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Abstract
We consider the popular problem of sparse empir-
ical risk minimization with linear predictors and
a large number of both features and observations.
With a convex-concave saddle point objective re-
formulation, we propose a Doubly Greedy Primal-
Dual Coordinate Descent algorithm that is able to
exploit sparsity in both primal and dual variables.
It enjoys a low cost per iteration and our theo-
retical analysis shows that it converges linearly
with a good iteration complexity, provided that
the set of primal variables is sparse. We then ex-
tend this algorithm further to leverage active sets.
The resulting new algorithm is even faster, and
experiments on large-scale Multi-class data sets
show that our algorithm achieves up to 30 times
speedup on several state-of-the-art optimization
methods.

1. Introduction
Regularized empirical risk minimization with linear pre-
dictors is a key workhorse in machine learning. It has the
following general form:

min

x2Rd

(
P (x)

def
=

1

n

nX

i=1

�
i

(a

>
i

x) + g(x)

)
(1)

where a

i

2 Rd is one of the n data samples with d features.
�
i

: R! R is a convex loss function of the linear predictor
a

>
i

x, for i = 1, · · · , n, and g : Rd ! R is a convex
regularization function for the coefficient vector x 2 Rd.
The loss function �

i

assigns a cost to the difference between
the linear predictor a>

i

x and the associated label b
i

.

With continuous and discrete b
i

, (1) captures regression and
classification problems respectively. As a popular instance,
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when �
i

(z) = max{0, 1� b
i

z} and g(x) = µ/2kxk22, (1)
reduces to the linear SVM (support vector machine) classifi-
cation problem. While setting �

i

(z) = log(1+exp(�b
i

z)),
we obtain the logistic regression problem.

We are interested in developing efficient algorithms for solv-
ing this general problem (1) for the setting where the co-
efficient vector x is assumed to be sparse. Applications
where such a sparsity is natural include large-scale multi-
class/multi-label classification, low-degree polynomial data
mapping (Chang et al., 2010), n-gram feature mapping (Son-
nenburg & Franc, 2010), and random feature kernel ma-
chines (Rahimi & Recht, 2007), specifically with a sparsity
constraint on the random features (Yen et al., 2014).

Our paper is organized as follows: In Section 2 we review
existing algorithms to solve the primal, dual as well as
primal-dual formulations of the problem (1). In Section
3, we present our Doubly Greedy Primal-Dual Coordinate
Descent method for the convex-concave saddle point formu-
lation of the problem (1). We propose an alternative method
that is more efficient in practice with the use of incremen-
tally increased active sets in both primal and dual variables.
In Section 4 we show linear convergence for our proposed
algorithm, and demonstrate the advantages of greedy meth-
ods with sparse variables. Finally in Section 5 we compare
the performance of our method with other state-of-the-art
methods on some real-world datasets, both with respect to
time and iterations.

2. Formulation and related work
Notations: We use A to denote the data matrix, with rows
A

i

= a

i

corresponding to samples, and the column Aj

corresponding to features. We use [n] to compactly denote
{1, 2, · · ·n}. Throughout the paper, k · k denotes l2-norm
unless otherwise specified.

Assumptions: In order to establish equivalence of the pri-
mal, dual problem and the convex-concave saddle point
formulation, we make the following assumptions.

• g, the regularization for primal variable, is assumed to
be µ-strongly convex, formally,

g(y) � g(x) + hrg(x),y � xi+ µ

2

ky � xk2,
for any sub-gradient rg(x) 2 @g(x),x,y 2 Rd. We
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also assume that g has decomposable structure, i.e.,
g(x) =

P
i

g
i

(x
i

).

• �
i

is 1
�

-smooth, for i 2 [n]:

�
i

(y)  �
i

(x)+�0
i

(x)(y�x)+
�

2

(y�x)2, x, y 2 R
or equivalently, �0

i

is Lipschitz continuous, i.e.,
|�0

i

(x)� �0
i

(y)|  1
�

|x� y|.

