Supplementary Material: Bayesian inference on random simple graphs with power law degree distributions

Juho Lee¹ Creighton Heaukulani² Zoubin Ghahramani²³ Lancelot F. James⁴ Seungjin Choi¹

1. Proofs

We prove Theorem 3.1 and Theorem 5.1 in the paper. First consider the following redefinition of our model with slightly different notation; let W_n be a random variable constrained on $(0, C_n]$, with density

$$f_n(\mathrm{d}w) = \frac{1}{Z_n} w^{-\alpha - 1} (1 - e^{-w}) \mathbb{1}_{\{0 < w \le C_n\}} \mathrm{d}w, \tag{1}$$

where C_1, C_2, \ldots , is a sequence of positive numbers satisfying

$$\lim_{n \to \infty} C_n = \infty, \qquad \lim_{n \to \infty} C_n^{\alpha} / n = 0.$$
⁽²⁾

Note that $Z_n \to \Gamma(1-\alpha)/\alpha$ as $n \to \infty$, and so the sequence of densities $f_n(dw)$ converges pointwise to the density of the BFRY distribution

$$f(w) = \frac{\alpha}{\Gamma(1-\alpha)} w^{-\alpha-1} (1-e^{-w}) \mathbb{1}_{\{w>0\}},\tag{3}$$

and W_n converges in distribution to a BFRY random variable. Let $W_{n,1}, \ldots, W_{n,n}$ be *n* i.i.d. copies of W_n . A random simple graph X is then defined to be a collection of Bernoulli random variables as follows:

$$\mathbb{P}\{X_{ij} = 1 \mid r_{i,j}\} = \frac{r_{i,j}}{1 + r_{i,j}}, \quad r_{i,j} = U_i U_j, \quad U_i = \frac{W_{n,i}}{\sqrt{L_n}},\tag{4}$$

where $L_n := \sum_{i=1}^n W_{n,i}$. We will write $X \mid r \sim \text{GRG}(n, r)$, where $r := (r_{i,j} : i < j \le n)$.

We begin with a sequence of Lemmas. Define a sequence of random variables $V_{s,n}$, for every $s, n \ge 1$, by

$$V_{s,n} := \frac{W_n}{C_n^{s-\alpha}}.$$
(5)

Let $V_{s,n,1}, \ldots, V_{s,n,n}$ be *n* i.i.d. copies of $V_{s,n}$, and denote the empirical mean of these copies by

$$\bar{V}_{s,n} := \frac{1}{n} \sum_{i=1}^{n} V_{s,n,i}.$$
(6)

The expectation of $V_{s,n}$ is finite for all $s, n < \infty$, and is computed as

$$\mathbb{E}[V_{s,n}] = \frac{1}{Z_n C_n^{s-\alpha}} \int_0^{C_n} w^{s-\alpha-1} (1-e^{-w}) \mathrm{d}w$$
$$= \frac{1}{Z_n} \left\{ \frac{1}{s-\alpha} - \frac{\gamma(s-\alpha, C_n)}{C_n^{s-\alpha}} \right\},\tag{7}$$

¹Pohang University of Science and Technology (POSTECH), Pohang, South Korea ²University of Cambridge, Cambridge, United Kingdom ³Uber AI Labs, San Francisco, CA, USA ⁴Hong Kong University of Science and Technology (HKUST), Clearwater Bay, Hong Kong. Correspondence to: Juho Lee <stonecold@postech.ac.kr>.

Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 2017. JMLR: W&CP. Copyright 2017 by the author(s).

where $\gamma(\cdot, \cdot)$ is the lower incomplete gamma function.

Let $\xrightarrow{\mathbb{P}}$ denote convergence in probability. The following lemma is a standard mean convergence result:

Lemma 1.1.
$$V_{s,n} \xrightarrow{\mathfrak{a}} \mathbb{E}[V_{s,n}]$$
, as $n \to \infty$.

Proof. For all $\varepsilon > 0$, by Chebyshev's inequality and the condition in Eq. (2),

$$\mathbb{P}\{|\bar{V}_{s,n} - \mathbb{E}[V_{s,n}]| \ge \varepsilon\} \le \frac{\operatorname{Var}(V_{s,n})}{n\varepsilon^2} \le \frac{\mathbb{E}[V_{s,n}^2]}{n\varepsilon^2} = \frac{1}{Z_n\varepsilon^2} \left\{ \frac{C_n^{\alpha}}{n(2s-\alpha)} - \frac{\gamma(2s-\alpha,C_n)}{nC_n^{2s-2\alpha}} \right\} \to 0,$$
(8)

as $n \to \infty$, as desired.

