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Abstract
In this work we introduce a conditional acceler-
ated lazy stochastic gradient descent algorithm
with optimal number of calls to a stochastic first-
order oracle and convergence rate O( 1

"

2 ) improv-
ing over the projection-free, Online Frank-Wolfe
based stochastic gradient descent of (Hazan and
Kale, 2012) with convergence rate O( 1

"

4 ).

1. Introduction
The conditional gradient method (also known as: Frank-
Wolfe algorithm) proposed in (Frank and Wolfe, 1956),
gained much popularity in recent years due to its simple
projection-free scheme and fast practical convergence rates.
We consider the basic convex programming (CP) problem

f⇤ := min
x2X

f(x), (1)

where X ✓ Rn is a closed convex set and f : X ! R is a
smooth convex function such that 9L > 0,

kf 0(x)� f 0(y)k⇤  Lkx� yk, 8x, y 2 X. (2)

The classic conditional gradient (CG) method solves (1) iter-
atively by minimizing a series of linear approximations of f
over the feasible set X . More specifically, given x

k�1 2 X
at the k-th iteration, it updates x

k

according to the following
steps:

1) Call the first-order (FO) oracle to compute
(f(x

k�1), f
0(x

k�1)) and set p
k

= f 0(x
k�1).

2) Call the linear optimization (LO) oracle to compute

y
k

2 argmin
x2X

hp
k

, xi. (3)

3) Set x
k

= (1� �
k

)x
k�1 + �

k

y
k

for some �
k

2 [0, 1].
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Compared to most other first-order methods, such as e.g.,
gradient descent algorithms and accelerated gradient algo-
rithms (Nesterov, 1983; 2004), the CG method is compu-
tationally cheaper in some cases, since it only requires the
solution of a linear optimization subproblem (3) rather than
an often costly projection onto the feasible region X .

There has been extensive and fruitful research on the gen-
eral class of linear-optimization-based convex program-
ming (LCP) methods (which covers the CG method and
its variants) and their application in machine learning (e.g.,
(Ahipasaoglu and Todd, 2013; Bach et al., 2012; Beck and
Teboulle, 2004; Cox et al., 2013; Clarkson, 2010; Freund
and Grigas, 2013; Hazan, 2008; Harchaoui et al., 2012;
Jaggi, 2011; 2013; Jaggi and Sulovský, 2010; Luss and
Teboulle, 2013; Shen et al., 2012; Hazan and Kale, 2012;
Lan, 2013; Lan and Zhou, 2014; Braun et al., 2016)). It
should be noted that even the computational cost for LO
oracle to solve the linear optimization subproblem (3) is
high for some complex feasible regions. Recently, several
approaches have been considered to address this issue. Jaggi
demonstrated practical speed up for the CG method by ap-
proximately solving (3) in (Jaggi, 2013). Braun, Pokutta,
and Zink in (Braun et al., 2016) proposed a class of mod-
ified CG methods, namely the lazy conditional gradient
(LCG) algorithms, which calls a weak separation oracle
rather than solving the linear subproblem (3) in the classical
CG method. In fact, the weak separation oracle is com-
putationally more efficient than approximate minimization
used in (Jaggi, 2013), at the expense of not providing any
guarantee for function value improvement with respect to
(3). Furthermore, as shown in (Jaggi, 2013; Lan, 2013), the
total number of iterations for the LCP methods to find an
✏-solution of (1) (i.e., a point x̄ 2 X , s.t. f(x̄) � f⇤  ✏)
cannot be smaller than O(1/✏), which is not improvable
even when the objective function f is strongly convex.
Improved complexity results can only be obtained under
stronger assumptions on the LO oracle or the feasible set
(see, e.g., (Garber and Hazan, 2013; Lan, 2013)). However,
the O(1/✏) bound does not preclude the existence of more
efficient LCP algorithms for solving (1). Lan and Zhou in
(Lan and Zhou, 2014) proposed a class of conditional gra-
dient sliding methods (CGS), which significantly improve
the complexity bounds in terms of the number of gradient
evaluations while maintaining optimal complexity bounds
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for the LO oracle calls required by the LCP methods.