2.1. Primal, dual and primal-dual formulations

Under the assumption of strongly convex regularization g
and smooth loss function �

i

, minimizing (1) is equivalent
to maximizing its dual formulation:

max

y2Rn

(
D(y) ⌘ �g⇤(�A>

y

n
)� 1

n

nX
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�⇤
i

(y
i

)

)
(2)

or the unique solution for the following convex-concave
saddle point problem:

max

y2Rn

min

x2Rd

(
L(x,y) = g(x) +

1

n
y

>Ax� 1
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nX
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i
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)

(3)

Note that �
i

(a

>
i

x) in (1) is also smooth with respect to
x, since r

x

�
i

(a

>
i

x) = �0
i

(a

>
i

x)a

i

, therefore �
i

(a

>
i

x)

is R2/�-smooth with respect to x, where R is defined as
R = max

i

ka
i

k2. (Zhang & Xiao, 2014) thus defined the
condition number for the primal-dual form as:


def
=

R2

µ�
.

We share this definition in this paper. The commonly used
condition number for the gradient descent of the primal form
is simply (R2/� + µ)/µ = 1 + , see (Nesterov, 2004).

2.2. Related work

There has been a long line of work over the years to derive
fast solvers for the generic optimization problem (1). In
Table 1, we review the time complexity to achieve ✏ error
with respect to either primal, dual or primal-dual optimality
for existing methods.

Primal (accelerated) gradient descent (Nesterov, 2004;
2005) require O((1+) log(1/✏)) (or O((1+

p
) log(1/✏))

if accelerated) iterations to achieve primal error less than ✏.
Note that 1+ is the condition number of (1). Since each it-
eration takes O(nd) operations, the overall time complexity
is O(nd (1 + ) log(1/✏)) (or O(nd (1 +

p
) log(1/✏))

if accelerated). Due to the large per iteration cost for
large n, stochastic variants that separately optimize each
�
i

have proved more popular in big data settings. Exam-
ples include SGD (Bottou, 2010), SAG (Schmidt et al.,
2013), SVRG (Johnson & Zhang, 2013), SAGA (De-
fazio et al., 2014), MISO (Mairal, 2015) and their accel-

erated versions (Xiao & Zhang, 2014). The stochastic
scheme of optimizing individual �

i

is similar to updat-
ing each dual coordinate individually. Their time com-
plexity thus matches that of dual coordinate descent meth-
ods (Hsieh et al., 2008; Shalev-Shwartz & Zhang, 2013b;
Yang, 2013; Qu et al., 2014), which enjoy a time complexity
of O(nd (1+/n) log(1/✏)), and a further acceleration step
(Shalev-Shwartz & Zhang, 2016; 2013a) will improve the
complexity to O(nd (1 +

p
/n) log(1/✏)). These stochas-

tic methods have a lower per iteration cost of O(d), but each
step optimizes terms that are much less well-conditioned,
and consequently have a larger iteration complexity, for
instance of O(n (1 +

p
/n) log(1/✏)) in the accelerated

case.

With the primal-dual formulation, (Zhang & Xiao, 2014)
introduce a novel stochastic primal-dual coordinate method
(SPDC), which with acceleration achieves a time complexity
of O(nd (1 +

p
/n) log(1/✏)), matching that of acceler-

ated stochastic dual coordinate descent methods.

However, in practice, SPDC could lead to more expensive
computations for sparse data matrices due to dense updates.
For some special choices of the model, (Zhang & Xiao,
2014) provided efficient implementation for sparse feature
structures, but the average update time for each coordinate
is still much longer than that of dual coordinate descent.
Moreover, they cannot exploit intermediate sparse iterates
by methods such as shrinking technique (Hsieh et al., 2008).
We note moreover that acceleration is not always practically
useful in many real-world settings, other than in extremely
ill-conditioned situations. In particular,  is typically of
the order of

p
n or n as shown in (Bousquet & Elisseeff,

2002; Zhang & Xiao, 2014), and therefore the conditioning
of O(1+

p
/n) is not necessarily much better than O(1+

/n). Our experiments also corroborate this, showing that
vanilla dual coordinate descent under reasonable precision
or condition number is not improved upon by SDPC.

Therefore we raise the following question: Does the primal-
dual formulation have other good properties that could be
leveraged to improve optimization performance?