The following lemma will be used to study various higher order moments in later results: Lemma 1.2. For $s \ge 2$,

$$M_{s,n} := \frac{\sum_{i=1}^{n} W_{n,i}^s}{(\sum_{i=1}^{n} W_{n,i})^s} \xrightarrow{\mathbb{P}} 0, \qquad \text{as } n \to \infty.$$

$$\tag{9}$$

Proof. We have

$$M_{s,n} = \frac{nC_n^{s-\alpha}\bar{V}_{s,n}}{n^s C_n^{s-\alpha}\bar{V}_{1,n}^s} = \left(\frac{C_n^{\alpha}}{n}\right)^{s-1} \frac{\bar{V}_{s,n}}{\bar{V}_{1,n}^s}.$$
(10)

As $n \to \infty$, the first factor on the right hand side clearly converges to zero (c.f. Eq. (2)), and, by Lemma 1.1, the second term converges to a constant in probability.

Recall that $D_{n,i} := \sum_{j \neq i} X_{i,j}$ is the degree of the *i*-th node in the graph $X \mid r \sim \text{GRG}(n, r)$, given by Eq. (4). The following result will show up in later calculations involving the probability generating function (PGF) of the degree random variables $D_{n,i}$:

Lemma 1.3. For every collection t_1, \ldots, t_n with $|t_i| \leq 1$, for $i \leq n$,

$$\mathbb{E}\Big[\prod_{i=1}^{n} t_{i}^{D_{n,i}} \mid W_{n,1} = w_{1}, \dots, W_{n,n} = w_{n}\Big] = \prod_{i < j \le n} \frac{L_{n} + t_{i}t_{j}w_{i}w_{j}}{L_{n} + w_{i}w_{j}},\tag{11}$$

for positive w_1, \ldots, w_n .

Proof. The proof is given by Britton et al. (2006).

The following result studies a representation of the PGF of the degree random variables and their higher order moments: Lemma 1.4. Fix a node $k \le n$. Define

$$F_{n,k}(t;w_k) := \prod_{i \neq k} \frac{L_{n,-k} + w_k + tw_k W_{n,i}}{L_{n,-k} + w_k + w_k W_{n,i}}, \quad \text{for } |t| \le 1, \text{ and } w_k > 0,$$
(12)

where $L_{n,-k} := \sum_{i \neq k} W_{n,i}$. Note that the s-th derivative $F_{n,k}^{(s)}(t;w_k)$ exists for all $s \ge 0$. For all $s \ge 0$, the following hold:

1. $F_{n,k}^{(s)}(t; w_k)$ is uniformly bounded, for all $n \ge 1$; 2. $F_{n,k}^{(s)}(t; w_k) \xrightarrow{\mathbb{P}} w_k^s \exp\{(t-1)w_k\}$, as $n \to \infty$. *Proof.* In the case s = 0, $F_{n,k}(t; w_k)$ is trivially bounded by 1 since $|t| \le 1$. By the Taylor series expansion $\log(1 + x) = x + O(x^2)$, we have

$$F_{n,k}(t;w_k) = \exp\left\{(t-1)w_k \frac{L_{n,-k}}{L_{n,-k}+w_k} + O\left(w_k^2 \frac{\sum_{i \neq k} W_{n,i}^2}{(L_{n,-k}+w_k)^2}\right)\right\}.$$
(13)

By Lemma 1.1,

$$\frac{L_{n,-k}}{L_{n,-k}+w_k} = \frac{\bar{V}_{1,n,-k}}{\bar{V}_{1,n,-k}+w_k/(n-1)/C_n^{1-\alpha}} \stackrel{\mathbb{P}}{\to} 1,$$
(14)

where $\bar{V}_{1,n,-k}$ is the empirical mean in Eq. (6) excluding the element $V_{1,n,k}$. Furthermore, by Lemma 1.2,

$$O\left(w_k^2 \frac{\sum_{i \neq k} W_{n,i}^2}{(L_{n,-k} + w_k)^2}\right) \le O(w_k^2 M_{2,n,-k}) \xrightarrow{\mathbb{P}} 0, \tag{15}$$

where $M_{s,n,-k}$ is $M_{s,n}$ computed without $V_{s,n,k}$. Combining, we have

$$F_{n,k}(t;w_k) \xrightarrow{\mathbb{P}} \exp\{(t-1)w_k\}.$$
 (16)

