Supplementary Material: Bayesian inference on random simple graphs with power law degree distributions

Juho Lee ${ }^{1}$ Creighton Heaukulani ${ }^{2}$ Zoubin Ghahramani ${ }^{23}$ Lancelot F. James ${ }^{4}$ Seungjin Choi ${ }^{1}$

1. Proofs

We prove Theorem 3.1 and Theorem 5.1 in the paper. First consider the following redefinition of our model with slightly different notation; let W_{n} be a random variable constrained on $\left(0, C_{n}\right]$, with density

$$
\begin{equation*}
f_{n}(\mathrm{~d} w)=\frac{1}{Z_{n}} w^{-\alpha-1}\left(1-e^{-w}\right) \mathbb{1}_{\left\{0<w \leq C_{n}\right\}} \mathrm{d} w \tag{1}
\end{equation*}
$$

where C_{1}, C_{2}, \ldots, is a sequence of positive numbers satisfying

$$
\begin{equation*}
\lim _{n \rightarrow \infty} C_{n}=\infty, \quad \lim _{n \rightarrow \infty} C_{n}^{\alpha} / n=0 \tag{2}
\end{equation*}
$$

Note that $Z_{n} \rightarrow \Gamma(1-\alpha) / \alpha$ as $n \rightarrow \infty$, and so the sequence of densities $f_{n}(d w)$ converges pointwise to the density of the BFRY distribution

$$
\begin{equation*}
f(w)=\frac{\alpha}{\Gamma(1-\alpha)} w^{-\alpha-1}\left(1-e^{-w}\right) \mathbb{1}_{\{w>0\}} \tag{3}
\end{equation*}
$$

and W_{n} converges in distribution to a BFRY random variable. Let $W_{n, 1}, \ldots, W_{n, n}$ be n i.i.d. copies of W_{n}. A random simple graph X is then defined to be a collection of Bernoulli random variables as follows:

$$
\begin{equation*}
\mathbb{P}\left\{X_{i j}=1 \mid r_{i, j}\right\}=\frac{r_{i, j}}{1+r_{i, j}}, \quad r_{i, j}=U_{i} U_{j}, \quad U_{i}=\frac{W_{n, i}}{\sqrt{L_{n}}} \tag{4}
\end{equation*}
$$

where $L_{n}:=\sum_{i=1}^{n} W_{n, i}$. We will write $X \mid r \sim \operatorname{GRG}(n, r)$, where $r:=\left(r_{i, j}: i<j \leq n\right)$.
We begin with a sequence of Lemmas. Define a sequence of random variables $V_{s, n}$, for every $s, n \geq 1$, by

$$
\begin{equation*}
V_{s, n}:=\frac{W_{n}}{C_{n}^{s-\alpha}} \tag{5}
\end{equation*}
$$

Let $V_{s, n, 1}, \ldots, V_{s, n, n}$ be n i.i.d. copies of $V_{s, n}$, and denote the empirical mean of these copies by

$$
\begin{equation*}
\bar{V}_{s, n}:=\frac{1}{n} \sum_{i=1}^{n} V_{s, n, i} \tag{6}
\end{equation*}
$$

The expectation of $V_{s, n}$ is finite for all $s, n<\infty$, and is computed as

$$
\begin{align*}
\mathbb{E}\left[V_{s, n}\right] & =\frac{1}{Z_{n} C_{n}^{s-\alpha}} \int_{0}^{C_{n}} w^{s-\alpha-1}\left(1-e^{-w}\right) \mathrm{d} w \\
& =\frac{1}{Z_{n}}\left\{\frac{1}{s-\alpha}-\frac{\gamma\left(s-\alpha, C_{n}\right)}{C_{n}^{s-\alpha}}\right\} \tag{7}
\end{align*}
$$

[^0]where $\gamma(\cdot, \cdot)$ is the lower incomplete gamma function.
Let $\xrightarrow{\mathbb{P}}$ denote convergence in probability. The following lemma is a standard mean convergence result:
Lemma 1.1. $\bar{V}_{s, n} \xrightarrow{\mathbb{P}} \mathbb{E}\left[V_{s, n}\right]$, as $n \rightarrow \infty$.