For instance, some recent work with the primal-dual formu-
lation updates stochastically sampled coordinates (Yu et al.,
2015), which has a reduced cost per iteration, provided the
data admits a low-rank factorization or when the proximal
mapping for primal and dual variables are relatively compu-
tational expensive, which however may not hold in practice,
so that the the noise caused by this preprocessing could hurt
test performance. Moreover, even when their assumptions
hold, their low-rank matrix factorization step itself may
dominate the total computation time.
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2.3. Our Contribution

In this paper, we try to address the key question above in
the setting of empirical risk minimization problems with
very large n and d, and where the set of primal (and/or dual)
variables are assumed to be sparse. We then show that the
primal-dual formulation of the problem allows for naturally
leveraging available primal and/or dual sparsity.

Table 1. Basic summary of running-time complexity of existing
methods and our method (DGPD). n is the number of samples, d is
the dimension of samples and primal variables,  is the condition
number for primal-dual coordinate algorithms. For our method, s is
the upper bound of sparsity in its primal variables; For DSPDC(Yu
et al., 2015), A is assumed to factorized as UV,U 2 Rn⇥k

, V 2
Rk⇥d, and 

1

=

max

i

ka
i

k1
�µ

2 [



d

,].
Time complexity Extra assumption

GD O(dn(1 + ) log

1

✏

) �
AGD O(dn(1 +

p
) log

1

✏

) �
SGD O(d(1 + )

1

✏

) �
MISO
SDCA O(dn(1 +



n

) log

1

✏

), or

�SVRG O(dn(1 +

p


n

) log

1

✏

)

SAG(A) if accelerated
SPDC O(dn(1 +

p


n

) log

1

✏

) �
DSPDC O(kn(1 + d

p
1
n

) log

1

✏

) A is factorized
ours O(s(d+ n)(1 +



n

) log

1

✏

) x is sparse

In Table 1, we review the total time complexity to achieve ✏
accuracy. We can see that all algorithms that achieve a linear
convergence rate require running time that has a factor nd,
and in particular, none of their convergence rates involve
the sparsity of the primal or dual variables.

There have been some attempts to modify existing primal
or dual coordinate approaches in order to exploit sparsity
of either primal or dual variables, but these do not perform
very well in practice. One popular approach uses a shrinking
heuristic in updating dual coordinates (Hsieh et al., 2008),
which however still requires complexity linear to the number
of coordinates d and does not guarantee rate of convergence.
(Nutini et al., 2015) consider the idea of searching more im-
portant active coordinates to update in each iteration. Their
greedy updates yield an iteration complexity linear in 1/µ1

instead of d/µ, where µ and µ1 are the parameters of strong
convexity with respect to L2 and L1 norms respectively.
However, with the commonly used L2 regularization term
µk · k2 that is used to ensure µ-strong convexity, the term is
exactly µ1 =

µ

d

l1-strongly convex. Moreover, in practice,
searching active coordinates causes considerable overhead.
While there have been some strategies proposed to address
this such as (Dhillon et al., 2011) that leverages nearest
neighbor search to reduce the searching time, these have
further requirements on the data structure used to store the
data. Overall, it thus remains to more carefully study the
optimization problem in order to facilitate the use of greedy

approaches to exploit primal or dual sparsity.

In this paper, we propose a Doubly Greedy Primal-Dual
(DGPD) Coordinate method that greedily selects and up-
dates both primal and dual variables. This method enjoys
an overall low time complexity under a sparsity assumption
on the primal variables:

Theorem 2.1. Main result: (informal) For the empirical
risk minimization problem (1) with l1 + l2 regularization,
there exists an algorithm (DGPD) that achieves ✏ error in
O(s(n+d)(1+ 

n

) log

1
✏

)) time, where s is an upper bound
of the sparsity of the primal variables.

3. The Doubly Greedy Primal-Dual (DGPD)
Coordinate Descent method

Coordinate-wise updates are most natural when g is separa-
ble, as is assumed for instance in the Stochastic Primal-Dual
Coordinate method of (Zhang & Xiao, 2014). In this pa-
per, to exploit sparsity in primal variables, we additionally
focus on the case where g(x) =

µ

2 kxk2 + �kxk1. With
respect to the loss function �, it is assumed to be 1

�

-smooth
and convex. For instance, setting �

i

as the smooth hinge
loss(Shalev-Shwartz & Zhang, 2013b):

�
i

(z) =

8
<

:

0 if b
i

z � 1

1
2 � b

i

z if b
i

z  0

(

1
2 � b

i

z)2 otherwise,
the smoothness parameter � =

1
2 . For the logit function

�
i

(z) = log(1 + exp(�b
i

z), the smoothness parameter
� = 4.