Before proceeding for $s \ge 1$, we define

$$Q_{r,n,k}(t;w_k) := \sum_{i \neq k} \frac{W_{n,i}^r}{(L_{n,-k} + w_k + tw_k W_{n,i})^r},$$
(17)

for all $r, n \ge 1$. One can easily see that $Q_{r,n,k}(t; w_k) \le 1$ for all $r, n \ge 1$. For r = 1, we have

$$\sum_{i \neq k} \frac{W_{n,i}}{L_{n,-k} + w_k + tw_k C_n} \le Q_{1,n,k}(t;w_k) \le 1,$$
(18)

and

$$\sum_{i \neq k} \frac{W_{n,i}}{L_{n,-k} + w_k + tw_k C_n} = \frac{1}{1 + w_k/L_{n,-k} + tw_k C_n/L_{n,-k}}$$
$$= \left\{ 1 + \frac{w_k}{(n-1)C_n^{1-\alpha}} \bar{V}_{s,n,-k}^{-1} + tw_k \frac{C_n^{\alpha}}{n} \frac{n}{n-1} \bar{V}_{s,n,-k}^{-1} \right\}^{-1} \stackrel{\mathbb{P}}{\to} 1.$$
(19)

Hence, by the squeeze theorem, $Q_{1,n,k}(t;w_k) \xrightarrow{\mathbb{P}} 1$. For $r \geq 2$, we have

$$0 \le Q_{r,n,k}(t;w_k) \le M_{r,n,-k} \xrightarrow{\mathbb{P}} 0,$$
(20)

by Lemma 1.2. Hence, we have $Q_{r,n,k}(t; w_k) \xrightarrow{\mathbb{P}} 0$ for $r \ge 2$.

Now we show that

$$F_{n,k}^{(s)}(t;w_k) = w_k F_{n,k}^{(s-1)}(t;w_k) Q_{1,n,k}(t;w_k) + \sum_{r=2}^s a_{s,r} F_{n,k}^{(s-r)}(t;w_k) Q_{r,n,k}(t;w_k),$$
(21)

for some constants $\{a_{s,r}\}$ for all $s \ge 1$ and $r \ge 2$. We proceed by the mathematical induction. For s = 1,

$$F_{n,k}^{(1)}(t;w_k) = \sum_{i \neq k} \frac{w_k W_{n,i}}{L_{n,-k} + w_k + w_k W_{n,i}} \prod_{j \neq i,k} \frac{L_{n,-k} + w_k + tw_k W_{n,j}}{L_{n,-k} + w_k + w_k W_{n,j}}$$
$$= w_k F_{n,k}(t;w_k) Q_{1,n,k}(t;w_k).$$
(22)

Now by the inductive hypothesis,

$$F_{n,k}^{(s+1)}(t;w_k) = w_k F_{n,k}^{(s)}(t;w_k) Q_{1,n,k}(t;w_k) - w_k^2 F_{n,k}^{(s-1)}(t;w_k) Q_{2,n,k}(t;w_k) + \sum_{r=2}^{s} a_{s,r} (F_{n,k}^{(s+1-r)}(t;w_k) Q_{r,n,k}(t;w_k) - rw_k F_{n,k}^{(s-r)} Q_{r+1,n,k}(t;w_k)) = w_k F_{n,k}^{(s)}(t;w_k) Q_{1,n,k}(t;w_k) + \sum_{r=2}^{s+1} a_{s+1,r} F_{n,k}^{(s+1-r)}(t;w_k) Q_{r,n,k}(t;w_k),$$
(23)

where

$$a_{s+1,2} = a_{s,2} - w_k^2, \quad a_{s+1,r} = a_{s,r} - a_{s,r-1}(r-1)w_k \quad \text{for } r \ge 2,$$
 (24)

so the inductive argument holds.

Having (21), by mathematical induction, we can easily show that $F_{n,k}^{(s)}(t; w_k)$ is uniformly bounded for all $s, n \ge 1$. Moreover,

$$F_{n,k}^{(1)}(t;w_k) = w_k F_{n,k}(t;w_k) Q_{1,n,k}(t;w_k) \xrightarrow{\mathbb{P}} w_k \exp\{(t-1)w_k\},$$
(25)

by (16) and (19). Combining this with (20), by mathematical induction, we can show that for all $s \ge 1$,

$$F_{n,k}^{(s)}(t;w_k) \xrightarrow{\mathbb{P}} w_k^s \exp\{(t-1)w_k\}.$$
(26)

We will now use our collected results to analyze the asymptotic distribution of the degree random variables; the following result characterizes this distribution:

Lemma 1.5. Fix a node k. Given $\{W_{n,k} = w_k\}$, for some $w_k > 0$, the degree $D_{n,k}$ of node k converges in distribution to a Poisson random variable with rate w_k , as $n \to \infty$.

