,Θt)|supp(Θt)
(6)

with step sizes ηZ and ηΘ being chosen according to the
Armijo rule and |supp

indicating that the gradient was be-
ing computed only for the non-zero entries. M = 5 and
M = 15 iterations were found to work well for binary and
multi-class classification respectively. This allows Bonsai
to decrease the objective function value without changing
the budget allocation of various nodes.

Algorithm - IHT step: In order to improve the budget allo-
cation, Bonsai performs a single gradient update with unre-
stricted support. This violates the memory constraints and
Bonsai therefore projects the solution onto the feasible set
by retaining the parameters with the largest magnitudes

Zt+M+1 = TBZ
(Zt+M − ηt+M

Z ∇ZJ (Zt+M ,Θt+M ))

Θt+M+1 = TBΘ
(Θt+M − ηt+M

Θ ∇ΘJ (Zt+M ,Θt+M ))

where Tk is an operator returning k of its arguments which
have the largest magnitudes while setting the rest to 0. This
allows Bonsai to move to another feasible solution with
even lower objective function value by improving the mem-
ory budget distribution across nodes.

Algorithm - Convergence: In general, projected gradient
descent based algorithms might oscillate for non-convex
problems. However, (Blumensath & Davies, 2008) prove
that for smooth objective functions, gradient descent algo-
rithms with IHT do indeed converge to a saddle point solu-
tion. Furthermore, if the objective function satisfies the Re-
stricted Strong Convexity (RSC) property in a local region,
then projected gradient descent with IHT will converge to
the local minimum in that region (Jain et al., 2014). In prac-
tice, it was observed that the algorithm generally converged
to a good solution soon and therefore was terminated after
T = 300 iterations were reached.

Algorithm - Initialization & re-training: Z0 and Θ0

could be set randomly. Prediction accuracy gains of up to
1.5% could be observed if Bonsai was initialized by taking
T steps of gradient descent without any budget constraints
followed by a hard thresholding step. Further gains of 1.5%
could be observed by taking another T steps of gradient de-
scent with fixed support after termination. This helped in
fine-tuning Bonsai’s parameters once the memory budget
allocation had been finalized across the tree nodes.

More details about the optimization can be found in the
supplementary material by clicking here.

5. Experiments
Datasets: Experiments were carried out on a number of
publically available binary and multi-class datasets includ-
ing Chars4K (Campos et al., 2009), CIFAR10 (Krizhevsky,
2009), MNIST (LeCun et al., 1998), WARD (Yang et al.,
2009), USPS (Hull, 1994), Eye (Kasprowski & Ober,
2004), RTWhale (RTW), and CUReT (Varma & Zisser-
man, 2005). Binary versions of these datasets were down-
loaded from (Jose et al., 2013). Bing’s L3 Ranking is a pro-
prietary dataset where ground truth annotations specifying
the relevance of query-document pairs have been provided
on a scale of 0-4. Table 1 lists these datasets’ statistics.

Baseline algorithms: Bonsai was compared to state-
of-the-art algorithms for resource-efficient ML spanning
tree, kNN, SVM and single hidden layer neural network
algorithms including Decision Jungles (Shotton et al.,
2013; Pohlen), Feature Budgeted Random Forests (Bud-
getRF) (Nan et al., 2015), Gradient Boosted Decision Tree
Ensemble Pruning (Tree Pruning) (Dekel et al., 2016),
Pruned Random Forests (BudgetPrune) (Nan et al., 2016),
Local Deep Kernel Learning (LDKL) (Jose et al., 2013),
Neural Network Pruning (NeuralNet Pruning) (Han et al.,
2016) and Stochastic Neighbor Compression (SNC) (Kus-
ner et al., 2014b). The differences between some of these
algorithms and Bonsai is briefly discussed in Section 2.
Publically available implementations of all algorithms were
used taking care to ensure that published results could be
reproduced thereby verifying the code and hyper-parameter
settings. Note that Bonsai is not compared to deep convo-
lutional neural networks as they have not yet been demon-
strated to fit on such tiny IoT devices. In particular, con-
volutions are computationally expensive, drain batteries
and produce intermediate results which do not fit in 2 KB
RAM. Implementing them on tiny microcontrollers is still

Table 1: Dataset statistics - the number after the dataset
name represents the number of classes so as to distinguish
between the binary and multi-class versions of the dataset.