When iterates are sparse, it is more efficient to perform
greedy coordinate descent. We will provide a brief theoreti-
cal vignette of this phenomenon in Section 4.1. With this
motivation, our proposed method Doubly Greedy Primal-
Dual Coordinate Descent (DGPD) greedily selects and up-
dates both the primal and dual variables, one coordinate a
time. Our overall method is detailed in Algorithm 1.

In Algorithm 1, we start from all zero vectors x(0), z(0) 2
Rn, and y

(0),w(0) 2 Rd, where x

(0), and y

(0) are the
iterates for primal and dual variables, and w

(0) and z

(0) are
two auxiliary vectors, maintained as w ⌘ Ax and z ⌘ A>

y

to cache and reduce computations.

Primal Updates. In each iteration, we first compute the
optimal primal variable x̄(t�1) for the current y(t�1), i.e.,

¯

x

(t�1)
= argmin

x

L(x,y(t�1)
)) Eqn.(4)

Then, we only update the coordinate j(t) that will decrease
L(x,y) the most, i.e.,

j(t) = argmin

k2[d]
L(x(t)

+(x̄
(t�1)
k

�x(t)
k

)e

k

,y(t�1)
)) Eqn.(5)

Both two processes cost O(d) operations. Afterwards, we
update the value of w with Eqn. (6) such that w(t)

= Ax

(t)
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Algorithm 1 Doubly Greedy Primal-Dual Coordinate method

1: Input: Training data A 2 Rn⇥d, dual step size ⌘ > 0.
2: Initialize: x(0)  0 2 Rd, y(0)  0 2 Rn

,w

(0) ⌘ Ax = 0 2 Rn

, z

(0) ⌘ A

>
y = 0 2 Rd

3: for t = 1, 2, · · · , T do
4: Choose greedily the primal coordinate to update:

x̄

(t)

k

 argmin

↵

�
1

n

z

(t�1)

k

↵+ g

k

(↵)

 
, 8k 2 [d] (4)

j

(t)  argmin

k2[d]

�
1

n

z

(t�1)

k

(x̄

(t)

k

� x

(t�1)

k

) + g

k

(x̄

(t)

k

)� g

k

(x

(t�1)

k

)

 
(5)

x

(t)

k

 
(

x̄

(t)

k

if k = j

(t)

,

x

(t�1)

k

otherwise.
5: Update w to maintain the value of Ax:

w

(t)  w

(t�1)

+ (x

(t)

j

� x

(t�1)

j

)A

j (6)
6: Choose greedily the dual coordinate to update:

i

(t)  argmax

k2[n]

|w(t�1)

k

� 1

n

(�

⇤
k

)

0
(y

(t�1)

k

)| (7)

y

(t)

k

 
(

argmax

�

�
1

n

w

(t)

k

� � �

⇤
k

(�)� 1

2⌘

(� � y

(t�1)

k

)

2

 
if k = i

(t)

y

(t�1)

k

otherwise.
(8)

7: Update z to maintain the value of A>
y

z

(t)  z

(t�1)

+ (y

(t)

i

(t) � y

(t�1)

i

(t) )A

i

(t) (9)
8: end for
9: Output: x(T )

,y

(T )

in O(d) or O(nnz(Aj

)) operations. This greedy choice
of j(t) and aggressive update induces a sufficient primal
progress, as shown in Lemma A.1.

Dual Updates. We note that the updates are not exactly
symmetric in the primal x and dual y variables. The up-
dates for the dual variables y do follow along similar lines
as x, except that we use the Gauss-Southwell rule to select
variables, and introduce a step size ⌘. This is motivated
by our convergence analysis, which shows that each primal
update step yields a large descent in the objective, while
each dual update only ascends the dual objective modulo
an error term. This required a subtle analysis to show that
the error terms were canceled out in the end by the progress
made in the primal updates. But to proceed with such an
analysis required the use of a step size in the dual updates,
to balance the progress made in the dual updates, and the
error term it introduced. Note moreover, that we are using
the Gauss-Southwell rule to choose the variable to optimize
in the dual variables y, while we simply use the coordi-
nate that causes the most function descent in the primal
variables x. This is because our choice of step size in the
dual updates required computations that are shared with our
current approach of selecting the optimal primal variable.
This does incur more overhead when compared to the Gauss
Southwell rule however, so that we simply use the latter for
optimizing y.