Inspired by (Braun et al., 2016) and (Lan and Zhou, 2014),
in this paper we focus on a class of modified LCP methods
that require only improving solutions for a certain sepa-
ration problem rather than solving the linear optimization
subproblem (3) explicitly through LO oracle calls while
simultaneously minimizing the number of gradient evalua-
tions when performing weak separation over the feasible set
X . At first these two objectives seem to be incompatible as
(Braun et al., 2016) give up the dual guarantee to simplify
the oracle, while the dual guarantee of CG iterations is at the
core of the analysis in (Lan and Zhou, 2014). We overcome
this impasse by carefully modifying both techniques.

It should be mentioned that Hazan and Kale in (Hazan
and Kale, 2012) proposed the online Frank-Wolfe (OFW)
algorithm, which obtains O(1/✏4) rate of convergence for
stochastic problems. Indeed, if we consider the objective
function f(x) := E[F (x, ⇠)] for stochastic optimization,
the OFW method can be applied to solve (1) by viewing the
iteratively observed function f

t

as the current realization of
the true objective function f , i.e., f

t

(·) = F (·, ⇠
t

). Without
re-evaluating the (sub)gradients at the updated points, the
OFW obtains O(T�1/4) bound for any (smooth or non-
smooth) objective functions (see Theorem 4.4 in (Hazan and
Kale, 2012)), which implies O(1/✏4) rate of convergence
in terms of the number of (sub)gradient evaluations for
stochastic optimization. However, we can show that our
proposed algorithm obtains O(1/✏) (resp., O(1/✏2)) rate
of convergence for smooth (resp., non-smooth) stochastic
problems, which is much better than the convergence rate of
the OFW method. We would like to stress that the stochastic
optimization bound in (Hazan and Kale, 2012, Theorem 4.1)
which gives a guarantee of O(1/✏2), requires to re-evaluate
all gradients at the current iterate and as such the number
of gradient evaluations required grows quadratically in t.
Moreover, Hazan and Luo (2016) proposed two methods for
solving the special case of Problem (1) of the form

min
x2X

f(x) = min
x2X

1

m

m

X

i=1

f
i

(x),

which allows for a potentially smaller number of SFO eval-
uations than O(1/"2), the lower bound for the general
problem. The two methods Stochastic Variance-Reduced
Frank-Wolfe (SVRF) and Stochastic Variance-Reduced Con-
ditional Gradient Sliding (STORC) are obtained by applying
the variance reduction idea of Johnson and Zhang (2013)
and Mahdavi et al. (2013) to the CG method and the Stochas-
tic CGS method respectively. Both algorithms however need
a certain number of exact (or full) gradient evaluations lead-
ing to a potentially undesirable dependence on the number
of examples m.

Contributions

Our main contributions can be briefly summarized as fol-
lows. We consider stochastic smooth optimization, where
we have only access unbiased estimators of the gradients of
f via a stochastic first-order (SFO) oracle. By incorporat-
ing a modified LCG procedure (Braun et al., 2016) into a
modified CGS method (Lan and Zhou, 2014) we obtain a
new conditional accelerated lazy stochastic gradient descent
algorithm (CALSGD) and we show that the number of calls
to the weak separation oracle can be optimally bounded by
O(1/✏), while the optimal bound of O(1/✏2) on the total
number of calls to the SFO oracle can be maintained. In
addition, if the exact gradients of f can be accessed by a
FO oracle, the latter bound can be significantly improved to
O(1/

p
✏). In order to achieve the above we will present a

modified lazy conditional gradient method, and show that
the total number of iterations (or calls to the weak separation
oracle) performed by it can be bounded by O(1/✏) under
a stronger termination criterion, i.e., the primal-dual gap
function.

We also consider strongly convex and smooth functions and
show that without enforcing any stronger assumptions on the
weak separation oracle or the feasible set X , the total num-
ber of calls to the FO (resp., SFO) oracle can be optimally
bounded by O(log 1/✏) (resp., O(1/✏)) for variants of the
proposed method to solve deterministic (resp., stochastic)
strongly convex and smooth problems. Furthermore, we
also generalize the proposed algorithms to solve an impor-
tant class of non-smooth convex programming problems
with a saddle point structure. By adaptively approximat-
ing the original non-smooth problem via a class of smooth
functions, we are able to show that the deterministic version
of CALSGD can obtain an ✏-solution within O(1/✏) num-
ber of linear operator evaluations and O(1/✏2) number of
calls to the weak separation oracle, respectively. The former
bound will increase to O(1/✏2) for non-smooth stochastic
optimization.

Finally, we demonstrate practical speed ups of CALSGD
through preliminary numerical experiments for the video
co-localization problem, the structured regression problem
and quadratic optimization over the standard spectrahedron;
an extensive study is beyond the scope of this paper and
left for future work. In all cases we report a substantial
improvements in performance.