Dataset # Train # Test # Features
L3 Ranking 704,841 123,268 50
Chars4K-2 4,397 1,886 400
CIFAR10-2 50,000 10,000 400
WARD-2 4,503 1,931 1,000
USPS-2 7,291 2,007 256
MNIST-2 60,000 10,000 784
Eye-2 456 196 8,192
RTWhale-2 5,265 5,264 2,000
CUReT-61 4,204 1,403 610
MNIST-10 60,000 10,000 784
Chars4K-62 4,397 1,886 400

http://www.manikvarma.org/pubs/Kumar17-supp.pdf
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Figure 1: Multi-class & Ranking Datasets - Bonsai dominates over the state-of-the-art resource-efficient ML algorithms
by as much as 30.7% on Chars4K-62 and 28.9% on CUReT-61. BonsaiOpt’s gains are even higher. Some methods do not
appear on the graphs as their accuracies were not high enough to fall within the y-axis limits. Bonsai also dominates Bing’s
FastRank L3 ranker. Figure best viewed magnified.
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Figure 2: Binary Datasets - Bonsai dominates over state-of-the-art resource-efficient ML algorithms with gains of 8.6% on
RTWhale-2 and 8.2% on Eye-2 in the 0-2 KB range. BonsaiOpt’s gains are even higher. Figure best viewed magnified.

an open research problem. Bonsai’s performance was how-
ever compared to that of uncompressed single hidden layer
neural networks without convolutions, Gradient Boosted
Decision Trees (GBDT), kNN classifiers and RBF-SVMs.

Hyper-parameters: The publically provided training set
for each dataset was subdivided into 80% for training and
20% for validation. The hyper-parameters of all algo-
rithms were tuned on the validation set. Once the hyper-
parameters had been fixed, the algorithms were trained on
the full training set and results were reported on the publi-
cally available test set.

Evaluation: IoT applications would like to maximize their
prediction accuracies using the best model that might fit
within the available flash memory while minimizing their
prediction times and energies. Accuracies of all algorithms
are therefore presented for a range of model sizes. Some

of the algorithms were implemented on the Uno and their
prediction times and energies were compared to Bonsai’s.

Implementation: Results are presented throughout for an
unoptimized implementation of Bonsai for a fair compar-
ison with the other methods. For instance, 4 bytes were
used to store floating point numbers for all algorithms, all
floating point operations were simulated in software, etc.
However, results are also presented for an optimized im-
plementation of Bonsai, called BonsaiOpt, where numbers
were stored in a 1 byte fixed point format, tanh was ap-
proximated, all floating point operations were avoided, etc.

Comparison to uncompressed methods: The results in
Tables 2 and 3 demonstrate that Bonsai’s prediction ac-
curacies could compete with those of uncompressed kNN,
GBDT, RBF-SVM and neural network classifiers with sig-
nificantly larger model sizes. On RTWhale-2, Chars4K-62
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Table 2: Binary Datasets - Bonsai can sometimes outperform uncompressed methods with significantly larger models.

Dataset Bonsai (%) GBDT (%) kNN (%) RBF-SVM (%) NeuralNet (%)2KB 16KB
RTWhale-2 61.74 61.74 56.95 (1172 KB) 51.75 ( 41143 KB) 53.82 (39905 KB) 52.26 (3910 KB)
Chars4K-2 74.28 76.67 72.38 ( 625 KB) 67.28 ( 6870 KB) 75.60 ( 6062 KB) 72.53 ( 314 KB)
Eye-2 88.26 90.31 83.16 ( 234 KB) 76.02 ( 14592 KB) 93.88 ( 7937 KB) 90.31 (6402 KB)
WARD-2 95.85 96.89 97.77 (1172 KB) 94.98 ( 17590 KB) 96.42 ( 7222 KB) 92.75 (3914 KB)
CIFAR10-2 73.02 76.64 77.19 (1562 KB) 73.70 ( 78125 KB) 81.68 (63934 KB) 75.90 ( 314 KB)
USPS-2 94.42 95.72 95.91 ( 234 KB) 96.70 ( 7291 KB) 96.86 ( 1660 KB) 95.86 ( 504 KB)
MNIST-2 94.38 96.47 98.36 (1172 KB) 96.90 (183750 KB) 98.08 (35159 KB) 98.33 (3070 KB)

Table 3: Multi-class Datasets - Bonsai can sometimes outperform uncompressed methods with significantly larger models.