Proof. For all $\varepsilon>0$, by Chebyshev's inequality and the condition in Eq. (2),

$$
\begin{equation*}
\mathbb{P}\left\{\left|\bar{V}_{s, n}-\mathbb{E}\left[V_{s, n}\right]\right| \geq \varepsilon\right\} \leq \frac{\operatorname{Var}\left(V_{s, n}\right)}{n \varepsilon^{2}} \leq \frac{\mathbb{E}\left[V_{s, n}^{2}\right]}{n \varepsilon^{2}}=\frac{1}{Z_{n} \varepsilon^{2}}\left\{\frac{C_{n}^{\alpha}}{n(2 s-\alpha)}-\frac{\gamma\left(2 s-\alpha, C_{n}\right)}{n C_{n}^{2 s-2 \alpha}}\right\} \rightarrow 0 \tag{8}
\end{equation*}
$$

as $n \rightarrow \infty$, as desired.

The following lemma will be used to study various higher order moments in later results:
Lemma 1.2. For $s \geq 2$,

$$
\begin{equation*}
M_{s, n}:=\frac{\sum_{i=1}^{n} W_{n, i}^{s}}{\left(\sum_{i=1}^{n} W_{n, i}\right)^{s}} \stackrel{\mathbb{P}}{\rightarrow} 0, \quad \text { as } n \rightarrow \infty \tag{9}
\end{equation*}
$$

Proof. We have

$$
\begin{equation*}
M_{s, n}=\frac{n C_{n}^{s-\alpha} \bar{V}_{s, n}}{n^{s} C_{n}^{s-s \alpha} \bar{V}_{1, n}^{s}}=\left(\frac{C_{n}^{\alpha}}{n}\right)^{s-1} \frac{\bar{V}_{s, n}}{\bar{V}_{1, n}^{s}} \tag{10}
\end{equation*}
$$

As $n \rightarrow \infty$, the first factor on the right hand side clearly converges to zero (c.f. Eq. (2)), and, by Lemma 1.1, the second term converges to a constant in probability.

Recall that $D_{n, i}:=\sum_{j \neq i} X_{i, j}$ is the degree of the i-th node in the graph $X \mid r \sim \operatorname{GRG}(n, r)$, given by Eq. (4). The following result will show up in later calculations involving the probability generating function (PGF) of the degree random variables $D_{n, i}$:
Lemma 1.3. For every collection t_{1}, \ldots, t_{n} with $\left|t_{i}\right| \leq 1$, for $i \leq n$,

$$
\begin{equation*}
\mathbb{E}\left[\prod_{i=1}^{n} t_{i}^{D_{n, i}} \mid W_{n, 1}=w_{1}, \ldots, W_{n, n}=w_{n}\right]=\prod_{i<j \leq n} \frac{L_{n}+t_{i} t_{j} w_{i} w_{j}}{L_{n}+w_{i} w_{j}} \tag{11}
\end{equation*}
$$

for positive w_{1}, \ldots, w_{n}.

Proof. The proof is given by Britton et al. (2006).

The following result studies a representation of the PGF of the degree random variables and their higher order moments:
Lemma 1.4. Fix a node $k \leq n$. Define

$$
\begin{equation*}
F_{n, k}\left(t ; w_{k}\right):=\prod_{i \neq k} \frac{L_{n,-k}+w_{k}+t w_{k} W_{n, i}}{L_{n,-k}+w_{k}+w_{k} W_{n, i}}, \quad \text { for }|t| \leq 1, \text { and } w_{k}>0 \tag{12}
\end{equation*}
$$

where $L_{n,-k}:=\sum_{i \neq k} W_{n, i}$. Note that the s-th derivative $F_{n, k}^{(s)}\left(t ; w_{k}\right)$ exists for all $s \geq 0$. For all $s \geq 0$, the following hold:

1. $F_{n, k}^{(s)}\left(t ; w_{k}\right)$ is uniformly bounded, for all $n \geq 1$;
2. $F_{n, k}^{(s)}\left(t ; w_{k}\right) \xrightarrow{\mathbb{P}} w_{k}^{s} \exp \left\{(t-1) w_{k}\right\}$, as $n \rightarrow \infty$.