In the main body of the paper we focus on the stochastic
smooth case; several other results and their proofs have been
relegated to the Supplementary Material.

1.1. Notation and Terminology

Let X ✓ Rn be a convex compact set, and k · k
X

be the
norm associated with the inner product in Rn. For the sake
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of simplicity, we often skip the subscript in the norm k · k
X

.
We define the diameter of the set X as

D
X

⌘ D
X,k·k := max

x,y2X

kx� yk. (4)

For a given norm k · k, we denote its conjugate by ksk⇤ =
maxkxk1hs, xi. For a linear operator A : Rn ! Rm, we
use kAk to denote its operator norm defined as kAk :=
maxkxk1 kAxk. Let f : X ! R be a convex function, we
denote its linear approximation at x by

l
f

(x; y) := f(x) + hf 0(x), y � xi. (5)

Clearly, if f satisfies (2), then

f(y)  l
f

(x; y) + L

2 ky � xk2, 8x, y 2 X. (6)

Notice that the constant L in (2) and (6) depends on k · k.
Moreover, we say f is smooth with curvature at most C, if

f(y)  l
f

(x; y) + C

2 , 8 x, y 2 X. (7)

It is clear that if X is bounded, we have C  LD2
X

. In
the following we also use R++ to denote the set of strictly
positive reals.

2. Conditional Accelerated Lazy Stochastic
Gradient Descent

We now present a new method for stochastic gradient de-
scent that is based on the stochastic conditional gradient
sliding (SCGS) method and the parameter-free lazy condi-
tional gradient (LCG) procedure from Section 2.2, which
we refer to as the Conditional Accelerated Lazy Stochastic
Gradient Descent (CALSGD) method.

We consider the stochastic optimization problem:

f⇤ := min
x2X

{f(x) = E
⇠

[F (x, ⇠)]}, (8)

where f(x) is a smooth convex function satisfying (2).

2.1. The Algorithm

Throughout this section, we assume that there exists a
stochastic first-order (SFO) oracle, which for a search point
z
k

2 X outputs a stochastic gradient F 0(z
k

, ⇠
k

), s.t.

E [F 0(z
k

, ⇠
k

)] = f 0(z
k

), (9)

E
⇥kF 0(z

k

, ⇠
k

)� f 0(z
k

)k2⇤
⇤  �2. (10)

If � = 0, the stochastic gradient F 0(z
k

, ⇠
k

) is the exact
gradient at point z

k

, i.e., F 0(z
k

, ⇠
k

) = f 0(z
k

).

Our algorithmic framework is inspired by the SCGS method
by (Lan and Zhou, 2014). However, instead of applying
the classic CG method to solve the projection subproblem

appearing in the accelerated gradient (AG) method, the
CALSGD method utilizes a modified parameter-free LCG
algorithm (see Section 2.2) to approximately solve the sub-
problem  (x) defined in (16) and skips the computations
of the stochastic gradient F 0(z, ⇠) from time to time when
performing weak separation over the feasible region X . The
main advantages of our method are that it does not solve
a traditional projection problem and achieves the optimal
bounds on the number of calls to the SFO and LOsep

X

oracles (see Oracle 1 in Subsection 2.2) for solving problem
(1)-(8). To the authors’ best knowledge, no such algorithms
have been developed before in the literature; we present the
algorithm below in Algorithm 1.

Algorithm 1 Conditional Accelerated Lazy Stochastic Gra-
dient Descent (CALSGD)

Input: Initial point x0 2 X , iteration limit N , and weak
separation oracle accuracy ↵ � 1.
Let �

k

2 R++, �k 2 [0, 1], and ⌘
k

2 R+, k = 1, 2, . . .,
be given and set y0 = x0.
for k = 1, 2, . . . , N do

z
k

= (1� �
k

)y
k�1 + �

k

x
k�1, (11)

g
k

= 1
Bk

P

Bk

j=1F
0(z

k

, ⇠
k,j

), (12)

x
k

= LCG(g
k

,�
k

, x
k�1,↵, ⌘k), (13)

y
k

= (1� �
k

)y
k�1 + �

k

x
k

, (14)

where F 0(z
k

, ⇠
k,j

), j = 1, . . . , B
k

, are stochastic gradi-
ents computed by the SFO at z

k

.
end for
Output: y

N

.