Dataset Bonsai (%) GBDT (%) kNN (%) RBF-SVM (%) NeuralNet (%)
Chars4K-62 58.59 (101 KB) 43.34 (9687 KB) 39.32 ( 6833 KB) 48.04 ( 7738 KB) 55.35 (1266 KB)
CUReT-61 95.23 (115 KB) 90.81 (2383 KB) 89.81 ( 10037 KB) 97.43 ( 8941 KB) 95.51 (1310 KB)
MNIST-10 97.01 ( 84 KB) 97.90 (5859 KB) 94.34 (183984 KB) 97.30 (39084 KB) 98.44 (4652 KB)

Table 4: The effect of Bonsai’s components - Performing
sparse PCA independently before training is not as effec-
tive as Bonsai’s joint optimization of the projection matrix.

Method Accuracy
Model

(%)
size

(KB)
Bonsai with random initialization 74.12 16and without re-training
Bonsai without re-training 75.19 16
Bonsai 76.67 16
Bonsai with sparse PCA 58.32 16
Tree Pruning with sparse PCA 63.57 16
Decision Jungle with sparse PCA 61.67 16
RBF-SVM with sparse PCA 71.10 136

and Chars4K-2, Bonsai’s accuracies were higher than all
other methods by 4.8%, 3.2% and 1.1% while its model
size was lower by 977x, 13x and 157x respectively. Bon-
sai’s accuracies were lower by 1.0% - 5.0% on the other
datasets with model size gains varying from 55x to 3996x.
Note that, while BonsaiOpt’s accuracies were similar to
Bonsai’s, its model sizes would be even lower.

Comparison to resource-efficient ML algorithms: The
results in Figures 2 and 3 demonstrate that Bonsai’s predic-
tion accuracies dominate those of state-of-the-art resource-
efficient ML algorithms for all model sizes. In fact, Bonsai
could outperform all other algorithms, including tree algo-
rithms by as much as 30.7% on Char4K-62 and 28.9% on
CUReT-61 for a given model size. For binary datasets, the
largest gains were observed in the 0-2 KB regime includ-
ing 8.6% on RTWhale-2 and 8.2% on Eye-2. Of course,
BonsaiOpt’s gains were even higher on both binary and

multi-class datasets. These results validate Bonsai’s model,
showing it to be accurate and compact and demonstrate that
Bonsai’s optimization algorithm yields good solutions.

L3 ranking: Bonsai was shown to generalise to other
resource-constrained scenarios beyond IoT by ranking doc-
uments in response to queries on Bing. Bonsai was trained
by replacing the classification gradients with rank-sensitive
gradients approximating nDCG (Burges, 2010). As can be
seen in Figure 1, using a 300 byte model, Bonsai could
outperform Bing’s FastRank L3 ranker by 8.3%. In fact,
Bonsai could achieve almost the same ranking accuracy as
FastRank but with a 660x smaller model.

Prediction on the Arduino Uno: Table 5 presents the pre-
diction costs per test point for the highest accuracy models
with size less than 2 KB for a few methods that were imple-
mented on the Arduino Uno. The BonsaiOpt model was a
more efficient implementation of the chosen Bonsai model.
The results indicate that BonsaiOpt could be significantly
more accurate, faster and energy-efficient as compared to
other algorithms including an unoptimized linear classifier.
Transmitting the test feature vector to the cloud, whenever
possible, and running uncompressed GBDT might some-
times yield higher accuracies but would also consume 47x-
497x more energy which might not be feasible.

Bonsai’s components: The contribution of Bonsai’s com-
ponents on the Chars4K-2 dataset is presented in Ta-
ble 4. Modest reductions in accuracy were observed with-
out proper initialization or re-training. Learning a pro-
jection matrix independently via sparse PCA before train-
ing reduced accuracy significantly as compared to Bonsai’s
joint training of the projection matrix and tree parameters.
Other tree and uncompressed methods also did not benefit
much by training in the sparse PCA space.
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Table 5: Prediction costs per test point on the Arduino Uno with the highest accuracy model of size less than 2 KB – The
BonsaiOpt model was a more efficient implementation of the chosen Bonsai model. BonsaiOpt was significantly more
accurate, faster and energy-efficient than all other methods. Transmitting the test feature vector to the cloud, whenever
possible, and running uncompressed GBDT might sometimes yield higher accuracies but would also consume 47x-497x
more energy which might not be feasible in many IoT applications.

