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1. Proofs
We prove Theorem 3.1 and Theorem 5.1 in the paper. First consider the following redefinition of our model with slightly
different notation; let Wn be a random variable constrained on (0, Cn], with density

fn(dw) =
1

Zn
w−α−1(1− e−w)1{0<w≤Cn}dw, (1)

where C1, C2, . . . , is a sequence of positive numbers satisfying

lim
n→∞

Cn =∞, lim
n→∞

Cαn/n = 0. (2)

Note that Zn → Γ(1 − α)/α as n → ∞, and so the sequence of densities fn(dw) converges pointwise to the density of
the BFRY distribution

f(w) =
α

Γ(1− α)
w−α−1(1− e−w)1{w>0}, (3)

and Wn converges in distribution to a BFRY random variable. Let Wn,1, . . . ,Wn,n be n i.i.d. copies of Wn. A random
simple graph X is then defined to be a collection of Bernoulli random variables as follows:

P{Xij = 1 | ri,j} =
ri,j

1 + ri,j
, ri,j = UiUj , Ui =

Wn,i√
Ln

, (4)

where Ln :=
∑n
i=1Wn,i. We will write X | r ∼ GRG(n, r), where r := (ri,j : i < j ≤ n).

We begin with a sequence of Lemmas. Define a sequence of random variables Vs,n, for every s, n ≥ 1, by

Vs,n :=
Wn

Cs−αn
. (5)

Let Vs,n,1, . . . , Vs,n,n be n i.i.d. copies of Vs,n, and denote the empirical mean of these copies by

V̄s,n :=
1

n

n∑
i=1

Vs,n,i. (6)

The expectation of Vs,n is finite for all s, n <∞, and is computed as

E[Vs,n] =
1

ZnC
s−α
n

∫ Cn

0

ws−α−1(1− e−w)dw

=
1

Zn

{
1

s− α
− γ(s− α,Cn)

Cs−αn

}
, (7)
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where γ(·, ·) is the lower incomplete gamma function.

Let P→ denote convergence in probability. The following lemma is a standard mean convergence result:

Lemma 1.1. V̄s,n
P→ E[Vs,n], as n→∞.

Proof. For all ε > 0, by Chebyshev’s inequality and the condition in Eq. (2),

P{|V̄s,n − E[Vs,n]| ≥ ε} ≤ Var(Vs,n)

nε2
≤

E[V 2
s,n]

nε2
=

1

Znε2

{
Cαn

n(2s− α)
− γ(2s− α,Cn)

nC2s−2α
n

}
→ 0, (8)

as n→∞, as desired.

The following lemma will be used to study various higher order moments in later results:

Lemma 1.2. For s ≥ 2,

Ms,n :=

∑n
i=1W

s
n,i

(
∑n
i=1Wn,i)s

P→ 0, as n→∞. (9)

Proof. We have

Ms,n =
nCs−αn V̄s,n

nsCs−sαn V̄ s1,n
=

(
Cαn
n

)s−1
V̄s,n
V̄ s1,n

. (10)

As n → ∞, the first factor on the right hand side clearly converges to zero (c.f. Eq. (2)), and, by Lemma 1.1, the second
term converges to a constant in probability.

Recall that Dn,i :=
∑
j 6=iXi,j is the degree of the i-th node in the graph X | r ∼ GRG(n, r), given by Eq. (4). The

following result will show up in later calculations involving the probability generating function (PGF) of the degree random
variables Dn,i:

Lemma 1.3. For every collection t1, . . . , tn with |ti| ≤ 1, for i ≤ n,

E
[ n∏
i=1

t
Dn,i

i |Wn,1 = w1, . . . ,Wn,n = wn

]
=

∏
i<j≤n

Ln + titjwiwj
Ln + wiwj

, (11)

for positive w1, . . . , wn.

Proof. The proof is given by Britton et al. (2006).

The following result studies a representation of the PGF of the degree random variables and their higher order moments:

Lemma 1.4. Fix a node k ≤ n. Define

Fn,k(t;wk) :=
∏
i6=k

Ln,−k + wk + twkWn,i

Ln,−k + wk + wkWn,i
, for |t| ≤ 1, and wk > 0, (12)

where Ln,−k :=
∑
i 6=kWn,i. Note that the s-th derivative F (s)

n,k(t;wk) exists for all s ≥ 0. For all s ≥ 0, the following
hold:

1. F (s)
n,k(t;wk) is uniformly bounded, for all n ≥ 1;

2. F (s)
n,k(t;wk)

P→ wsk exp{(t− 1)wk}, as n→∞.
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Proof. In the case s = 0, Fn,k(t;wk) is trivially bounded by 1 since |t| ≤ 1. By the Taylor series expansion log(1 + x) =
x+O(x2), we have

Fn,k(t;wk) = exp

{
(t− 1)wk

Ln,−k
Ln,−k + wk

+O

(
w2
k

∑
i 6=kW

2
n,i

(Ln,−k + wk)2

)}
. (13)