We hasten to make some observations about the CALSGD
method. Firstly, we apply mini-batches to estimate the
gradient at point z

k

, where the parameter {B
k

} denotes the
batch sizes used to compute g

k

. It can be easily seen from
(9), (10), and (12) that

E[g
k

� f 0(z
k

)] = 0 and E[kg
k

� f 0(z
k

)k2⇤]  �

2

Bk
, (15)

and hence g
k

is an unbiased estimator of f 0(z
k

). In fact,
letting S

Bk =
P

Bk

j=1(F
0(z

k

, ⇠
k,j

)� f 0(z
k

)), from (9) and
(10), by induction, we have

E
⇥kS

Bkk2⇤
⇤

= E
⇥kS

Bk�1 + F 0(z
k

, ⇠
k,Bk)� f 0(z

k

)k2⇤
⇤

= E
⇥kS

Bk�1k2⇤ + kF 0(z
k

, ⇠
k,Bk)� f 0(z

k

)k2⇤
+2hS

Bk�1, F
0(z

k

, ⇠
k,Bk)� f 0(z

k

)i]
= E

⇥kS
Bk�1k2⇤

⇤

+ E
⇥kF 0(z

k

, ⇠
k,Bk)� f 0(z

k

)k2⇤
⇤

=
P

Bk

j=1E
⇥kF 0(z

k

, ⇠
k,j

)� f 0(z
k

)k2⇤
⇤  B

k

�2,
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which together with the fact that g
k

� f 0(z
k

) =
1
Bk

P

Bk

j=1 [F 0(z
k

, ⇠
k,j

)� f 0(z
k

)] = 1
Bk

S
Bk , implies the

second relationship in (15).

Secondly, in view of the SCGS method in (Lan and Zhou,
2014), x

k

obtained in (13) should be an approximate solu-
tion to the gradient sliding subproblem

min
x2X

n

 
k

(x) := hg
k

, xi+ �k

2 kx� x
k�1k2

o

, (16)

such that for some ⌘
k

� 0 we have

h 0
k

(x
k

), x
k

� xi = hg
k

+ �
k

(x
k

� x
k�1), xk

� xi  ⌘
k

,
(17)

for all x 2 X . If we solve the subproblem (16) exactly
(i.e., ⌘

k

= 0), then CALSGD will reduce to the acceler-
ated stochastic approximation method by (Lan, 2009; 2012).
However, by employing the LCG procedure (see Proce-
dure 1 in Subsection 2.2), we only need to use a weak
separation oracle, but still maintaining the optimal bounds
on stochastic first-order oracle as in (Lan, 2009; 2012; Lan
and Zhou, 2014).

Thirdly, observe that the CALSGD method so far is concep-
tual only as we have not yet specified the LCG procedure
and the parameters {B

k

}, {�
k

}, {�
k

}, and {⌘
k

}. We will
come back to this issue after introducing the LCG procedure
and establishing its main convergence properties.

2.2. The Parameter-free Lazy Conditional Gradient
Procedure

The classical CG method is a well-known projection-free
algorithm, which requires only the solution of a linear op-
timization subproblem (3) rather than the projection over
X per iteration. Therefore, it has computational advantages
over many other first-order methods when projection over
X being costly. The LCG procedure presented in this sub-
section, a modification of the vanilla LCG method in (Braun
et al., 2016), goes several steps further than CG and even
vanilla LCG method. Firstly, it replaces LO oracle by a
weaker separation oracle LOsep, which is no harder than
linear optimization and often much simpler. Secondly, it
uses a stronger termination criterion, the Frank-Wolfe gap
(cf. (18)), than vanilla LCG method. Finally, it maintains
the same order of convergence rate as the CG and the vanilla
LCG method.

We present the LOsep oracle in Oracle 1 below.

Oracle 1 Weak Separation Oracle LOsep
P

(c, x,�,↵)

Input: c 2 Rn linear objective, x 2 P point, ↵ � 1 accu-
racy, � > 0 objective value;

Output: y 2 P vertex with either (1) cT (x � y) > �/↵,
or (2) y = argmax

y2P

cT (x� z)  �.