The most significant feature in our method is that we select

and update one coordinate in both the primal and dual co-
ordinates greedily. With a simple trick that maintains the
value of w ⌘ Ax and z ⌘ A>

y (Lei et al., 2016), we
are able to select and update primal and dual coordinates
in O(n) and O(d) operations respectively. This happens
when computing the value of Ax and A>

y, which are the
bottleneck in computing the gradient or updating the vari-
ables. An extension to choose and update a batch of primal
and dual coordinate is straightforward. We provide further
discussions on the designing of Algorithm 1 in Section 4.

In this paper, we have not incorporated an extrapola-
tion/acceleration scheme to our algorithm. As noted earlier,
in practice the condition number  is usually comparable to
n, thus adding an extrapolation term that reduces the con-
ditioning from /n to

p
/n is not necessarily materially

advantageous in real applications. Meanwhile, an extrapola-
tion step usually worsens the stability of the algorithm, and
is not easily combined with incorporating greedy updates,
which is crucial to the leveraging the primal or dual sparsity
structure in this paper. We thus defer an accelerated exten-
sion of our algorithm incorporating extrapolation term to
future work.

For Algorithm 1, each iteration can be seen to have a cost
of O(n + d), while in Section 4 we show that the itera-
tion complexity for our method is O((1 +



n

)s log(1/✏))
assuming that the primal variables are s-sparse. There-
fore the overall time complexity for our algorithm is
O�(1 +



n

)s(n + d) log(1/✏)
�
, which is cheaper than the
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time complexity of even the accelerated SPDC algorithm
O�(1 +

p


n

)nd log(1/✏)
�

except for extremely ill condi-
tioned cases.

3.1. A Practical Extension of DGPD

In real application settings, Algorithm 1 has some draw-
backs. When data is sparse, we still require O(n) and O(d)
operations to update primal and dual variables. Even when
the data is dense, to find the greedy coordinate and to update
it requires comparable time complexity, which suggests we
should find some ways to eliminate overhead in practice.

To resolve these issues, we introduce the Doubly Greedy
Primal-Dual Coordinate method with Active Sets in Algo-
rithm 2. We make use of what we call active sets, that
contains the newly selected coordinates as well as the cur-
rent non-zero variables. We construct these active sets A

x

and A
y

for both primal and dual variables. Initially, they
are set as empty sets. In each iteration, we recurrently select
coordinates outside the active sets with the Gauss-Southwell
rule, and add them to A

x

and A
y

. We then optimize all the
variables within the active sets. Once a primal/dual variable
gets set to 0, we can drop it from the corresponding active
sets. This practice keeps the active sets A

x

and A
y

as the
support of primal and dual variables. Notice g0

k

(x
k

) is 0
when x

k

is zero, so that the variable selection step for primal
variables can be simplified as stated in (10).

Now the time complexity per iteration becomes |A
x

|n +

|A
y

|d. The sparsity in primal variables is encouraged by the
choice of `1 + `2 regularization. Meanwhile, as shown by
(Yen et al., 2016), a sparse set of primal variables usually
induces a sparse set of dual variables. Therefore |A

x

|⌧ d
and |A

y

| ⌧ n in practice, and the cost per iteration is
sub-linear to nd. We present further details in Section 3.2.

3.2. Efficient Implementation for Sparse Data Matrix

Suppose we are given a sparse data matrix A with number
of non-zero elements of each column and each row bounded
by nnz

y

and nnz
x

respectively, one can further reduce the
cost for computing (10) and (12) from O(d|A

y

| + n|A
x

|)
to O(nnz

x

|A
y

| + nnz
y

|A
x

|) by storing both {A
i

}n
i=1 and

{Aj}d
j=1 as sparse vectors and computing A>

y and Ax as

A>
y =

X

i2A
y

A>
i

y
i

, Ax =

X

j2A
x

Ajx
j

. (14)

In our implementation, whenever the active sets A
y

, A
x

are expanded, we further maintain a submatrix [A]A which
contains only rows in A

y

and columns in A
x

, so the primal
and dual updates (11), (13) only cost

P
i2A

y

nnz([A
i

]A
x

).
This results in each update costing less than the search
steps, and therefore, in practice, one can conduct multiple
rounds of updates (11), (13) before conducting the search
(10), (12), which in our experiment speeds up convergence

significantly.