By Lemma 1.1,

Ln,−k
Ln,−k + wk

=
V̄1,n,−k

V̄1,n,−k + wk/(n− 1)/C1−α
n

P→ 1, (14)

where V̄1,n,−k is the empirical mean in Eq. (6) excluding the element V1,n,k. Furthermore, by Lemma 1.2,

O

(
w2
k

∑
i 6=kW

2
n,i

(Ln,−k + wk)2

)
≤ O(w2

kM2,n,−k)
P→ 0, (15)

where Ms,n,−k is Ms,n computed without Vs,n,k. Combining, we have

Fn,k(t;wk)
P→ exp{(t− 1)wk}. (16)

Before proceeding for s ≥ 1, we define

Qr,n,k(t;wk) :=
∑
i 6=k

W r
n,i

(Ln,−k + wk + twkWn,i)r
, (17)

for all r, n ≥ 1. One can easily see that Qr,n,k(t;wk) ≤ 1 for all r, n ≥ 1. For r = 1, we have∑
i 6=k

Wn,i

Ln,−k + wk + twkCn
≤ Q1,n,k(t;wk) ≤ 1, (18)

and ∑
i 6=k

Wn,i

Ln,−k + wk + twkCn
=

1

1 + wk/Ln,−k + twkCn/Ln,−k

=

{
1 +

wk

(n− 1)C1−α
n

V̄ −1s,n,−k + twk
Cαn
n

n

n− 1
V̄ −1s,n,−k

}−1
P→ 1. (19)

Hence, by the squeeze theorem, Q1,n,k(t;wk)
P→ 1. For r ≥ 2, we have

0 ≤ Qr,n,k(t;wk) ≤Mr,n,−k
P→ 0, (20)

by Lemma 1.2. Hence, we have Qr,n,k(t;wk)
P→ 0 for r ≥ 2.

Now we show that

F
(s)
n,k(t;wk) = wkF

(s−1)
n,k (t;wk)Q1,n,k(t;wk) +

s∑
r=2

as,rF
(s−r)
n,k (t;wk)Qr,n,k(t;wk), (21)

for some constants {as,r} for all s ≥ 1 and r ≥ 2. We proceed by the mathematical induction. For s = 1,

F
(1)
n,k(t;wk) =

∑
i 6=k

wkWn,i

Ln,−k + wk + wkWn,i

∏
j 6=i,k

Ln,−k + wk + twkWn,j

Ln,−k + wk + wkWn,j

= wkFn,k(t;wk)Q1,n,k(t;wk). (22)
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Now by the inductive hypothesis,

F
(s+1)
n,k (t;wk) = wkF

(s)
n,k(t;wk)Q1,n,k(t;wk)− w2

kF
(s−1)
n,k (t;wk)Q2,n,k(t;wk)

+

s∑
r=2

as,r(F
(s+1−r)
n,k (t;wk)Qr,n,k(t;wk)− rwkF (s−r)

n,k Qr+1,n,k(t;wk))

= wkF
(s)
n,k(t;wk)Q1,n,k(t;wk) +

s+1∑
r=2

as+1,rF
(s+1−r)
n,k (t;wk)Qr,n,k(t;wk), (23)

where

as+1,2 = as,2 − w2
k, as+1,r = as,r − as,r−1(r − 1)wk for r ≥ 2, (24)

so the inductive argument holds.

Having (21), by mathematical induction, we can easily show that F (s)
n,k(t;wk) is uniformly bounded for all s, n ≥ 1.

Moreover,

F
(1)
n,k(t;wk) = wkFn,k(t;wk)Q1,n,k(t;wk)

P→ wk exp{(t− 1)wk}, (25)

by (16) and (19). Combining this with (20), by mathematical induction, we can show that for all s ≥ 1,

F
(s)
n,k(t;wk)

P→ wsk exp{(t− 1)wk}. (26)

We will now use our collected results to analyze the asymptotic distribution of the degree random variables; the following
result characterizes this distribution:
Lemma 1.5. Fix a node k. Given {Wn,k = wk}, for some wk > 0, the degree Dn,k of node k converges in distribution to
a Poisson random variable with rate wk, as n→∞.

Proof. The PGF of Dn,k is given by

E[tDn,k |Wn,k = wk] = E[Fn,k(t;wk)], for |t| ≤ 1. (27)

Note that these expectations are under the σ-field generated by {Wk = wk}. For all s ≥ 0, we will derive the limit of
P{Dn,k = s | wk}, as n → ∞, which we note is given by the s-th order derivatives of the PGF in Eq. (27), evaluated at
the argument t = 0. It therefore suffices to show that E[F

(s)
n,k(t;wk)] → wsk exp{(t − 1)wk}, as n → ∞, for all s ≥ 0.

By Lemma 1.4, we know that F (s)
n,k(t;wk) is uniformly bounded and that F (s)

n,k(t;wk)
P→ wsk exp{(t− 1)wk}, as n → ∞.