Observe that the oracle has two output modes. In particular,
Oracle 1 first verifies whether there exists an improving
point y 2 P with the required guarantee and if so it out-
puts this point, which we refer it as a positive call. If no
such point exists the oracle certifies this by providing the
maximizer y, which then also provides a new duality gap.
We refer to this case as a negative call. The computational
advantages of this oracle are that it can reuse previously
seen solutions y if they satisfy the improvement condition
and even if LO oracle has to be called, the optimization can
be terminated early once the improvement condition is satis-
fied. Finally, the parameter ↵ allows to only approximately
satisfy the improvement condition making separation even
easier; in our applications we set the parameter ↵ slightly
larger than 1.

We present the LCG procedure based on (Braun et al., 2016)
below. We adapted the parameter-free version to remove
any dependence on hard to estimate parameters. For any
smooth convex function �, we define its duality gap as

gap
�,X

(x) ⌘ gap
�

(x) := max
y2X

r�(x)T (x� y). (18)

Clearly, by convexity the duality gap is an upper bound on
f(x⇤) � f(x). Given any accuracy parameter ⌘ � 0, the
LCG procedure solves min

x2X

�(x) approximately with
accuracy ⌘, i.e., it outputs a point ū 2 X , s.t. gap

�

(ū)  ⌘.

Procedure 1 Parameter-free Lazy Conditional Gradients
(LCG) procedure
Input: access to gradients of smooth convex function �,

u1 2 X vertex, LOsep
X

weak linear separation oracle,
accuracy ↵ � 1, duality gap bound ⌘

Output: ū 2 X with bounded duality gap, i.e., gap
�

(ū) 
⌘

1: �0  max
u2X

r�(u1)
T (u1 � u)

2: for t = 1 to T � 1 do
3: v

t

 LOsep
X

(r�(u
t

), x
t

,�
t�1,↵)

4: if not r�(u
t

)T (u
t

� v
t

) > �
t�1/↵ then

5: if �
t�1 = ⌘ then

6: return ū = u
t

7: end if
8: else
9: �

t

 max
n

�t�1

2 , ⌘
o

{Update �
t

}
10: end if
11: �

t

 argmin �((1� �
t

)u
t

+ �
t

v
t

)
12: u

t+1  (1� �
t

)u
t

+ �
t

v
t

13: end for

The LCG procedure is a parameter-free algorithm. Note
that while line search can be expensive in general, for our
subproblems, function evaluation is very cheap. The al-
gorithm needs only one LO oracle call to estimate the
initial functional value gap at Line 1. Alternatively, this
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can be also done approximately via binary search with
LOsep. The algorithm maintains a sequence, {�

t

}, that
provides valid upper bounds for the functional value gap
at the current iterate, i.e., �(u

t

) � �⇤  2�
t�1 (see The-

orem 5.1 of (Braun et al., 2016)), and it halves the value
of �

t

only when the current oracle call is negative. Finally,
our LCG procedure exits at Line 5 whenever LOsep

X

re-
turns a negative call and �

t�1 = ⌘, which ensures that
gap

�

(ū) = max
y2X

hr�(ū), ū� yi  ⌘.

Theorem 2.1 below provides a bound for the total num-
ber of iterations (or calls to the LOsep

X

oracle) that the
LCG procedure requires to generate a point ū 2 X with
gap

�

(ū)  ⌘.

Theorem 2.1. Procedure 1 returns a point ū 2 X such that
the duality gap at point ū is bounded by ⌘, i.e., gap

�

(ū)  ⌘.
Furthermore, the total number of iterations T (and hence
LOsep

X

calls) performed by Procedure 1 is at most

T 
(

+
8↵2

C�

⌘

+ 2, ⌘ < ↵C
�

;

+ 4↵+
4↵2

C�

⌘

+ 2, ⌘ � ↵C
�

,
(19)

with  := 4↵
l

log �0
↵C�

m

+ log �0
⌘

.

Proof. From the observations above, it is clear that the du-
ality gap at the output point ū is bounded by ⌘.

Also observe that the procedure calls LOsep
X

once per
iteration. In order to demonstrate the bound in (19), we split
the LCG procedure into two phases, and bound the number
of iterations separately for each phase. Let C

�

denote the
curvature of the smooth convex function �.

We say Procedure 1 is in the first phase whenever �
t�1 > ⌘.

In view of Theorem 5.1 in (Braun et al., 2016), it is clear that
the number of iterations in the first phase can be bounded as

T1  4↵
l

log �0
↵C�

m

+
4↵2

C�

⌘

+ log �0
⌘

.