Proof. In the case $s=0, F_{n, k}\left(t ; w_{k}\right)$ is trivially bounded by 1 since $|t| \leq 1$. By the Taylor series expansion $\log (1+x)=$ $x+O\left(x^{2}\right)$, we have

$$
\begin{equation*}
F_{n, k}\left(t ; w_{k}\right)=\exp \left\{(t-1) w_{k} \frac{L_{n,-k}}{L_{n,-k}+w_{k}}+O\left(w_{k}^{2} \frac{\sum_{i \neq k} W_{n, i}^{2}}{\left(L_{n,-k}+w_{k}\right)^{2}}\right)\right\} \tag{13}
\end{equation*}
$$

By Lemma 1.1,

$$
\begin{equation*}
\frac{L_{n,-k}}{L_{n,-k}+w_{k}}=\frac{\bar{V}_{1, n,-k}}{\bar{V}_{1, n,-k}+w_{k} /(n-1) / C_{n}^{1-\alpha}} \stackrel{\mathbb{P}}{\rightarrow} 1 \tag{14}
\end{equation*}
$$

where $\bar{V}_{1, n,-k}$ is the empirical mean in Eq. (6) excluding the element $V_{1, n, k}$. Furthermore, by Lemma 1.2,

$$
\begin{equation*}
O\left(w_{k}^{2} \frac{\sum_{i \neq k} W_{n, i}^{2}}{\left(L_{n,-k}+w_{k}\right)^{2}}\right) \leq O\left(w_{k}^{2} M_{2, n,-k}\right) \xrightarrow{\mathbb{P}} 0 \tag{15}
\end{equation*}
$$

where $M_{s, n,-k}$ is $M_{s, n}$ computed without $V_{s, n, k}$. Combining, we have

$$
\begin{equation*}
F_{n, k}\left(t ; w_{k}\right) \xrightarrow{\mathbb{P}} \exp \left\{(t-1) w_{k}\right\} \tag{16}
\end{equation*}
$$

Before proceeding for $s \geq 1$, we define

$$
\begin{equation*}
Q_{r, n, k}\left(t ; w_{k}\right):=\sum_{i \neq k} \frac{W_{n, i}^{r}}{\left(L_{n,-k}+w_{k}+t w_{k} W_{n, i}\right)^{r}} \tag{17}
\end{equation*}
$$

for all $r, n \geq 1$. One can easily see that $Q_{r, n, k}\left(t ; w_{k}\right) \leq 1$ for all $r, n \geq 1$. For $r=1$, we have

$$
\begin{equation*}
\sum_{i \neq k} \frac{W_{n, i}}{L_{n,-k}+w_{k}+t w_{k} C_{n}} \leq Q_{1, n, k}\left(t ; w_{k}\right) \leq 1 \tag{18}
\end{equation*}
$$

and

$$
\begin{align*}
\sum_{i \neq k} \frac{W_{n, i}}{L_{n,-k}+w_{k}+t w_{k} C_{n}} & =\frac{1}{1+w_{k} / L_{n,-k}+t w_{k} C_{n} / L_{n,-k}} \\
& =\left\{1+\frac{w_{k}}{(n-1) C_{n}^{1-\alpha}} \bar{V}_{s, n,-k}^{-1}+t w_{k} \frac{C_{n}^{\alpha}}{n} \frac{n}{n-1} \bar{V}_{s, n,-k}^{-1}\right\}^{-1} \xrightarrow{\mathbb{P}} 1 \tag{19}
\end{align*}
$$