Therefore, by uniform integrability,

lim
n→∞

E[F
(s)
n,k(t;wk)] = E

[
lim
n→∞

F
(s)
n,k(t;wk)

]
= wsk exp{(t− 1)wk}. (28)

We are now ready to prove the main theorems in the paper.

Proof of Theorem 3.1. We will first verify that, for y � 1, P{Dn,k = y} → cy−1−α for every node k and for some
constant c > 0 as n → ∞. By Lemma 1.5, conditioned on {Wk = wk}, the degree Dn,k converges in distribution to a
Poisson random variable with rate wk. Then by dominated convergence,

lim
n→∞

P{Dn,k = y} = lim
n→∞

∫ ∞
0

P{Dk = y|wk}pn(dwk)

=

∫ ∞
0

wyke
−wk

y!
p(dwk)

=
αΓ(y − α)

y!Γ(1− α)
(1− 2α−y). (29)
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By the asymptotics of the Gamma function, for y � 1, we have

lim
n→∞

P{Dn,k = y} = cy−1−α, (30)

for some constant c.

Next we show that, for any finite m, the collection of random variables Dn,1, . . . , Dn,m are asymptotically independent,
as n → ∞. We compute the (joint) probability generating function of (Dn,1, . . . , Dn,m), with |ti| ≤ 1 for i = 1, . . . ,m.
By Lemma 1.3,

E
[ m∏
i=1

t
Dn,i

i

]
= E

[ m∏
i=1

m∏
j=i+1

Ln + titjWn,iWn,j

Ln +Wn,iWn,j

n∏
j=m+1

Ln + tiWn,iWn,j

Ln +Wn,iWn,j

]
= E

[
E
[ m∏
i=1

m∏
j=i+1

Ln,m+1:n + `n,1:m + titjwiWn,j

Ln,m+1:n + `n,1:m + wiWn,j

×
n∏

j=m+1

Ln,m+1:n + `n,1:m + tiwiWn,j

Ln,m+1:n + `n,1:m + wiWn,j
|Wn,1:m = w1:m

]]
. (31)

Given w1:m, by a similar argument as in the proof of Lemma 1.4, one can easily show that

m∏
j=i+1

Ln,m+1:n + `n,1:m + titjwiWn,j

Ln,m+1:n + `n,1:m + wiWn,j

P→ 1, as n→∞, (32)

and
n∏

j=m+1

Ln,m+1:n + `n,1:m + tiwiWn,j

Ln,m+1:n + `n,1:m + wiWn,j

P→ exp{(ti − 1)wi}, as n→∞. (33)

Hence, again by a similar argument as in the proof of Lemma 1.4, we have

lim
n→∞

E
[ m∏
i=1

t
Dn,i

i

]
=

m∏
i=1

E[exp{(ti − 1)Wi}], (34)

that is, the joint PGF asymptotically factorizes into the product of the PGFs for i.i.d. random variables, and the result
follows.

Proof of Theorem 3.2. Using the fact that the expected number of nodes En :=
∑n
i=1Dn,i/2, we may take t1 = · · · =

tn =
√
t and obtain

E[tEn ] = E
[ ∏
i<j≤n

Ln + tWn,iWn,j

Ln +Wn,iWn,j

]
. (35)

We evaluate the derivative of the PGF to obtain the first moment

E[En] =
∂E[tEn ]

∂t

∣∣∣
t=1

= E
[ ∑
i<j≤n

Wn,iWn,j

Ln +Wn,iWn,j

]
≤ 1

2
E
[ ∑
i≤j≤n

Wn,iWn,j

Ln

]
=
n

2
E[Wn]. (36)

Since

E[Wn] =
1

Zn

{C1−α
n

1− α
− γ(1− α,Cn)

}
, (37)

we have

E[En] = O(nC1−α
n ). (38)
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Proof of Theorem 5.1. Recall that

P{X = x | r} =
∏

i<j≤n

ri,j
1 + ri,j

= G−1(r)
∏

i<j≤n

A
xi,j

i,j

n∏
i=1

U
Dn,i

i , (39)

where A := (Ai,j)i<j≤n and

G(r) :=
∏

i<j≤n

(1 +Ai,jUiUj). (40)

Since
∑
x P{X = x | r} = 1, we have

G(r) =
∑
x

∏
i<j≤n

A
xi,j

i,j

n∏
i=1

u
Dn,i

i . (41)

The joint PGF of (Dn,1, . . . , Dn,n) is then

E
[ n∏
i=1

t
Dn,i

i | A,Wn,1:n

]
=
∑
x

P{X = x | r}
n∏
i=1

t
Dn,i(x)
i

= G−1(r)
∑
x

∏
i<j≤n

A
xi,j

i,j

n∏
i=1

(tiUi)
Dn,i

=
∏

i<j≤n

1 +Ai,jtitjUiUj
1 +Ai,jUiUj

. (42)

The remainder of the proof follows analogously to the proof of Theorem 3.1 above.

References
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