Procedure 1 enters the second phase when �
t�1  ⌘. Again

with the argumentation in Theorem 5.1 in (Braun et al.,
2016), we obtain that the total number of positive calls in
this phase can be bounded by 4↵2

C�

⌘

, if ⌘ < ↵C
�

, or by 4↵
if ⌘ � ↵C

�

. Moreover, the procedure exits whenever the
current LOsep

X

oracle call is a negative call. Hence, the
number of iterations in the second phase can be bounded by

T2 
(

4↵2
C�

⌘

+ 1, ⌘ < ↵C
�

;

4↵+ 1, ⌘ � ↵C
�

.

Thus, our bound in (19) can be obtained from the above two
bounds plus one more LO oracle call at Line 1.

2.3. The Convergence Properties of CALSGD

This subsection is devoted to establishing the main con-
vergence properties of the CALSGD method. Since the
algorithm is stochastic, we will establish the convergence
results for finding a stochastic ✏-solution, i.e., a point x̄ 2 X
s.t. E[f(x̄)� f(x⇤)]  ✏. We first state a simple technical
result from (Lan and Zhou, 2014, Lemma 2.1) that we will
use.
Lemma 2.2. Let w

t

2 (0, 1], t = 1, 2, . . ., be given. Also
let us denote

W
t

:=

(

1 t = 1

(1� w
t

)W
t�1 t � 2.

Suppose that W
t

> 0 for all t � 2 and that the sequence
{�

t

}
t�0 satisfies

�
t

 (1� w
t

)�
t�1 + B

t

, t = 1, 2, . . . .

Then for any 1  l  k, we have

�
k

W
k

⇣

1�wl
Wl

�
l�1 +

P

k

i=l

Bi
Wi

⌘

.

Theorem 2.3 describes the main convergence properties of
the CALSGD method (cf. Algorithm 1). The proof of this
theorem can be found in the Supplementary material A.
Theorem 2.3. Let �

k

be defined as follows,

�
k

:=

(

1 k = 1

�
k�1(1� �k) k � 2.

(20)

Suppose that {�
k

} and {�
k

} in the CALSGD algorithm
satisfy

�1 = 1 and L�
k

 �
k

, k � 1. (21)

a) If
�k�k

�k
� �k�1�k�1

�k�1
, k � 2, (22)

then under assumptions (9) and (10), we have

E [f(y
k

)� f(x⇤)]  �k�k

2 D2
X

+ �
k

k

X

i=1

h

⌘i�i

�i
+ �i�

2

2�iBi(�i�L�i)

i

,

(23)

where x⇤ is an arbitrary optimal solution of (8) and
D

X

is defined in (4).

b) If
�k�k

�k
 �k�1�k�1

�k�1
, k � 2, (24)

(rather than (36)) is satisfied, then the result in part a)
holds by replacing �

k

�
k

D2
X

with �1�k

kx0 � x⇤k2 in
the first term of the RHS of (37).
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c) Under the assumptions in part a) or b), the number of
inner iterations performed at the k-th outer iterations
is bounded by

T
k

=

(

+
8↵2

�kD
2
X

⌘k
+ 2, ⌘

k

< ↵�
k

D2
X

;

+ 4↵+
4↵2

�kD
2
X

⌘k
+ 2, ⌘

k

� ↵�
k

D2
X

,

(25)
with  := 4↵

l

log
�k

0

↵�kD
2
X

m

+ log
�k

0
⌘k

.

Now we provide two different sets of parameters
{�

k

}, {�
k

}, {⌘
k

}, and {B
k

}, which lead to optimal com-
plexity bounds on the number of calls to the SFO and
LOsep

X

oracles.

Corollary 2.4. Suppose that {�
k

}, {�
k

}, {⌘
k

}, and {B
k

}
in the CALSGD method are set to

�
k

= 4L
k+2 , �

k

= 3
k+2 , ⌘

k

=
LD

2
X

k(k+1) ,

and B
k

=
l

�

2(k+2)3

L

2
D

2
X

m

, k � 1, (26)

and we assume kf 0(x⇤)k is bounded for any optimal solu-
tion x⇤ of (8). Under assumptions (9) and (10), we have

E [f(y
k

)� f(x⇤)]  6LD

2
X

(k+2)2 +
9LD

2
X

2(k+1)(k+2) , 8k � 1.
(27)

As a consequence, the total number of calls to the SFO and
LOsep

X

oracles performed by the CALSGD method for
finding a stochastic ✏-solution of (1), respectively, can be
bounded by

O
⇢

q

LD

2
X

✏

+
�

2
D

2
X

✏

2

�

, (28)

and

O
⇢

q

LD

2
X

✏

log
LD

2
X

⇤✏

+
LD

2
X

✏

�

with probability 1� ⇤.