Hence, by the squeeze theorem, $Q_{1, n, k}\left(t ; w_{k}\right) \xrightarrow{\mathbb{P}} 1$. For $r \geq 2$, we have

$$
\begin{equation*}
0 \leq Q_{r, n, k}\left(t ; w_{k}\right) \leq M_{r, n,-k} \xrightarrow{\mathbb{P}} 0 \tag{20}
\end{equation*}
$$

by Lemma 1.2. Hence, we have $Q_{r, n, k}\left(t ; w_{k}\right) \xrightarrow{\mathbb{P}} 0$ for $r \geq 2$.
Now we show that

$$
\begin{equation*}
F_{n, k}^{(s)}\left(t ; w_{k}\right)=w_{k} F_{n, k}^{(s-1)}\left(t ; w_{k}\right) Q_{1, n, k}\left(t ; w_{k}\right)+\sum_{r=2}^{s} a_{s, r} F_{n, k}^{(s-r)}\left(t ; w_{k}\right) Q_{r, n, k}\left(t ; w_{k}\right) \tag{21}
\end{equation*}
$$

for some constants $\left\{a_{s, r}\right\}$ for all $s \geq 1$ and $r \geq 2$. We proceed by the mathematical induction. For $s=1$,

$$
\begin{align*}
F_{n, k}^{(1)}\left(t ; w_{k}\right) & =\sum_{i \neq k} \frac{w_{k} W_{n, i}}{L_{n,-k}+w_{k}+w_{k} W_{n, i}} \prod_{j \neq i, k} \frac{L_{n,-k}+w_{k}+t w_{k} W_{n, j}}{L_{n,-k}+w_{k}+w_{k} W_{n, j}} \\
& =w_{k} F_{n, k}\left(t ; w_{k}\right) Q_{1, n, k}\left(t ; w_{k}\right) \tag{22}
\end{align*}
$$

Now by the inductive hypothesis,

$$
\begin{align*}
F_{n, k}^{(s+1)}\left(t ; w_{k}\right) & =w_{k} F_{n, k}^{(s)}\left(t ; w_{k}\right) Q_{1, n, k}\left(t ; w_{k}\right)-w_{k}^{2} F_{n, k}^{(s-1)}\left(t ; w_{k}\right) Q_{2, n, k}\left(t ; w_{k}\right) \\
& +\sum_{r=2}^{s} a_{s, r}\left(F_{n, k}^{(s+1-r)}\left(t ; w_{k}\right) Q_{r, n, k}\left(t ; w_{k}\right)-r w_{k} F_{n, k}^{(s-r)} Q_{r+1, n, k}\left(t ; w_{k}\right)\right) \\
& =w_{k} F_{n, k}^{(s)}\left(t ; w_{k}\right) Q_{1, n, k}\left(t ; w_{k}\right)+\sum_{r=2}^{s+1} a_{s+1, r} F_{n, k}^{(s+1-r)}\left(t ; w_{k}\right) Q_{r, n, k}\left(t ; w_{k}\right), \tag{23}
\end{align*}
$$

where

$$
\begin{equation*}
a_{s+1,2}=a_{s, 2}-w_{k}^{2}, \quad a_{s+1, r}=a_{s, r}-a_{s, r-1}(r-1) w_{k} \quad \text { for } r \geq 2 \tag{24}
\end{equation*}
$$

so the inductive argument holds.
Having (21), by mathematical induction, we can easily show that $F_{n, k}^{(s)}\left(t ; w_{k}\right)$ is uniformly bounded for all $s, n \geq 1$. Moreover,

$$
\begin{equation*}
F_{n, k}^{(1)}\left(t ; w_{k}\right)=w_{k} F_{n, k}\left(t ; w_{k}\right) Q_{1, n, k}\left(t ; w_{k}\right) \xrightarrow{\mathbb{P}} w_{k} \exp \left\{(t-1) w_{k}\right\} \tag{25}
\end{equation*}
$$

by (16) and (19). Combining this with (20), by mathematical induction, we can show that for all $s \geq 1$,

$$
\begin{equation*}
F_{n, k}^{(s)}\left(t ; w_{k}\right) \xrightarrow{\mathbb{P}} w_{k}^{s} \exp \left\{(t-1) w_{k}\right\} \tag{26}
\end{equation*}
$$

We will now use our collected results to analyze the asymptotic distribution of the degree random variables; the following result characterizes this distribution:
Lemma 1.5. Fix a node k. Given $\left\{W_{n, k}=w_{k}\right\}$, for some $w_{k}>0$, the degree $D_{n, k}$ of node k converges in distribution to a Poisson random variable with rate w_{k}, as $n \rightarrow \infty$.