4. Convergence Analysis
In this section, we introduce the primal gap �

p

and dual gap
�

d

and analyze the convergence rate in terms of their sum,
which we call primal and dual sub-optimality � = �

p

+�

d

.

Definition 4.1. For the following convex-concave func-

tion L(x,y) def
= g(x) + 1

n

y

>Ax � 1
n

P
n

i=1 �
⇤
i

(y
i

), with

its primal form P (x)

def
= min

y

L(x,y), and dual form

D(y)

def
= max

x

L(x,y), we define the primal gap at it-
eration t as

�

(t)
p

def
= L(x(t+1),y(t)

)�D(y

(t)
)

, the dual gap at iteration t as

�

(t)
d

def
= D⇤ �D(y

(t)
)

and sub-optimality as

�

(t) def
= �

(t)
p

+�

(t)
d

.

Theorem 4.2. Suppose in (1), g is µ-strongly convex
(`1 + `2) regularization, and �

i

is 1
�

-smooth. Let R =

max

i2[n] kaik2. Then DGPD achieves

�

(t+1)  2n

2n+ ⌘�
�

(t), (15)

if step size ⌘(t) satisfies that

⌘(t)  2n2µ

kx(t) � ¯

x

(t)k0(5R2
+ n�µ)

(16)

Suppose kx(t) � ¯

x

(t)k0  s, if we choose step size ⌘ =

2n2
µ

(5R2+n�µ)s , then it requires

O(s(


n
+ 1) log

1

✏
)

iterations for achieving ✏ primal and dual sub-optimality.1

Proof sketch: The proof analysis is straightforward with
the introduction of primal and dual sub-optimality �. We
divide the proof into primal-dual progress, primal progress,
and dual progress.

• Primal-Dual Progress (Lemma A.2).
�

(t)
d

+�

(t)
p

� (�

(t�1)
d

+�

(t�1)
p

)

 L(x(t+1),yt

)� L(xt,yt

)

+⌘(
1

n
hA

i

(t) ,x(t) � ¯

x

(t)i)2

�⌘( 1
n
hA

i

(t) , ¯x(t)i � 1

n
(�⇤

i

(t))
0
(y

(t)
i

(t)))
2(17)

1This result can be easily connected to traditional convergence
analysis in primal or dual form. Notice �  ✏ is sufficient require-
ment that dual gap �

d

= D

⇤ � D(y)  ✏, therefore the dual
variable y

(t) converges to optimal y⇤ with the same convergence
rate.



Doubly Greedy Primal-dual Coordinate Descent for Sparse Empirical Risk Minimization

Algorithm 2 Doubly Greedy Primal-Dual Coordinate method with Active Sets

1: Input: Training data A 2 Rn⇥d, dual step size ⌘ > 0.
2: Initialize: x(0)  0 2 Rd, y(0)  0 2 Rn, A(0)

x

 ?,A(0)
y

 ?
3: for t 1, 2, · · · , T do
4: Update the active set A(t)

x

greedily based on the optimal primal variable ¯

x

(t�1) and update x in its active set.

x̄
(t)
k

 argmin

↵

�
1

n
hAk,y(t�1)i↵+ g

k

(↵)
 
, 8k 2 [d]

j(t)  argmax

k2[d]
|x̄(t�1)

k

| (10)

A(t)
x

 A(t�1)
x

[ {j(t)} x
(t)
j

 
(

x̄
(t�1)
j

, if j 2 A(t)
x

x
(t�1)
j

, if j /2 A(t)
x

(11)

5: Update the active set A(t)
y

greedily based on the value of r
y

L(x(t),y(t�1)
) and update y in its active set.

i(t)  argmax

k2[n]�A(t�1)
y

|hA
k

,x(t)i � 1

n
(�⇤

k

)

0
(y

(t�1)
k

)|. (12)

A(t)
y

 A(t�1)
y

[ {i(t)}

y
(t)
i

 
(

argmax

�

�
1
n

hA
i

,x(t)i� � 1
n

�⇤
i

(�)� 1
2⌘ (� � y

(t�1)
k

)