Proof. The PGF of $D_{n,k}$ is given by

$$\mathbb{E}[t^{D_{n,k}} \mid W_{n,k} = w_k] = \mathbb{E}[F_{n,k}(t; w_k)], \quad \text{for } |t| \le 1.$$
(27)

Note that these expectations are under the σ -field generated by $\{W_k = w_k\}$. For all $s \ge 0$, we will derive the limit of $\mathbb{P}\{D_{n,k} = s \mid w_k\}$, as $n \to \infty$, which we note is given by the s-th order derivatives of the PGF in Eq. (27), evaluated at the argument t = 0. It therefore suffices to show that $\mathbb{E}[F_{n,k}^{(s)}(t;w_k)] \to w_k^s \exp\{(t-1)w_k\}$, as $n \to \infty$, for all $s \ge 0$. By Lemma 1.4, we know that $F_{n,k}^{(s)}(t;w_k)$ is uniformly bounded and that $F_{n,k}^{(s)}(t;w_k) \xrightarrow{\mathbb{P}} w_k^s \exp\{(t-1)w_k\}$, as $n \to \infty$. Therefore, by uniform integrability,

$$\lim_{n \to \infty} \mathbb{E}[F_{n,k}^{(s)}(t;w_k)] = \mathbb{E}\left[\lim_{n \to \infty} F_{n,k}^{(s)}(t;w_k)\right] = w_k^s \exp\{(t-1)w_k\}.$$
(28)

We are now ready to prove the main theorems in the paper.

Proof of Theorem 3.1. We will first verify that, for $y \gg 1$, $\mathbb{P}\{D_{n,k} = y\} \rightarrow cy^{-1-\alpha}$ for every node k and for some constant c > 0 as $n \rightarrow \infty$. By Lemma 1.5, conditioned on $\{W_k = w_k\}$, the degree $D_{n,k}$ converges in distribution to a Poisson random variable with rate w_k . Then by dominated convergence,

$$\lim_{n \to \infty} \mathbb{P}\{D_{n,k} = y\} = \lim_{n \to \infty} \int_0^\infty \mathbb{P}\{D_k = y | w_k\} p_n(\mathrm{d}w_k)$$
$$= \int_0^\infty \frac{w_k^y e^{-w_k}}{y!} p(\mathrm{d}w_k)$$
$$= \frac{\alpha \Gamma(y - \alpha)}{y! \Gamma(1 - \alpha)} (1 - 2^{\alpha - y}).$$
(29)

By the asymptotics of the Gamma function, for $y \gg 1$, we have

$$\lim_{n \to \infty} \mathbb{P}\{D_{n,k} = y\} = cy^{-1-\alpha},\tag{30}$$

for some constant c.

Next we show that, for any finite m, the collection of random variables $D_{n,1}, \ldots, D_{n,m}$ are asymptotically independent, as $n \to \infty$. We compute the (joint) probability generating function of $(D_{n,1}, \ldots, D_{n,m})$, with $|t_i| \le 1$ for $i = 1, \ldots, m$. By Lemma 1.3,

$$\mathbb{E}\left[\prod_{i=1}^{m} t_{i}^{D_{n,i}}\right] = \mathbb{E}\left[\prod_{i=1}^{m} \prod_{j=i+1}^{m} \frac{L_{n} + t_{i}t_{j}W_{n,i}W_{n,j}}{L_{n} + W_{n,i}W_{n,j}} \prod_{j=m+1}^{n} \frac{L_{n} + t_{i}W_{n,i}W_{n,j}}{L_{n} + W_{n,i}W_{n,j}}\right] \\
= \mathbb{E}\left[\mathbb{E}\left[\prod_{i=1}^{m} \prod_{j=i+1}^{m} \frac{L_{n,m+1:n} + \ell_{n,1:m} + t_{i}t_{j}w_{i}W_{n,j}}{L_{n,m+1:n} + \ell_{n,1:m} + w_{i}W_{n,j}} \times \prod_{j=m+1}^{n} \frac{L_{n,m+1:n} + \ell_{n,1:m} + t_{i}w_{i}W_{n,j}}{L_{n,m+1:n} + \ell_{n,1:m} + w_{i}W_{n,j}} \mid W_{n,1:m} = w_{1:m}\right]\right].$$
(31)