Proof. The PGF of $D_{n, k}$ is given by

$$
\begin{equation*}
\mathbb{E}\left[t^{D_{n, k}} \mid W_{n, k}=w_{k}\right]=\mathbb{E}\left[F_{n, k}\left(t ; w_{k}\right)\right], \quad \text { for }|t| \leq 1 \tag{27}
\end{equation*}
$$

Note that these expectations are under the σ-field generated by $\left\{W_{k}=w_{k}\right\}$. For all $s \geq 0$, we will derive the limit of $\mathbb{P}\left\{D_{n, k}=s \mid w_{k}\right\}$, as $n \rightarrow \infty$, which we note is given by the s-th order derivatives of the PGF in Eq. (27), evaluated at the argument $t=0$. It therefore suffices to show that $\mathbb{E}\left[F_{n, k}^{(s)}\left(t ; w_{k}\right)\right] \rightarrow w_{k}^{s} \exp \left\{(t-1) w_{k}\right\}$, as $n \rightarrow \infty$, for all $s \geq 0$. By Lemma 1.4, we know that $F_{n, k}^{(s)}\left(t ; w_{k}\right)$ is uniformly bounded and that $F_{n, k}^{(s)}\left(t ; w_{k}\right) \xrightarrow{\mathbb{P}} w_{k}^{s} \exp \left\{(t-1) w_{k}\right\}$, as $n \rightarrow \infty$. Therefore, by uniform integrability,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{E}\left[F_{n, k}^{(s)}\left(t ; w_{k}\right)\right]=\mathbb{E}\left[\lim _{n \rightarrow \infty} F_{n, k}^{(s)}\left(t ; w_{k}\right)\right]=w_{k}^{s} \exp \left\{(t-1) w_{k}\right\} \tag{28}
\end{equation*}
$$

We are now ready to prove the main theorems in the paper.
Proof of Theorem 3.1. We will first verify that, for $y \gg 1, \mathbb{P}\left\{D_{n, k}=y\right\} \rightarrow c y^{-1-\alpha}$ for every node k and for some constant $c>0$ as $n \rightarrow \infty$. By Lemma 1.5, conditioned on $\left\{W_{k}=w_{k}\right\}$, the degree $D_{n, k}$ converges in distribution to a Poisson random variable with rate w_{k}. Then by dominated convergence,

$$
\begin{align*}
\lim _{n \rightarrow \infty} \mathbb{P}\left\{D_{n, k}=y\right\} & =\lim _{n \rightarrow \infty} \int_{0}^{\infty} \mathbb{P}\left\{D_{k}=y \mid w_{k}\right\} p_{n}\left(\mathrm{~d} w_{k}\right) \\
& =\int_{0}^{\infty} \frac{w_{k}^{y} e^{-w_{k}}}{y!} p\left(\mathrm{~d} w_{k}\right) \\
& =\frac{\alpha \Gamma(y-\alpha)}{y!\Gamma(1-\alpha)}\left(1-2^{\alpha-y}\right) \tag{29}
\end{align*}
$$