 
, if i 2 A(t)

y

y
(t�1)
i

, if i /2 A(t)
y

(13)

6: Kick out 0 variables from active sets.
A(t)

y

 A(t)
y

�
[

i,y

(t)
i

=0

{i}, A(t)
x

 A(t)
x

�
[

j,x

(t)
j

=0

{j}

7: end for
8: Output: x(T ),y(T )

This lemma connects the descent in PD sub-optimality with
primal progress and dual progress. The third term and
the second terms respectively represent the potential dual
progress if we used the optimal ¯x(t), and the irrelevant part
generated from the difference between ¯

x

(t) and x

(t).

• Primal Progress (Lemma A.1).

L(x(t),y(t)
)�L(x(t+1),y(t)

) � 1

kx(t) � ¯

x

(t)k0 � 1

�

(t)
p

(18)

This inequality simply demonstrates function loss from pri-
mal update is at least a ratio of primal gap.

• Dual Progress (Lemma A.3).

(

1

n
hA

i

(t) ,x(t) � ¯

x

(t)i)2

�( 1
n
hA

i

(t) , ¯x(t)i � 1

n
(�⇤

i

(t))
0
(y

(t)
i

(t)))
2

 � �

2n
�

(t)
d

+

5R2

2n2
kx(t) � ¯

x

(t)k2 (19)

Finally, we establish the relation between the dual progress
in our algorithm with dual gap and difference between ¯

x

(t)

and x

(t). Now we can prove our main theorem 4.2.

For cleaner notation, write a =

⌘�

2n , b =

5⌘R2

2n2 . k¯x(t) �
x

(t)k0  s. By combining (18) and (19) to (17), we get:

�

(t)
d

��

(t�1)
d

+�

(t)
p

��

(t�1)
p

 L(x(t+1),yt

)� L(xt,yt

)� a�
(t)
d

+

�

2

bkx(t) � ¯

x

(t)k2

 L(x(t+1),yt

)� L(xt,yt

)� a�
(t)
d

+b
�L(x(t),y(t)

)� L(¯x(t),y(t)
)

�

= (1� b)
�L(x(t+1),yt

)� L(xt,yt

)

�� a�
(t)
d

+b
�L(x(t+1),yt

)� L(¯x(t),yt

)

�

 �1� b

s� 1

�

(t)
p

� a�
(t)
d

+b
�L(x(t+1),yt

)� L(¯x(t),yt

)

�

= ��1� b

s� 1

� b
�
�

(t)
p

� a�
(t)
d

Here the second inequality comes from strong convexity of
L(·,y(t)

). The fourth inequality comes from Lemma A.1.

Therefore when a  1�b

s�1 � b, or sufficiently a  (s(1 +

5/n))�1, we get �

(t)  1
1+a

�

(t�1). Since a < 1,
(a + 1)

�1/a  1/2, therefore �

(t)  (1 + a)�t

�

(0) 
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2

�at

�

(0). Therefore when T � O(s(1 + /n) log2
�(0)

✏

),
�

(T )  ✏.

4.1. Analysis on greedy methods for sparse iterates

In this section, we give a simple analysis of the greedy vari-
able selection rule showing that when iterate and minimizer
of a generic optimization problem are sparse, its conver-
gence rate is faster than choosing random coordinates. We
define the optimization problem in the space of Rn:

min

x2Rn

f(x)

, where f is µ-strongly convex L-smooth:
|r

i

f(x+ ↵e
i

)�r
i

f(x)|  L|↵|, 8x 2 Rn

Under this setting, a random coordinate descent method with
step size 1

L

, achieves E[f(x+
)� f⇤

]  (1� µ

nL

)

�
f(x)�

f⇤�, where x

+ is the next iterate of x.