(29)

Proof. It can be easily seen from (26) that (35) holds. Also
note that by (26), we have

�
k

= 6
k(k+1)(k+2) , (30)

and hence
�k�k

�k
= 2Lk(k+1)

k+2 ,

which implies that (36) holds. It can also be easily checked
from (30) and (26) that

P

k

i=1
⌘i�i

�i
 kLD

2
X

2 ,
P

k

i=1
�i

�iBi(�i�L�i)
 kLD

2
X

2�2 .

Using the bound in (37), we obtain (27), which implies that
the total number of outer iterations N can be bounded by
O
⇣

p

LD2
X

/✏
⌘

under the assumptions (9) and (10). The

bound in (28) then immediately follows from this observa-
tion and the fact that the number of calls to the SFO oracle
is bounded by

P

N

k=1Bk

P

N

k=1
�

2(k+2)3

L

2
D

2
X

+ N  �

2(N+3)4

4L2
D

2
X

+ N.

We now provide a good estimation for �k

0 (cf. Line 1 in
LCG procedure) at the k-th outer iteration. In view of the
definition of �k

0 and  (·) (cf. (16)), we have,

�k

0 = h 0
k

(x
k�1), xk�1 � xi = hg

k

, x
k�1 � xi.

Moreover, let A
k

:= kg
k

� f 0(z
k

)k⇤ �
q

N�

2

⇤Bk
, by Cheby-

shev’s inequality and (15), we obtain,

Prob{A
k

}  E[kgk�f

0(zk)|2⇤]⇤Bk

N�

2  ⇤
N

, 8⇤ < 1, k � 1,

which implies that Prob{TN

k=1 Āk

}  1 � ⇤. Hence, by
Cauchy-Schwarz and triangle inequalities, we have with
probability 1� ⇤,

�k

0 = hg
k

� f 0(z
k

), x
k�1 � xi+ hf 0(z

k

), x
k�1 � xi}


✓

q

N�

2

⇤Bk
+ kf 0(z

k

)� f 0(x⇤)k⇤ + kf 0(x⇤)k⇤
◆

D
X


✓

q

N

⇤k

3 + 1

◆

LD2
X

+ kf 0(x⇤)k⇤DX

, (31)

where the last inequality follows from (6) and (26).

Note that we always have ⌘
k

< ↵�
k

D2
X

. Therefore, it
follows from the bound in (39), (26), and (31) that the total
number of inner iterations can be bounded by

P

N

k=1Tk

P

N

k=1

h

4↵
⇣

log
�k

0

↵�kD
2
X

+ 1
⌘

+ log
�k

0
⌘k

+
8↵2

�kD
2
X

⌘k
+ 2

i


N

X

k=1



5↵ log

✓

2k2
✓

q

N

⇤k

3 + 1 + kf 0(x⇤)k⇤
LDX

◆◆

+32↵2k
⇤

+ (4↵+ 2)N

= O(N log N

2

⇤ + N2 + N),

which implies that our bound in (29).

We now provide a slightly improved complexity bound on
the number of calls to the SFO oracle which depends on
the distance from the initial point to the set of optimal so-
lutions, rather than the diameter D

X

. In order to obtain
this improvement, we need to estimate D0 � kx0 � x⇤k
and to fix the number of iterations N in advance. This
result will play an important role for the analysis of the
CALSGD method to solve strongly convex problems (see
Supplementary Material C.1).
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Corollary 2.5. Suppose that there exists an estimate D0

s.t. kx0 � x⇤k  D0  D
X

. Also assume that the outer
iteration limit N � 1 is given. If

�
k

= 3L
k

, �
k

= 2
k+1 , ⌘

k

=
2LD

2
0

Nk

,

and B
k

=
l

�

2
N(k+1)2

L

2
D

2
0

m

, k � 1. (32)

Under assumptions (9) and (10),

E [f(y
N

)� f(x⇤)]  8LD

2
0

N(N+1) , 8N � 1.

As a consequence, the total number of calls to the SFO and
LOsep

X

oracles performed by the CALSGD method for
finding a stochastic ✏-solution of (1), respectively, can be
bounded by

O
⇢

q

LD

2
0

✏

+
�

2
D

2
0

✏

2

�

, (33)

and (29).