Dataset BonsaiOpt Bonsai Linear LDKL NeuralNet Cloud GBDTPruning

Eye-2

Model Size (KB) 0.30 1.20 2.00 1.88 1.96 234.00
Accuracy (%) 88.78 88.26 80.10 66.33 80.45 83.16

Prediction Time (ms) 10.75 12.26 15.13 15.80 15.48 2186.59
Prediction Energy (mJ) 2.64 3.01 3.72 3.89 3.81 1311.95

RTWhale-2

Model Size (KB) 0.33 1.32 0.86 1.00 1.17 1172.00
Accuracy (%) 60.94 61.74 50.76 50.24 52.44 56.95

Prediction Time (ms) 5.24 7.11 4.68 6.16 8.86 521.27
Prediction Energy (mJ) 1.29 1.75 1.15 1.52 2.18 312.76

Chars4K-2

Model Size (KB) 0.50 2.00 1.56 1.95 1.96 625.00
Accuracy (%) 74.71 74.28 51.06 67.29 63.90 72.38

Prediction Time (ms) 4.21 8.55 7.39 8.61 14.09 160.40
Prediction Energy (mJ) 1.03 2.10 1.81 2.13 3.48 63.52

WARD-2

Model Size (KB) 0.47 1.86 1.99 1.99 1.91 1172.00
Accuracy (%) 95.70 95.86 87.57 89.64 91.76 97.77

Prediction Time (ms) 4.85 8.13 7.48 9.99 14.22 293.13
Prediction Energy (mJ) 1.18 1.99 1.84 2.47 3.49 116.08

CIFAR10-2

Model Size (KB) 0.50 1.98 1.56 1.88 1.96 1562.00
Accuracy (%) 73.05 73.02 69.11 67.54 67.01 77.19

Prediction Time (ms) 4.55 8.16 7.73 8.12 13.87 160.40
Prediction Energy (mJ) 1.11 2.01 1.90 2.00 3.43 63.52

USPS-2

Model Size (KB) 0.50 2.00 1.02 1.87 2.00 234.00
Accuracy (%) 94.42 94.42 83.11 91.96 88.68 95.91

Prediction Time (ms) 2.93 5.57 4.15 5.59 9.51 83.45
Prediction Energy (mJ) 0.71 1.37 1.02 1.37 2.33 33.05

MNIST-2

Model Size (KB) 0.49 1.96 1.93 1.87 1.90 1172.00
Accuracy (%) 94.28 94.38 86.16 87.01 88.65 98.36

Prediction Time (ms) 5.17 8.90 6.72 8.72 14.67 264.96
Prediction Energy (mJ) 1.27 2.18 1.65 2.16 3.59 104.92

6. Conclusions
This paper proposed an alternative IoT paradigm, centric
to the device rather than the cloud, where ML models run
on tiny IoT devices without necessarily connecting to the
cloud thereby engendering local decision making capabili-
ties. The Bonsai tree learner was developed towards this
end and demonstrated to be fast, accurate, compact and
energy-efficient at prediction time. Bonsai was deployed
on the Arduino Uno board as it could fit in a few KB of
flash, required only 70 bytes of writable memory for bi-
nary classification and 500 bytes for a 62 class problem,
handled streaming features and made predictions in mil-
liseconds taking only milliJoules of energy. Bonsai’s pre-
diction accuracies could be as much as 30% higher as com-

pared to state-of-the-art resource-efficient ML algorithms
for a fixed model size and could even approach and outper-
form those of uncompressed models taking many MB of
RAM. Bonsai achieved these gains by developing a novel
model based on a single, shallow, sparse tree learnt in a
low-dimensional space. Predictions made by both inter-
nal and leaf nodes and the sharing of parameters along
paths allowed Bonsai to learn complex non-linear decision
boundaries using a compact representation. Bonsai’s code
is available from (BonsaiCode) and is part of Microsoft’s
ELL machine learning compiler for IoT devices.
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