Under the assumption that the current iterate x and the
optimal x⇤ are both k-sparse, we thereby conduct greedy
coordinate descent rule, i.e., x+

= x + ⌘e
i

⇤ , where ⌘, i⇤

satisfies f(x+⌘e
i

⇤
) = min

i,�

f(x+�e
i

). With L-Lipchitz
continuity, we have:

f(x+ ⌘e
i

⇤
)� f(x)

 min

�,i

�hrf(x), �e
i

i+ L

2

�2
 

= min

�,i

�hrf(x), �e
i

i+ L

2

k�e
i

k21
 

= min

�x

�hrf(x),�xi+ L

2

k�xk21
 

 min

�x

�
f(x+�x)� f(x) +

L

2

k�xk21
 

 min

0�1

�
f(x+ �(x⇤ � x))� f(x) +

L

2

�2kx⇤ � xk21
 

 min

0�1

�
�(f⇤ � f(x)) +

L

2

�2kx⇤ � xk21
 

The last two inequalities are obtained by constraining �x

to be of the form �(x⇤ � x) and by the convexity of f . For
the k-sparse x, and x

⇤, x�x

⇤ is at most 2k-sparse, and for
any 2k-sparse vector a, kak21  2kkak22. Hereby we obtain:

min

0�1

�
�(f⇤ � f(x)) +

L

2

�2kx⇤ � xk21
 

 min

0�1

�
�(f⇤ � f(x)) + Lk�2kx⇤ � xk22

 

 min

0�1

�
�(f⇤ � f(x))� 2kL

µ
�2(f⇤ � f(x))

 

=

µ

8kL
(f⇤ � f(x))

Therefore f(x+
)� f⇤  (1� µ

8kL )(f(x)� f⇤
), and when

k ⌧ n, this convergence rate could be much better than
randomized coordinate descent.

5. Experiment
In this section, we implement the Doubly-Greedy Primal-
Dual Coordinate Descent algorithm with Active Sets, and
compare its performance with other state-of-the-art methods
for `1+`2-regularized Empirical Risk minimization, includ-
ing Primal Randomized Coordinate Descent (PrimalRCD)
(Richtárik & Takác, 2014), Dual Randomized Coordinate
Descent (DualRCD, i.e., SDCA) (Shalev-Shwartz & Zhang,
2013b) and the Stochastic Primal-Dual Coordinate Method
(SPDC) (Zhang & Xiao, 2014).

We conduct experiments on large-scale multi-class data sets
with linear and non-linear feature mappings, as shown in
Table 2. For Mnist and Aloi we use Random Fourier (RF)
and Random Binning (RB) feature proposed in (Rahimi &
Recht, 2007) to approximate effect of RBF Gaussian kernel
and Laplacian Kernel respectively. The features generated
by Random Fourier are dense, while Random Binning gives
highly sparse data.

We give results for � 2 {0.1, 0.01} and µ 2 {1, 0.1, 0.01},
where Figure 1 shows results for � = 0.1, µ = 0.01 and
others can be found in Appendix B. In the above six figures,
we compare the running time with objective function. While
in the below figures, the x-axis is number of iterations. For
the baseline methods, one iteration is one pass over all the
variables, and for our method, it is several (5) passes over
the active sets. From the figures, we can see that in all
cases, DGPD has better performance than other methods.
Notice for clear presentation purposes we use log-scale for
Mnist-RB-time, Aloi-RB-time and RCV-time, where our
algorithm achieves improvements over others of orders of
magnitude.

The result shows that, by exploiting sparsity in both the
primal and dual, DGPD has much less cost per iteration
and thus is considerably faster in terms of training time,
while by maintaining an active set it does not sacrifice much
in terms of convergence rate. Note since in practice we
perform multiple updates after each search, the convergence
rate (measured in outer iterations) can be sometimes even
better than DualRCD.
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Table 2. Data statistics and number of non-zero primal & dual variables from DGPD (w/ � = 0.1, µ = 0.01).
Data set #features #nonzero/sample #train samples #test samples #classes #nz-primal #nz-dual

Mnist-RF 10,000 10,000 58,000 2,000 10 1,730 2,000
Aloi-RF 10,000 10,000 90,000 8,000 1,000 891 1,428

Mnist-RB 1,572,556 1,000 58,000 2,000 10 1,733 1,208
Aloi-RB 636,910 200 90,000 8,000 1,000 1,032 782

RCV1-Regions 47,236 68.38 199,328 23,149 225 1,123 1,447
Sector 55,197 162.94 7,793 961 105 610 655
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Figure 1. Relative Objective versus Time (the upper 2 rows) and versus # iterations (the lower 2 rows) for � = 0.1, µ = 0.01.
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