By the asymptotics of the Gamma function, for $y \gg 1$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{P}\left\{D_{n, k}=y\right\}=c y^{-1-\alpha} \tag{30}
\end{equation*}
$$

for some constant c.
Next we show that, for any finite m, the collection of random variables $D_{n, 1}, \ldots, D_{n, m}$ are asymptotically independent, as $n \rightarrow \infty$. We compute the (joint) probability generating function of $\left(D_{n, 1}, \ldots, D_{n, m}\right)$, with $\left|t_{i}\right| \leq 1$ for $i=1, \ldots, m$. By Lemma 1.3,

$$
\begin{align*}
& \mathbb{E}\left[\prod_{i=1}^{m} t_{i}^{D_{n, i}}\right]= \mathbb{E}\left[\prod_{i=1}^{m}\right. \\
&\left.\prod_{j=i+1}^{m} \frac{L_{n}+t_{i} t_{j} W_{n, i} W_{n, j}}{L_{n}+W_{n, i} W_{n, j}} \prod_{j=m+1}^{n} \frac{L_{n}+t_{i} W_{n, i} W_{n, j}}{L_{n}+W_{n, i} W_{n, j}}\right] \\
&= \mathbb{E}\left[\mathbb { E } \left[\prod_{i=1}^{m} \prod_{j=i+1}^{m} \frac{L_{n, m+1: n}+\ell_{n, 1: m}+t_{i} t_{j} w_{i} W_{n, j}}{L_{n, m+1: n}+\ell_{n, 1: m}+w_{i} W_{n, j}}\right.\right. \tag{31}\\
&\left.\left.\left.\times \prod_{j=m+1}^{n} \frac{L_{n, m+1: n}+\ell_{n, 1: m}+t_{i} w_{i} W_{n, j}}{L_{n, m+1: n}+\ell_{n, 1: m}+w_{i} W_{n, j}} \right\rvert\, W_{n, 1: m}=w_{1: m}\right]\right]
\end{align*}
$$

Given $w_{1: m}$, by a similar argument as in the proof of Lemma 1.4, one can easily show that

$$
\begin{equation*}
\prod_{j=i+1}^{m} \frac{L_{n, m+1: n}+\ell_{n, 1: m}+t_{i} t_{j} w_{i} W_{n, j}}{L_{n, m+1: n}+\ell_{n, 1: m}+w_{i} W_{n, j}} \xrightarrow{\mathbb{P}} 1, \quad \text { as } n \rightarrow \infty \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
\prod_{j=m+1}^{n} \frac{L_{n, m+1: n}+\ell_{n, 1: m}+t_{i} w_{i} W_{n, j}}{L_{n, m+1: n}+\ell_{n, 1: m}+w_{i} W_{n, j}} \xrightarrow{\mathbb{P}} \exp \left\{\left(t_{i}-1\right) w_{i}\right\}, \quad \text { as } n \rightarrow \infty \tag{33}
\end{equation*}
$$

Hence, again by a similar argument as in the proof of Lemma 1.4, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{E}\left[\prod_{i=1}^{m} t_{i}^{D_{n, i}}\right]=\prod_{i=1}^{m} \mathbb{E}\left[\exp \left\{\left(t_{i}-1\right) W_{i}\right\}\right] \tag{34}
\end{equation*}
$$

that is, the joint PGF asymptotically factorizes into the product of the PGFs for i.i.d. random variables, and the result follows.

Proof of Theorem 3.2. Using the fact that the expected number of nodes $E_{n}:=\sum_{i=1}^{n} D_{n, i} / 2$, we may take $t_{1}=\cdots=$ $t_{n}=\sqrt{t}$ and obtain

$$
\begin{equation*}
\mathbb{E}\left[t^{E_{n}}\right]=\mathbb{E}\left[\prod_{i<j \leq n} \frac{L_{n}+t W_{n, i} W_{n, j}}{L_{n}+W_{n, i} W_{n, j}}\right] \tag{35}
\end{equation*}
$$

We evaluate the derivative of the PGF to obtain the first moment

$$
\begin{equation*}
\mathbb{E}\left[E_{n}\right]=\left.\frac{\partial \mathbb{E}\left[t^{E_{n}}\right]}{\partial t}\right|_{t=1}=\mathbb{E}\left[\sum_{i<j \leq n} \frac{W_{n, i} W_{n, j}}{L_{n}+W_{n, i} W_{n, j}}\right] \leq \frac{1}{2} \mathbb{E}\left[\sum_{i \leq j \leq n} \frac{W_{n, i} W_{n, j}}{L_{n}}\right]=\frac{n}{2} \mathbb{E}\left[W_{n}\right] \tag{36}
\end{equation*}
$$