Proof. The proof is similar to Corollary 2.4, and hence
details are skipped.

It should be pointed out that the complexity bound for the
number of calls to the LOsep oracle in (29) is established
with probability 1� ⇤. However, the probability parameter
⇤ only appears in the non-dominant term.

3. Experimental Results
We present preliminary experimental results showing the
performance of CALSGD compared to OFW for stochastic
optimization. As examples we use the video co-localization
problem, which can be solved by quadratic programming
over a path polytope, different structured regression prob-
lems, and quadratic programming over the standard spec-
trahedron. In all cases we use objective functions of the
form kAx� bk2, with A 2 Rm⇥n, i.e., m examples over a
feasible region of dimension n. For comparability we use a
batch size of 128 for all algorithms to compute each gradi-
ent and the full matrix A for the actual objective function
values. All graphs show the function value using a logscale
on the vertical axis.

In Figure 1 we compare the performance of three algorithms:
CALSGD, SCGS and OFW. As described above SCGS is
the non-lazy counterpart of CALSGD. In the four graphs
of Figure 1 we report the objective function value over the
number of iterations, the wall clock time in seconds, the
number of calls to the linear oracle, and the number of
gradient evaluations in that order. In all these measures, our
proposed algorithms outperform OFW by multiple orders
of magnitude. As expected in number of iterations and
number of gradient evaluations both versions CALSGD and
SCGS perform equally well, however in wall clock time and
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Figure 1. Performance of CALSGD and its non-lazy variant SCGS
on a structured regression problem compared to OFW. The fea-
sible region is the flow-based formulation of the convex hull of
Hamiltonian cycles on 9 nodes and has dimension n = 162.

in the number of calls to the linear oracle we observe the
advantage of the weaker LOsep oracle over LO.

In Figure 5 and 4 we show the performance of CALSGD
on one video co-localization instance and one semi-definite
convex programming instance. Due to space limitations
we only report the function value over the number of iter-
ations and wall clock time in seconds; see Supplementary
Material D for a detailed analysis as well as more examples.

Implementation details. Finally, we provide details of
the implementation of LOsep. In the case of the structured
regression problems and the quadratic optimizations over
the path polytope instances, we used Gurobi as a solver
and included callbacks to terminate whenever the required
improvement (given by �

t�1) is reached; our approach is
one out of many and other approaches could have been used
equally well. If the solver does not find a good enough
solution, it returns with a lower bound on the Wolfe gap,
which we use to update �

t

. In the case of convex program-
ming over the feasible region S

n

:= {X 2 Rn⇥n | X <
0 and tr(X) = 1}, we compute a maximal eigenvector of
the gradient (which is a matrix in this case) and use the rank-
1 factor of the maximal eigenvector, which is an optimal
point. In this case, there is no early termination.

However, in all cases, we use caching, i.e., we store all
previously seen points and check if any of them satisfies
the improvement guarantee. If that is the case we do not
call Gurobi or the maximal eigenvector routine. The size of
the cache is very small in all experiments; alternatively one
could use cache strategies such as e.g., k-paging.
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Figure 2. Two small video co-localization instances. On the
left: road_paths_01_DC_a instance (n = 29682 and m =

10000). On the right: road_paths_01_DC_b instance (n =

29682 and m = 10000). Observe a significant difference in func-
tion value of multiple orders of magnitude after a few seconds.
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Figure 3. Two medium sized video co-localization instances. On
the left: road_paths_02_DE_a instance (n = 119520 and
m = 10000). On the right: road_paths_02_DE_b instance
(n = 119520 and m = 10000). Similar results as in Figure 2.
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Figure 4. Performance of CALSGD and OFW on a medium sized
convex programming instance with feasible region Sn :

= {X 2
Rn⇥n | X < 0, tr(X) = 1} with n = 100 and m = 10000.
Similar to the results before in both iterations and wall clock time
our method performs better.
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Figure 5. Performance of CALSGD compared to OFW on a small
video co-localization instance. The dimension of the underlying
path polytope is n = 29682, the time limit is 50 seconds. Our
algorithm performs significantly better both in number of iterations
as well as in wall clock time.
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Figure 6. Structured regression problem over the convex hull of
all Hamiltonian cycles of a graph on 11 nodes (n = 242) on the
left and 12 nodes (n = 288) on the right. We used a density of
d = 0.6 for A and m = 10000. On both instances CALSGD
achieves lower values much faster, both in number of iterations as
well as in wall clock time.
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