Given $w_{1:m}$, by a similar argument as in the proof of Lemma 1.4, one can easily show that

$$\prod_{j=i+1}^{m} \frac{L_{n,m+1:n} + \ell_{n,1:m} + t_i t_j w_i W_{n,j}}{L_{n,m+1:n} + \ell_{n,1:m} + w_i W_{n,j}} \xrightarrow{\mathbb{P}} 1, \quad \text{as } n \to \infty,$$
(32)

and

$$\prod_{j=m+1}^{n} \frac{L_{n,m+1:n} + \ell_{n,1:m} + t_{i} w_{i} W_{n,j}}{L_{n,m+1:n} + \ell_{n,1:m} + w_{i} W_{n,j}} \xrightarrow{\mathbb{P}} \exp\{(t_{i} - 1) w_{i}\}, \quad \text{as } n \to \infty.$$
(33)

Hence, again by a similar argument as in the proof of Lemma 1.4, we have

$$\lim_{n \to \infty} \mathbb{E}\left[\prod_{i=1}^{m} t_i^{D_{n,i}}\right] = \prod_{i=1}^{m} \mathbb{E}\left[\exp\{(t_i - 1)W_i\}\right],\tag{34}$$

that is, the joint PGF asymptotically factorizes into the product of the PGFs for i.i.d. random variables, and the result follows. \Box

Proof of Theorem 3.2. Using the fact that the expected number of nodes $E_n := \sum_{i=1}^n D_{n,i}/2$, we may take $t_1 = \cdots = t_n = \sqrt{t}$ and obtain

$$\mathbb{E}[t^{E_n}] = \mathbb{E}\Big[\prod_{i< j\le n} \frac{L_n + tW_{n,i}W_{n,j}}{L_n + W_{n,i}W_{n,j}}\Big].$$
(35)

We evaluate the derivative of the PGF to obtain the first moment

$$\mathbb{E}[E_n] = \frac{\partial \mathbb{E}[t^{E_n}]}{\partial t}\Big|_{t=1} = \mathbb{E}\Big[\sum_{i(36)$$

Since

$$\mathbb{E}[W_n] = \frac{1}{Z_n} \Big\{ \frac{C_n^{1-\alpha}}{1-\alpha} - \gamma(1-\alpha, C_n) \Big\},\tag{37}$$

we have

$$\mathbb{E}[E_n] = O(nC_n^{1-\alpha}). \tag{38}$$

Proof of Theorem 5.1. Recall that

$$\mathbb{P}\{X = x \mid r\} = \prod_{i < j \le n} \frac{r_{i,j}}{1 + r_{i,j}} = G^{-1}(r) \prod_{i < j \le n} A^{x_{i,j}}_{i,j} \prod_{i=1}^{n} U^{D_{n,i}}_{i},$$
(39)

where $A := (A_{i,j})_{i < j \le n}$ and

$$G(r) := \prod_{i < j \le n} (1 + A_{i,j} U_i U_j).$$
(40)

Since $\sum_{x} \mathbb{P}\{X = x \mid r\} = 1$, we have

$$G(r) = \sum_{x} \prod_{i < j \le n} A_{i,j}^{x_{i,j}} \prod_{i=1}^{n} u_i^{D_{n,i}}.$$
(41)

The joint PGF of $(D_{n,1}, \ldots, D_{n,n})$ is then

$$\mathbb{E}\left[\prod_{i=1}^{n} t_{i}^{D_{n,i}} \mid A, W_{n,1:n}\right] = \sum_{x} \mathbb{P}\{X = x \mid r\} \prod_{i=1}^{n} t_{i}^{D_{n,i}(x)}$$
$$= G^{-1}(r) \sum_{x} \prod_{i < j \le n} A_{i,j}^{x_{i,j}} \prod_{i=1}^{n} (t_{i}U_{i})^{D_{n,i}}$$
$$= \prod_{i < j \le n} \frac{1 + A_{i,j}t_{i}t_{j}U_{i}U_{j}}{1 + A_{i,j}U_{i}U_{j}}.$$
(42)

The remainder of the proof follows analogously to the proof of Theorem 3.1 above.

References

- Britton, T., Deijfen, M., and Martin-Löf, A. Generating simple random graphs with prescribed degree distribution. *Journal* of *Statistical Physics*, 124(6):1377–1397, 2006.
- Kingma, D. P. and Welling, M. Auto-encoding variational Bayes. In ICLR, 2014.
- Knowles, D. A. Stochastic gradient variational Bayes for gamma approximating distributions. *arXiv preprint* arXiv:1509.01631, 2015.
- Salimans, T. and Knowles, D. A. Fixed-form variational posterior approximation through stochastic linear regression. *Bayesian Analysis*, 8(4):837–882, 2013.