Since

$$
\begin{equation*}
\mathbb{E}\left[W_{n}\right]=\frac{1}{Z_{n}}\left\{\frac{C_{n}^{1-\alpha}}{1-\alpha}-\gamma\left(1-\alpha, C_{n}\right)\right\} \tag{37}
\end{equation*}
$$

we have

$$
\begin{equation*}
\mathbb{E}\left[E_{n}\right]=O\left(n C_{n}^{1-\alpha}\right) \tag{38}
\end{equation*}
$$

Proof of Theorem 5.1. Recall that

$$
\begin{equation*}
\mathbb{P}\{X=x \mid r\}=\prod_{i<j \leq n} \frac{r_{i, j}}{1+r_{i, j}}=G^{-1}(r) \prod_{i<j \leq n} A_{i, j}^{x_{i, j}} \prod_{i=1}^{n} U_{i}^{D_{n, i}} \tag{39}
\end{equation*}
$$

where $A:=\left(A_{i, j}\right)_{i<j \leq n}$ and

$$
\begin{equation*}
G(r):=\prod_{i<j \leq n}\left(1+A_{i, j} U_{i} U_{j}\right) \tag{40}
\end{equation*}
$$

Since $\sum_{x} \mathbb{P}\{X=x \mid r\}=1$, we have

$$
\begin{equation*}
G(r)=\sum_{x} \prod_{i<j \leq n} A_{i, j}^{x_{i, j}} \prod_{i=1}^{n} u_{i}^{D_{n, i}} \tag{41}
\end{equation*}
$$

The joint PGF of $\left(D_{n, 1}, \ldots, D_{n, n}\right)$ is then

$$
\begin{align*}
\mathbb{E}\left[\prod_{i=1}^{n} t_{i}^{D_{n, i}} \mid A, W_{n, 1: n}\right] & =\sum_{x} \mathbb{P}\{X=x \mid r\} \prod_{i=1}^{n} t_{i}^{D_{n, i}(x)} \\
& =G^{-1}(r) \sum_{x} \prod_{i<j \leq n} A_{i, j}^{x_{i, j}} \prod_{i=1}^{n}\left(t_{i} U_{i}\right)^{D_{n, i}} \\
& =\prod_{i<j \leq n} \frac{1+A_{i, j} t_{i} t_{j} U_{i} U_{j}}{1+A_{i, j} U_{i} U_{j}} \tag{42}
\end{align*}
$$

The remainder of the proof follows analogously to the proof of Theorem 3.1 above.

References

Britton, T., Deijfen, M., and Martin-Löf, A. Generating simple random graphs with prescribed degree distribution. Journal of Statistical Physics, 124(6):1377-1397, 2006.

Kingma, D. P. and Welling, M. Auto-encoding variational Bayes. In ICLR, 2014.
Knowles, D. A. Stochastic gradient variational Bayes for gamma approximating distributions. arXiv preprint arXiv:1509.01631, 2015.

Salimans, T. and Knowles, D. A. Fixed-form variational posterior approximation through stochastic linear regression. Bayesian Analysis, 8(4):837-882, 2013.

[^0]: ${ }^{1}$ Pohang University of Science and Technology (POSTECH), Pohang, South Korea ${ }^{2}$ University of Cambridge, Cambridge, United Kingdom ${ }^{3}$ Uber AI Labs, San Francisco, CA, USA ${ }^{4}$ Hong Kong University of Science and Technology (HKUST), Clearwater Bay, Hong Kong. Correspondence to: Juho Lee < stonecold@ postech.ac.kr>.

 Proceedings of the $34^{\text {th }}$ International Conference on Machine Learning, Sydney, Australia, 2017. JMLR: W\&CP. Copyright 2017 by the author(s).

